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CHAPTER

ONE

WHAT IS TENES ?

1.1 Overview

TeNeS (Te nsor Ne twork S olver) is an open-source program package for calculation of two-dimensional many-body
quantum states based on the tensor network method. This package calculates ground-state wavefunctions for user-
defined Hamiltonian, and evaluates user-defined physical quantities such as magnetization and correlation functions.
TeNeS can calculate finite temperature quantity and real-time evolution as well as the ground-state quantity. For prede-
fined models and lattices, there is a tool that makes it easy for users to generate input files. TeNeS uses an OpenMP/MPI
hybrid parallelized tensor operation library and thus can deal with large-scale calculation by using massively parallel
machines.

1.2 Developers

TeNeS is developed by the following members.

• Tsuyoshi Okubo (Graduate School of Science, Univ. of Tokyo)

• Satoshi Morita (Faculty of Science and Technology, Keio University)

• Yuichi Motoyama (Institute for Solid State Physics, Univ. of Tokyo)

• Kazuyoshi Yoshimi (Institute for Solid State Physics, Univ. of Tokyo)

• Takeo Kato (Institute for Solid State Physics, Univ. of Tokyo)

• Naoki Kawashima (Institute for Solid State Physics, Univ. of Tokyo)

1.3 Version information

• ver. 2.0-beta: released on 2023-10-25.

• ver. 1.3.4: released on 2023-09-13.

• ver. 1.3.3: released on 2023-07-14.

• ver. 1.3.2: released on 2023-06-08.

• ver. 1.3.1: released on 2022-10-21.

• ver. 1.3.0: released on 2022-10-20.

• ver. 1.2.0: released on 2021-12-13.

• ver. 1.1.1: released on 2020-11-09.

1



TeNeS Documentation, Release 2.0.0

• ver. 1.1.0: released on 2020-07-09.

• ver. 1.0.0: released on 2020-04-17.

• ver. 1.0-beta: released on 2020-03-30.

• ver. 0.1: released on 2019-12-04.

1.4 License

This package is distributed under GNU General Public License version 3 (GPL v3) or later.

1.5 Papers

When you publish the results by using TeNeS, we would appreciate if you cite the following paper:

Y. Motoyama, Tsuyoshi Okubo, Kazuyoshi Yoshimi, Satoshi Morita, Takeo Kato, and Naoki Kawashima, “TeNeS:
Tensor Network Solver for Quantum Lattice Systems”, Comput. Phys. Commun. 279, 108437 (2022)

1.6 Copyright

© 2019- The University of Tokyo. All rights reserved.

This software was developed with the support of "Project for advancement of software usability in materials science"
of The Institute for Solid State Physics, The University of Tokyo.
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CHAPTER

TWO

INSTALL

2.1 Download

You can download the source code for TeNeS from the GitHub page . If you have git installed on your machine, type
the following command to start downloading:

$ git clone https://github.com/issp-center-dev/TeNeS

2.2 Prerequisites

The following tools are required for building TeNeS.

1. C++11 compiler

2. CMake (>=3.6.0)

TeNeS depends on the following libraries, but these are downloaded automatically through the build process.

1. mptensor

2. cpptoml

TeNeS can use MPI and ScaLAPACK for parallel operations of tensors. MPI and ScaLAPACK must be installed
by yourself. For example, if you use Debian GNU/Linux (or Debian based system such as Ubuntu) and have root
priviledges, you can easily install them by the following:

sudo apt install openmpi-bin libopenmpi-dev libscalapack-mpi-dev

For others, see the official instruction of some MPI implementation and ScaLAPACK.

Python3 is required for the input file generators, tenes_simple and tenes_std . Additionary, the following python
packages are also required.

1. numpy

2. scipy

3. toml

3
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2.3 Install

1. Build TeNeS by typing the following commands (Some environment such as CentOS provides CMake3 as
cmake3):

$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<path to install to> ..
$ make

The default value of the <path to install to> is /usr/local.

Parallel Build

The make command accepts -j <num> options and then uses <num> processes for a parallel building. This reduces
the time to build TeNeS drastically.

The executable file tenes will be generated in build/src directory. By typing the following command, tests for
tenes can be done.

$ make tests

2. Install TeNeS by typing the following commands:

$ make install

In this case, tenes, tenes_std and tenes_simple are installed into the <path to install to>/bin .

Disable MPI/ScaLAPACK parallelization

If you want to disable MPI/ScaLAPACK parallelization, pass -DENABLE_MPI=OFF option to cmake command. On
macOS, some functions of ScaLAPACK are incompatible with the system’s BLAS and LAPACK, and TeNeS ends in
error. It is recommended to disable MPI parallel.

Specify compiler

CMake detects your compiler automatically but sometimes this does not work. In this case, you can specify the compiler
in the following way,

$ cmake -DCMAKE_CXX_COMPILER=<path to your compiler> ../

Specify ScaLAPACK

CMake detects your ScaLAPACK library automatically but may fail. In this case, you can specify the ScaLAPACK
library (<path>/lib/libscalapack.so) in the following way,

$ cmake -DSCALAPACK_ROOT=<path> ../

Use the pre-built mptensor

4 Chapter 2. Install
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TeNeS is based on the parallelized tensor library mptensor. The build system of TeNeS installs this automatically,
but if you want to use the specific version of the mptensor (<path>/lib/libmptensor.a), please add the following
option in cmake.

$ cmake -DMPTENSOR_ROOT=<path> ../

Specify Python interpreter

TeNeS tools (tenes_simple and tenes_std) use python3 interpreter which is found in PATH via /usr/bin/env
python3. Please make sure that python3 command invokes the interpreter which you want to use, for example, by
using type python3.

If you want to fix the interpreter (or /usr/bin/env does not exist), you can specify the interpreter in the following
way,

$ cmake -DTENES_PYTHON_EXECUTABLE=<path to your interpreter> ../

2.3. Install 5
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CHAPTER

THREE

USAGE

tenes, the main program of TeNeS, needs an input file to define the model, order of operations, etc. For ease of use to
make the input file, the following script is provided (the schematic flow is shown Fig. 3.1):

• tenes_std : A tool that generates an input file to execute tenes. An input file of tenes_std defines a lattice
model etc. by yourself according to a predetermined format.

• tenes_simple: A tool that generates input files for tenes_std from another simpler input file which specifies
lattice model predefined.

In order to simulate other models and/or lattices than predefined ones, you should create the input file of tenes_std
and convert it. Please see File format for details on the input files of TeNeS.

tenes_simple

simple.toml

tenes_std

std.toml

tenes

input.toml parameters.dat
density.dat
onesite_obs.dat
twosite_obs.dat
correlation.dat

time.dat
correlation_length.dat

Fig. 3.1: Schematic calculation flow of TeNeS

The following sections describe how to use each script, and finally how to use tenes.

3.1 Usage of tenes_simple

tenes_simple is a tool that creates an input file of tenes_std for predefined models and lattices.

$ tenes_simple simple.toml

• Takes a file as an argument

• Output an input file for tenes_std

• Command line options are as follows

– --help

∗ Show help message

– --version

7
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∗ Show version number

– --output=filename

∗ Specify the output file name filename

∗ Default is std.toml

∗ File name cannot be the same as the input file name

– --coordinatefile=coordfile

∗ Specify the output coordinate file name coordfile

∗ Default is coordinates.dat

∗ In a coordinate file, the first, second, and third columns denote site index, x coordinate, and y coordinate
(in Cartesian), respectively.

– --use-site-hamiltonian

∗ Onsite terms in Hamiltonian like Zeeman term will be output as site Hamiltonians

∗ If not specified, these terms will be absorbed into the nearest neighbor bond Hamiltonians

The currently defined models and lattices are as follows:

• Model

– Spin system

• Lattice

– Square lattice

– Triangular lattice

– Honeycomb lattice

– Kagome lattice

See Input file for tenes_simple for details of the input file. Below, a sample file for the S=1/2 Heisenberg model on the
square lattice is shown.

[lattice]
type = "square lattice" # type of lattice
L = 2 # size of unitcell
W = 2 # size of unitcell
virtual_dim = 3 # bond dimension
initial = "antiferro" # initial state

[model]
type = "spin" # type of model
J = 1.0 # Heisenberg interaction

[parameter]
[parameter.general]
is_real = true # use real tensor

[parameter.simple_update]
num_step = 1000 # number of steps
tau = 0.01 # imaginary time step

(continues on next page)
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(continued from previous page)

[parameter.full_update]
num_step = 0 # number of steps
tau = 0.01 # imaginary time step

[parameter.ctm]
dimension = 9 # bond dimension

3.2 Usage of tenes_std

tenes_std is a tool to calculate imaginary time evolution operators exp (−𝜏ℋ𝑖𝑗) from a given Hamiltonian ℋ and an
imaginary time step 𝜏 , and to generate an input file for tenes.

$ tenes_std std.toml

• Takes a file as an argument

• Output an input file for tenes

• Command line options are as follows

– --help

∗ Show help message

– --version

∗ Show version number

– --output=filename

∗ Specify the output file name filename

∗ Default is input.toml

∗ File name cannot be the same as the input file name

By making and editing input files, users can simulate on other models and lattices than predefined ones. See Input file
for tenes_std for details of the input file. Below, a sample file for the S=1/2 Heisenberg model on the square lattice is
shown.

[parameter]
[parameter.general]
is_real = true # limit tensors as real-valued ones
[parameter.simple_update]
num_step = 1000 # number of steps
tau = 0.01 # imaginary time step
[parameter.full_update]
num_step = 0 # number of steps
tau = 0.01 # imaginary time step
[parameter.ctm]
dimension = 9 # bond dimension

[tensor]
type = "square lattice"
L_sub = [2, 2] # unitcell size
skew = 0 # boundary condition

(continues on next page)

3.2. Usage of tenes_std 9
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(continued from previous page)

# tensors in unitcell
[[tensor.unitcell]]
index = [0, 3] # index of tensors
physical_dim = 2 # physical bond dimension
virtual_dim = [3, 3, 3, 3]

# virtual bond dimension
noise = 0.01 # noise in initial tensor
initial_state = [1.0, 0.0]

# initial state

[[tensor.unitcell]]
index = [1, 2]
physical_dim = 2
virtual_dim = [3, 3, 3, 3]
noise = 0.01
initial_state = [0.0, 1.0]

# (bond) hamiltonian
[[hamiltonian]]
dim = [2, 2] # physical bond dimensions
bonds = """ # bond information
0 1 0 # first: index of one site
1 1 0 # second: x coord of the other
2 1 0 # third: y coord of the other
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
elements = """ # nonzero elements of tensor
0 0 0 0 0.25 0.0 # first: initial state of one site
1 0 1 0 -0.25 0.0 # second: initial state of the other
0 1 1 0 0.5 0.0 # third: final state of one site
1 0 0 1 0.5 0.0 # fourth: final state of the other
0 1 0 1 -0.25 0.0 # fifth: real part
1 1 1 1 0.25 0.0 # sixth: imag part
"""

# observables
[observable]
[[observable.onesite]]
name = "Sz" # name
group = 0 # index
sites = [] # sites to be acted
dim = 2 # dimension
elements = """ # nonzero elements
0 0 0.5 0.0
1 1 -0.5 0.0
"""

(continues on next page)
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(continued from previous page)

[[observable.twosite]]
name = "hamiltonian"
group = 0
dim = [2, 2]
bonds = """
0 1 0
1 1 0
2 1 0
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
elements = """
0 0 0 0 0.25 0.0
1 0 1 0 -0.25 0.0
0 1 1 0 0.5 0.0
1 0 0 1 0.5 0.0
0 1 0 1 -0.25 0.0
1 1 1 1 0.25 0.0
"""

[[observable.twosite]]
name = "SzSz"
group = 1
dim = [2, 2]
bonds = """
0 1 0
1 1 0
2 1 0
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
ops = [0, 0] # index of onesite operators

3.3 Usage of tenes

tenes is the main program of TeNeS.

$ tenes input.toml

• Take the input file name as an argument

• The command line options are:

– --help - Show help messages.

3.3. Usage of tenes 11
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– --version - Show the version number.

– --quiet - Do not print any messages to the standard output.

In many cases, users do not have to edit the input file directly. See Input file for tenes for details of the input file.

12 Chapter 3. Usage



CHAPTER

FOUR

TUTORIAL

4.1 Ising model with transverse magnetic field

This section presents a calculation of the transverse magnetic field Ising model as an example. The Hamiltonian is

𝐻 = 𝐽𝑧
∑︁
⟨𝑖,𝑗⟩

𝑆𝑧
𝑖 𝑆

𝑧
𝑗 − ℎ𝑥

∑︁
𝑖

𝑆𝑥
𝑖 .

Please note that the model is defined using spin operators of size 1/2, not Pauli operators. By changing the variable
hx in the input file, the magnitude of the transverse magnetic field will be modified. For example, when the transverse
magnetic field is 0, the input file is

[parameter]
[parameter.general]
is_real = true # Limit tensor elements in real (not complex)

[parameter.simple_update]
num_step = 1000 # Number of steps in simple update
tau = 0.01 # Imaginary time slice

[parameter.full_update]
num_step = 0 # Number of steps in full update
tau = 0.01 # Imaginary time slice

[parameter.ctm]
meanfield_env = false # Use meanfield environment to contract iTNS
iteration_max = 10 # Maximum number of iterations in CTMRG
dimension = 10 # Bond dimension of corner transfer matrix

[lattice]
type = "square lattice" # Type of lattice
L = 2 # X length of unit cell
W = 2 # Y length of unit cell
virtual_dim = 2 # Bond dimension of bulk tensors
initial = "ferro" # Initial condition

[model]
type = "spin" # Type of model
Jz = -1.0 # Jz SzSz
Jx = 0.0 # Jx SxSx
Jy = 0.0 # Jy SySy
hx = 0.0 # hx Sx

13
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In this case, since Jz = -1.0 , the ferromagnetic state manifests itself as the ground state at hx=0. When the input
file name is simple.toml , type the following commands to execute tenes (before typing them, please install TeNeS
and set PATH properly.):

$ tenes_simple simple.toml
$ tenes_std std.toml
$ tenes input.toml

Then, the following logs are output:

Number of Processes: 1
Number of Threads / Process: 1
Tensor type: real
Start simple update
10% [100/1000] done
20% [200/1000] done
30% [300/1000] done
40% [400/1000] done
50% [500/1000] done
60% [600/1000] done
70% [700/1000] done
80% [800/1000] done
90% [900/1000] done
100% [1000/1000] done
Start calculating observables
Start updating environment
Start calculating onesite operators
Save onesite observables to output_0/onesite_obs.dat
Start calculating twosite operators
Save twosite observables to output_0/twosite_obs.dat
Save observable densities to output_0/density.dat
Save elapsed times to output_0/time.dat

Onesite observables per site:
Sz = 0.5 0
Sx = -1.28526262482e-13 0
Twosite observables per site:
hamiltonian = -0.5 0
SzSz = 0.5 0
SxSx = -1.7374919982e-18 0
SySy = 1.73749202733e-18 0
Wall times [sec.]:
simple update = 3.545813509
full update = 0
environmnent = 0.123170523
observable = 0.048149856

Done.

First, the information of parallelization and the tensors (complex or not) is displayed. Next, the execution status of the
calculation process is displayed. After finishing the calculation, the expected values per site of the one-site operators
Sz, Sx and two-site ones Hamiltonian, the nearest correlation SzSz, SxSx, SySy are output. Finally, the calculation
time for each process is output in units of seconds. density.dat, parameters.dat, time.dat, onesite_obs.dat,
and twosite_obs.dat are saved to the output directory. For details on each output file, see Output files. For example,

14 Chapter 4. Tutorial
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the value of <Sz> can be read from onesite_obs.dat. By changing hx in increments of 0.2 from 0 to 3.0 and running
tenes_simple and tenes, the following result is obtained. As an example of the sample script, tutorial_example.
py , tutorial_read.py are prepared in the sample/01_transverse_field_ising directory.

• tutorial_example.py

import subprocess

import numpy as np
import toml

MPI_cmd = "" # e.g., "mpiexec -np 1"

num_hx = 16
min_hx = 0.0
max_hx = 3.0

total = 0
for idx, hx in enumerate(np.linspace(min_hx, max_hx, num=num_hx)):

print(f"Calculation Process: {idx+1}/{num_hx}")
with open("simple.toml") as f:

dict_toml = toml.load(f)
dict_toml["parameter"]["general"]["output"] = f"output_{idx}"
dict_toml["model"]["hx"] = float(hx)

simple_toml = f"simple_{idx}.toml"
std_toml = f"std_{idx}.toml"
input_toml = f"input_{idx}.toml"

with open(simple_toml, "w") as f:
toml.dump(dict_toml, f)

cmd = f"tenes_simple {simple_toml} -o {std_toml}"
subprocess.call(cmd.split())

cmd = f"tenes_std {std_toml} -o {input_toml}"
subprocess.call(cmd.split())

cmd = f"{MPI_cmd} tenes {input_toml}"
subprocess.call(cmd.split())

• tutorial_read.py

from os.path import join

import toml

num_hx = 16

print("# $1: h")
print("# $2: ene")
print("# $3: sz")
print("# $4: sx")
print()

(continues on next page)

4.1. Ising model with transverse magnetic field 15
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(continued from previous page)

for idx in range(num_hx):
try:

with open(f"simple_{idx}.toml") as f:
dict_toml = toml.load(f)

hx = dict_toml["model"]["hx"]
ene = 0.0
mag_sz = 0.0
mag_sx = 0.0
with open(join(f"output_{idx}", "density.dat")) as f:

for line in f:
words = line.split()
if words[0] == "Energy":

ene = words[2]
elif words[0] == "Sz":

mag_sz = words[2]
elif words[0] == "Sx":

mag_sx = words[2]
print(f"{hx} {ene} {mag_sz} {mag_sx}")

except:
continue

The calculation will be done by typing the following command:

$ python tutorial_example.py

For MacBook2017 (1.4 GHz Intel Core i7), the calculation was finished in a few minutes. By typing the following
command, hx, energy, <Sz> and <Sx> are outputted in the standard output:

$ python tutorial_read.py

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3

Fig. 4.1: hx dependence of <Sz> and <Sx>.

As seen from Fig. 4.1 , with increasing hx, the <Sz> decreases from 0.5 to 0, while the <Sx> increases from 0 to 0.5.

16 Chapter 4. Tutorial
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4.2 Real-Time Evolution of the Transverse Field Ising Model

Here, we introduce a calculation example for the real-time evolution of the Ising model on a square lattice when a
transverse magnetic field, denoted by hx, is applied. The Hamiltonian is

𝐻 = 𝐽𝑧
∑︁
⟨𝑖,𝑗⟩

𝑆𝑧
𝑖 𝑆

𝑧
𝑗 − ℎ𝑥

∑︁
𝑖

𝑆𝑥
𝑖 .

Please note that the model is defined using spin operators of size 1/2, not Pauli operators. The input and script files
used in this tutorial can be found in sample/02_time_evolution.

Initially, we compute the ground state (refer to the simple.toml file) which serves as our starting state. Specifically,
it’s set as:

[parameter]
[parameter.general]
output = "output"
tensor_save = "save_tensor"

[parameter.simple_update]
num_step = 10
tau = 0.01

[parameter.full_update]
num_step = 0
tau = 0.0

[parameter.ctm]
meanfield_env = true
iteration_max = 10
dimension = 10

[lattice]
type = "square lattice"
L = 2
W = 2
virtual_dim = 3
initial = "ferro"

[model]
type = "spin"
Jz = -1.0
Jx = 0.0
Jy = 0.0
hx = 0.0

Given that Jz = -1.0, the ground state becomes ferromagnetic. We use the ground state as the initial state, and save
the state tensor with tensor_save = "save_tensor".

Next, we prepare the input file for the real-time evolution. This can be achieved by setting the mode to time. Below is
a sample input file (simple_te_strong.toml):

[parameter]
[parameter.general]
output = "output_te_strong"

(continues on next page)
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(continued from previous page)

tensor_load = "save_tensor"
mode = "time"

[parameter.simple_update]
num_step = 500
tau = 0.01

[parameter.full_update]
num_step = 0
tau = 0.0

[parameter.ctm]
meanfield_env = true
iteration_max = 10
dimension = 10

[lattice]
type = "square lattice"
L = 2
W = 2
virtual_dim = 3
initial = "ferro"

[model]
type = "spin"
Jz = -1.0
Jx = 0.0
Jy = 0.0
hx = 2.0

In this case, the transverse field is set to hx = 2.0, and the time-step for evolution is tau = 0.01. Moreover, since we
are utilizing the ground state as our initial condition, we load the state tensor with tensor_load = "save_tensor".

Once preparing the input file, we execute tenes_simple, tenes_std, and tenes in order. The results are saved in
the output_te_strong directory. Basically, the output is the same as the ground state, but with the addition of time
in the first column. For example, FT_density.dat records the expectation values of physical quantities over time:

# The meaning of each column is the following:
# $1: time
# $2: observable ID
# $3: real
# $4: imag
# The meaning of observable IDs are the following:
# 0: Energy
# 1: Sz
# 2: Sx
# 3: Sy
# 4: bond_hamiltonian
# 5: SzSz
# 6: SxSx
# 7: SySy

0.00000000000000000e+00 0 -5.00184764052080899e-01 0.00000000000000000e+00
(continues on next page)
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(continued from previous page)

0.00000000000000000e+00 1 4.99999945646528332e-01 0.00000000000000000e+00
0.00000000000000000e+00 2 9.24306486797199186e-05 0.00000000000000000e+00
0.00000000000000000e+00 3 2.34088935337348195e-06 0.00000000000000000e+00
0.00000000000000000e+00 4 -5.00184764052080899e-01 3.47535331983321418e-21
0.00000000000000000e+00 5 4.99999902788251294e-01 -8.46256269499545126e-22
0.00000000000000000e+00 6 1.12653588020163689e-05 6.35907290717320676e-22
0.00000000000000000e+00 7 -1.12840199341671039e-05 -2.06527532941704114e-21

The second column represents the type of physical quantity, and in this case, 1 represents the longitudinal magnetization
𝑚𝑧 = ⟨𝑆𝑧⟩. We can extract the time evolution of the magnetization by extracting rows with the second column equal
to 1:

awk '$2 == 1 {print $1, $3, $4}' output_te_strong/TE_density.dat > magnetization_strong.
→˓dat

For observing the time evolution with different transverse magnetic fields, we’ve also prepared sample input files
named simple_te_middle.toml (hx = 0.8) and simple_te_weak.toml (hx = 0.5). Additionally, there’s a
script named run.sh to execute these calculations in one go. Ensure that paths to tools like tenes are set correctly,
and then execute the calculations with:

sh run.sh

The computation will conclude in several seconds. Once done, launch gnuplot and enter:

load 'plot.plt'

This will plot the temporal evolution of magnetization, 𝑆𝑧 . The result is displayed in Fig. 4.2.

When the strength of the transverse-field exceeds the quantum phase transition point, the magnetization oscillates
beyond 0 [DQPT].

As time evolution progresses, the entanglement increases. At a certain point, the tensor network’s capacity may
be insufficient to express the wave function. In our case, the jump at t=4.25 for hx=2.0 indicates this issue.
When applying this in practice, ensure no such discontinuities exist. If jumps are observed, steps like increasing the
virtual_dimension might be necessary. For instance, adjusting it to virtual_dimension = 10 and redoing the
calculation as described above will eliminate the discontinuity, as can be seen in Fig. 4.3.

Reference

[DQPT] M. Heyl, A. polkovnikov, and S. Kehrein, Dynamical Quantum Phase Transitions in the Transverse-Field Ising
Model, Phys. Rev. Lett. 110, 135704 (2013). link

4.3 Finite Temperature Calculations for the Transverse Field Ising
Model

In this section, we present a calculation example of the ferromagnetic Ising model on a square lattice subjected to a
transverse magnetic field, denoted by hx, at finite temperatures. The Hamiltonian is

𝐻 = 𝐽𝑧
∑︁
⟨𝑖,𝑗⟩

𝑆𝑧
𝑖 𝑆

𝑧
𝑗 − ℎ𝑥

∑︁
𝑖

𝑆𝑥
𝑖 .
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Fig. 4.2: Graph illustrating the real-time evolution of the Ising model. The vertical axis represents magnetization, and
the horizontal axis represents time.
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Fig. 4.3: Graph showcasing the real-time evolution of the Ising model. The vertical axis denotes magnetization, while
the horizontal axis represents time. Results when virtual_dimension = 10 are applied.
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Please note that the model is defined using spin operators of size 1/2, not Pauli operators. The input and script files
used in this tutorial are located in the sample/03_finite_temperature directory. Below is a sample input file
(simple_ft_strong.toml):

[parameter]
[parameter.general]
mode = "finite"
is_real = false
output = "output_ft_strong"
measure_interval = [10, 10, 5]

[parameter.simple_update]
num_step = [50, 200, 10]
tau = [0.01, 0.005, 0.05]

[parameter.full_update]
num_step = 0
tau = 0.0

[parameter.ctm]
iteration_max = 10
dimension = 10

[lattice]
type = "square lattice"
L = 2
W = 2
virtual_dim = 3

[model]
type = "spin"
Jz = -1.0
Jx = 0.0
Jy = 0.0
hx = 2.0

To perform finite temperature calculations, set the mode to finite. Here, the transverse magnetic field is set to hx =
2.0 with tau = 0.01 (the inverse temperature step size is 2 times tau). Once preparing an input file of the simple
mode, execute tenes_simple, tenes_std, and tenes in the same way as for the ground state calculation.

The results of the finite temperature calculations are output to the output_ft_strong directory. Basically, the output
is the same as the ground state calculation, but the inverse temperature is added to the first column. For example,
FT_density.dat is as follows:

# The meaning of each column is the following:
# $1: inverse temperature
# $2: observable ID
# $3: real
# $4: imag
# The meaning of observable IDs are the following:
# 0: Energy
# 1: Sz
# 2: Sx
# 3: Sy

(continues on next page)
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(continued from previous page)

# 4: bond_hamiltonian
# 5: SzSz
# 6: SxSx
# 7: SySy

0.00000000000000000e+00 0 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 1 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 2 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 3 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 4 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 5 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 6 0.00000000000000000e+00 0.00000000000000000e+00
0.00000000000000000e+00 7 0.00000000000000000e+00 0.00000000000000000e+00

... continued ...

The second column indicates the type of physical quantity, and for example, 0 represents energy. Thus, you can extract
the temperature dependence by extracting only the energy with awk:

awk '$2 == 0 {print $1, $3, $4}' output_ft_strong/FT_density.dat > energy_strong.dat

To observe the behavior at different transverse magnetic fields, we’ve provided additional sample input files:
simple_ft_middle.toml (hx = 0.8), simple_te_weak.toml (hx = 0.5), and simple_ft_zero.toml (hx =
0.0). Moreover, a script named run.sh has been set up to execute all these calculations simultaneously. Ensure you’ve
added tools like tenes to your PATH, then initiate the calculations with:

sh run.sh

The computation should complete in about a minute. Since specific heat is difficult to calculate directly, it is calculated
from the energy by numerical differentiation. calcspec.py is a script to calculate specific heat from the energy by
using the spline interpolation:

python3 calcspec.py

To visualize the results, scripts have been prepared to plot energy, heat capacity, and magnetization (𝑆𝑥, 𝑆𝑧): plot_e.
plt, plot_c.plt, plot_mx.plt, and plot_mz.plt. Running the following:

gnuplot -persist plot_e.plt
gnuplot -persist plot_c.plt
gnuplot -persist plot_mx.plt
gnuplot -persist plot_mz.plt

will display plots for energy, heat capacity, and magnetizations (𝑚𝑥 and𝑚𝑧). The resulting plots are illustrated in Fig.
4.4. For comparison, results obtained using Quantum Monte Carlo calculations are also shown (using ALPS/looper).
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Fig. 4.4: Graphs for the finite temperature calculations of the Ising model: (a) energy, (b) heat capacity, (c) 𝑚𝑥, and
(d) 𝑚𝑧 . The vertical axis represents the physical quantity, and the horizontal axis denotes temperature.
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4.4 Magnetization process of the Heisenberg model on triangular and
square lattices

Next, we introduce the calculation of the magnetization process of the quantum Heisenberg model with spin 𝑆 = 1/2
defined on a triangular lattice. The Hamiltonian looks like this:

𝐻 = 𝐽
∑︁
⟨𝑖,𝑗⟩

𝑥,𝑦,𝑧∑︁
𝛼

𝑆𝛼
𝑖 𝑆

𝛼
𝑗 − ℎ

∑︁
𝑖

𝑆𝑧
𝑖

Here, ⟨𝑖, 𝑗⟩ represents the pair of nearest neighbor sites, and ℎ represents the magnitude of the external magnetic field
applied in the 𝑧 direction. Let’s calculate the ground state of this model and find ⟨𝑆𝑧⟩ ≡ 1

𝑁𝑢

∑︀𝑁𝑢

𝑖 ⟨𝑆𝑧
𝑖 ⟩, where 𝑁𝑢 is

the total number of sites in the unit cell, as a function of the magnetic field ℎ. To do this, the toml file basic.toml and
the python script tutorial_magnetization.py are prepared in the sample/04_magnetization directory. The
basic.toml file contains model settings and parameters.

[parameter]
[parameter.general]
is_real = true

[parameter.simple_update]
num_step = 200
tau = 0.01

[parameter.full_update]
num_step = 0
tau = 0.01

[parameter.ctm]
iteration_max = 100
dimension = 10

[lattice]
type = "triangular lattice"
L = 3
W = 3
virtual_dim = 2
initial = "random"

[model]
type = "spin"
J = 1.0

The lattice section specifies a triangular lattice with the unit cell size of 3×3. Here, in order to make the calculation
lighter, only simple update is performed, and the imaginary time interval 𝜏 is assumed to be 𝜏 = 0.01. For simplicity,
𝐽 = 1. Using this basic setting file, tutorial_magnetization.py calculates the magnetization when the magnetic field is
swept.

import subprocess
from os.path import join
import numpy as np
import toml

(continues on next page)
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(continued from previous page)

MPI_cmd = "" # e.g., "mpiexec -np 1"

num_h = 21
min_h = 0.0
max_h = 5.0
num_step_table = [100, 200, 500, 1000, 2000]

fmag = open("magnetization.dat", "w")
fene = open("energy.dat", "w")

for f in (fmag, fene):
f.write("# $1: hz\n")
for i, num_step in enumerate(num_step_table, 2):

f.write(f"# ${i}: num_step={num_step}\n")
f.write("\n")

for idx, h in enumerate(np.linspace(min_h, max_h, num=num_h)):
print(f"Calculation Process: {idx+1}/{num_h}")
inum = 0
num_pre = 0
fmag.write(f"{h} ")
fene.write(f"{h} ")
for num_step in num_step_table:

ns = num_step - num_pre
print(f"Steps: {num_step}")
with open("basic.toml") as f:

dict_toml = toml.load(f)

output_dir = f"output_{idx}_{num_step}"

dict_toml["parameter"]["general"]["output"] = output_dir
dict_toml["parameter"]["general"]["tensor_save"] = "tensor_save"
dict_toml["model"]["hz"] = float(h)
dict_toml["parameter"]["simple_update"]["num_step"] = ns
if inum > 0:

dict_toml["parameter"]["general"]["tensor_load"] = "tensor_save"

simple_toml = f"simple_{idx}_{num_step}.toml"
std_toml = f"std_{idx}_{num_step}.toml"
input_toml = f"input_{idx}_{num_step}.toml"

with open(simple_toml, "w") as f:
toml.dump(dict_toml, f)

cmd = f"tenes_simple {simple_toml} -o {std_toml}"
subprocess.call(cmd.split())

cmd = f"tenes_std {std_toml} -o {input_toml}"
subprocess.call(cmd.split())

cmd = f"{MPI_cmd} tenes {input_toml}"
subprocess.call(cmd.split())

(continues on next page)
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ene = 0.0
mag_sz = 0.0
with open(join(output_dir, "density.dat")) as f:

for line in f:
name, vals = line.split("=")
if name.strip() == "Energy":

re, im = vals.split()
ene += float(re)

elif name.strip() == "Sz":
re, im = vals.split()
mag_sz += float(re)

fene.write(f"{ene} ")
fmag.write(f"{mag_sz} ")
inum = inum + 1
num_pre = num_step

fene.write("\n")
fmag.write("\n")

fene.close()
fmag.close()

In this script, the magnetic field ℎ is changed in steps of 0.25 from 0 to 5, and the ground state energy and ⟨𝑆𝑧⟩ are
calculated and output to energy.dat and magnetization.dat, respectively. In order to see what happens when
the number of time steps for simple update is changed, calculations are also performed with 100, 200, 500, 1000, and
2000 steps for each magnetic field. In order to reduce the amount of calculation, the information of the wave function
obtained with a small number of steps is stored in tensor_save, and this is used as the initial state for the calculation
of a larger number of steps. For example, the python script first performs a calculation with the number of time steps
set to 100, and output the result. Then, it perform a calculation with the number of time steps set to 200 using the wave
function at the end of the calculation of the number of steps 100. The script consequently reduce the amount of the
calculation by 100 steps for the latter in the directory.

Let’s actually run it. After passing through a path to tenes in advance, execute calculation by typing as follows.

python tutorial_magnetization.py

The calculation will finish within a few hours if you use a notebook PC using a single processor. After the calculation
is completed, start up gnuplot and type

load 'plot.gp'

to obtain the magnetization curve as shown in the right panel of Fig. 4.5. In a similar way,

load 'plot_ene.gp'

we obtain the ground-state energy as shown in the left panel of Fig. 4.5 .

As can be seen from the result for a sufficiently large number of steps (for example, 2000 steps), a plateau structure
occurs in the magnetization process at the magnetization of 1/3 of the saturation magnetization ⟨𝑆𝑧⟩ = 0.5. On this
plateau, spins on the three lattices form a periodic magnetic structure with ↑, ↑, ↓, and a spin gap is generated. This
plateau structure is unique to the triangular lattice. To see whether the accuracy of calculation is enough or not, it is
helpful to check the step dependence of energy. In principle, the ground-state energy should decrease as the number of
steps increases, but in some magnetic fields, the calculated energy increases. This is a sign that the calculation accuracy
is not good. It is presumed that it is necessary to increase the bond dimension.

Next, let’s perform the calculation for a model on a square lattice. Use the toml file basic_square.toml and the
python script tutorial_magnetization_square.py in the sample/04_magnetization directory. The content
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Fig. 4.5: Ground state energy (left figure) and magnetization (right figure) of the Heisenberg model on the triangular
lattice.

of basic_square.toml is the same as basic.toml except that the lattice section has been changed as follows.

[lattice]
type = "square lattice"
L = 2
W = 2

To perform the calculation, type:

python tutorial_magnetization_square.py

After the calculation is completed, start up gnuplot and type

load 'plot_square.gp'

Then, the magnetization curve shown in the right panel of Fig. 4.6 is obtained. In a similar way, by typing the following
command,

load 'plot_ene_square.gp'

you will obtain the ground-state energy as shown in the left panel of Fig. 4.6. The calculation is almost converged at
2000 steps, and it can be seen that the plateau structure does not appear unlike the triangular lattice Heisenberg model.
Since the energy generally decreases as the number of steps is increased, it is assumed that the calculation accuracy is
sufficiently high.
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Fig. 4.6: Ground state energy (left figure) and magnetization (right figure) of the Heisenberg model on the square
lattice.

4.5 Phase diagram of the hardcore boson model on a trianglar lattice

Finally, let us consider a zero-temperature phase diagram of the hardcore boson model on a trianglar lattice. The
Hamiltonian of this model is given as

𝐻 =
∑︁
⟨𝑖,𝑗⟩

[︁
−𝑡(𝑏†𝑖 𝑏𝑗 + 𝑏†𝑗𝑏𝑖) + 𝑉 𝑛𝑖𝑛𝑗

]︁
− 𝜇

∑︁
𝑖

𝑛𝑖,

where ⟨𝑖, 𝑗⟩ indicates a pair of the nearest-neighbor sites, 𝜇 is a chemical potential, 𝑡 is a hopping energy, 𝑉 is a
strength of the nearest-neighbor interaction. For a hardcore boson system, the maximum number of bosons at each site
is restricted to 0 or 1. It is known that several ordered phases characterized by two types of long-range order appear
in this model [Wessel]. One is a superfluid order which is characterized by the offdiagonal order parameter |⟨𝑏⟩|. The
other one is a solid-like order which exists at a 1/3 filling, where one of three sites is filled in a

√
3×

√
3 ordering with

wave vector 𝑄 = (4𝜋/3, 0) (see the inset of Fig. 4.7). This long-range order is characterized by the structure factor
𝑆(𝑄) =

∑︀𝑁sites
𝑖𝑗 ⟨𝑛𝑖𝑛𝑗⟩ exp[−𝑖𝑄 · (𝑟𝑖 − 𝑟𝑗)]/𝑁sites.

To perform calculation for this system, the user can use toml files named basic.toml, nn_obs.toml and a python
script file run.py in the direction sample/05_hardcore_boson_triangular. Here, basic.toml specifies the
model and its parameters. This file is almost the same as the triangular Heisenberg model described in the previous
section and differs from it only in the section model in the last part, where the line type = "boson" specifies the
hardcore boson model and t = 0.1, V = 1 determines the strength of the hopping and nearest-neighbor interaction.

To calculate the structure factor 𝑆(𝑄), the correlations of densities at all the pairs of sites (in the unitcell) ⟨𝑛𝑖𝑛𝑗⟩ are
required. These observables are not defined by tenes_simple, users should define them by themselves. nn_obs.toml
specifies them for 3× 3 unitcell, and the content of the file is appended to std__XXX_YYY.toml in run.py.

For larger unitcell, the computational cost increases, and hence the calculatation of the structure factor gets difficult. On
the other hand, TeNeS can calculate the correlation functions along the x and y directions (in the square lattice iTPS)
at a low cost. Structure factor can be calculated using these correlation functions. Additionally, the Fourier transform
of the density operator ⟨𝑛𝑖⟩ is also available. The ground state at 1/3 filling is three-fold degenerate, but one of them is
selected in the finite bond dimension calculation, and calculated density has site dependence.
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Let us execute calculation using the script run.py. After setting of the paths, execute calculation by typing the following
command:

python run.py

The calculation will finish within several minutes or several tens of minutes. After the calculation, start gnuplot and
execute the following command:

load 'plot.gp'

Then, we obtain a graph as shown in Fig. 4.7. 𝑆(𝑄) is the structure factor calculated from the density correlations at all
the pairs of sites in the unitcell, 𝑆′(𝑄) is the structure factor calculated from the density correlations along the x-axis,
𝑛(𝑄) is the Fourier transform of the densities, and (|⟨𝑏⟩| + |⟨𝑏†⟩|)/2 is the superfluid order parameter. We note that
this calculation is not so accurate because the bond dimension used in the calculation is small. By increasing the bond
dimensions specified in the beginning of the script run.py, we can perform more accurate calculation at the expense
of execution time. From these figures, we find that there exists three phases for the ground state, i.e., (a) a superfluid
phase (−0.5 ≲ 𝜇/𝑉 ≲ −0.2), (b) a solid phase (−0.2 ≲ 𝜇/𝑉 ≲ 2.4), and (c) a supersolid phase (2.4 ≲ 𝜇/𝑉 ). This
result is consistent with the previous work [Wessel] .
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Fig. 4.7: Phase diagram of the hardcore boson model on a triangular lattice. Inset shows a particle pattern in a solid
phase.
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Reference

[Wessel] S. Wessel, M. Troyer, Supersolid hard-core bosonson the triangular lattice, Phys. Rev. Lett. 95, 127205
(2005). link.

4.6 Definition of lattices, models, and operators using the standard
mode

By using the standard mode, users can define own lattices, models, and operators. In this section, we explain how to
use the standard mode.

4.6.1 Definition of unit cell

Unit cells are defined using [tensor] and [[tensor.unitcell]]:

[tensor]
L_sub = [2, 2] # 2x2 unitcell
skew = 0 # Displacement in x direction

# when go beyond a y-direction boundary

[[tensor.unitcell]]
virtual_dim = [4, 4, 4, 4] # Bond dimensions (←, ↑, →, ↓)
index = [0, 3] # Indices of tensors in the unit cell
physical_dim = 2 # Physical bond dimensions
initial_state = [1.0, 0.0] # Initial state coefficients
noise = 0.01 # Fluctuation of elements in initial tensor

The initial state |Ψ⟩ is prepared as the direct product state of the per-site initial states |𝜓⟩𝑖 : |𝜓⟩ = ⊗𝑖 |𝜓𝑖⟩. |𝜓⟩𝑖 can be
specified as follows, with the elements of the initial_state = [a0, a1, ..., a_{d-1}],

|𝜓⟩𝑖 ∝
𝑑−1∑︁
𝑘=0

𝑎𝑘 |𝑘⟩

4.6.2 Definition of model (Hamiltonian)

TeNeS treats the Hamiltonian as the sum of bond Hamiltonians (two-site Hamiltonians) and site Hamiltonians (one-site
Hamiltonians).

𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐻 =
∑︁
𝑖,𝑗

ℋ𝑖,𝑗 +
∑︁
𝑖

ℋ𝑖

These local Hamiltonians are defined as pairs of (nonzero) elements of matrix and site/bond it acts on. A bond is a
directed pair of two sites: source and target. To define matrix elements is to define a model, and to define bonds is to
define a lattice.
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4-site unit cell (L_sub = [2, 2])

0 1

2 3

0 1

2 3

skew = 1

[tensor]

[[tensor.unitcell]]

2 3

0 1

virtual_dim = [4,4,4,4]

index = [0,3]

Fig. 4.8: [tensor] and [[tensor.unitcell]]
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[[hamiltonian]]

dim = [2, 2]  
both source and target take two states; spin-up and spin-down  

source target

elements = """
0 1 1 0 0.5 0.0

"""

initial state

s : source, t : target

final state

Real Imaginary

・
・
・

bonds = """
1 0 1

"""

source is 1, target is 3
・
・
・

bonds = """
i j k

i : Index of source site

j : Amount of movement from source site to +x direction. 

k : Amount of movement from source site to +y direction. 

target site

0 1

2 3

+1

+1

( j = 1 )

( k = 1 )

( i = 0 )
source

bonds target

0 1

2 3

source

target

Bond Hamiltonian

Fig. 4.9: [[hamiltonian]]
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Bond Hamiltonian

In the input file of the standard mode, say std.toml, each local Hamiltonian is specified as [[hamiltonian]]. The
bonds where the bond Hamiltonian acts are specified by bonds string:

[[hamiltonian]]
bonds = """ # Set of acting bonds (1 bond per line)
0 1 0 # Row 1: Number of the source in the unit cell
1 1 0 # Row 2: x coordinate(displacement) of target from the source
2 1 0 # Row 3: y coordinate(displacement) of target from the source
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""

One line of three integers corresponds one bond. The first integer is the index of the source site. The other two integers
are x and y displacement of the target site from the source site. For example, 0 1 0 means the pair of the site 0 and
the right neighbor (x+=1 and y+=0), the site 1, and 1 0 1 means the pair of the site 1 and the top neighbor (x+=0 and
y+=1), the site 3.

The dimension of the bond Hamiltonian, i.e., the number of states of the source and target sites, is specified by dim,
and the non-zero elements of the bond Hamiltonian is defined by elements:

dim = [2, 2] # Number of possible states of the acting bond [source, target]
elements = """ # (nonzero) matrix elements of the Hamiltonian (one element per row)
0 0 0 0 0.25 0.0 # Field 1: State of source before action
1 0 1 0 -0.25 0.0 # Field 2: State of target before action
0 1 1 0 0.5 0.0 # Field 3: State of source after action
1 0 0 1 0.5 0.0 # Field 4: State of target after action
0 1 0 1 -0.25 0.0 # Field 5: Real part of element
1 1 1 1 0.25 0.0 # Field 6: Imaginary part of element
"""

One line of elements corresponds one element. The first two integers are the states of the source and target sites before
the Hamiltonian acts on, and the following two integers are the states of the source and target sites after the Hamiltonian
acts on. The remaining two numbers are the real and imaginary part of the element of the bond Hamiltonian.

Site Hamiltonian

A site Hamiltonian is defined as a pair of (non-zero) matrix element and site it acts on.:

[[hamiltonian]]
dim = [2]
sites = []
elements = """
1 0 -0.5 0.0
0 1 -0.5 0.0
"""

Site is specified by sites as a list of indices. An empty list means all the sites.

Non-zero matrix elements are specified by elements, and how to define is the similar for bond Hamiltonians (Note
that site Hamiltonians acts on only one site).
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4.6.3 Definition of operators

[ [ observable . onesite ] ]

elements = """
0 0  0.5 0.0
1 1 -0.5 0.0
"""

Real Imaginary

Specify only non-zero elements

Fig. 4.10: [[observable.onesite]]

Operators whose expected values are finally computed are defined in [observable]. The current version of TeNeS
can evaluate onesite and twosites operators. The way to define operators is similar in Hamiltoninans, but an operator
require the name (name) and identifier number (group). Although the energy operator is just the Hamiltonian (sum of
the bond Hamiltonians), it should be defined in [observable] if users want to calculate. For convenience, tenes_std
copies [[hamiltonian]] in [[observable]] when operator with group = 0 is not defined.

For an example of onesite operator, the z-component of the spin operator

S^z = \begin{pmatrix}
0.5 & 0.0 \\
0.0 & -0.5 \\
\end{pmatrix}

is defined as follows:

[[observable.onesite]] # onesite operator
name = "Sz" # Name
group = 0 # 1-site operator identification number
sites = [] # Indices of tensors on which the operator acts ([] means all)
dim = 2 # Dimensions of operators
elements = """ # Non-zero elements of operator matrix (one element per line)
0 0 0.5 0.0 # Fields 1 and 2: before and after action
1 1 -0.5 0.0 # Fields 3 and 4: Real and imaginary parts of the element
"""

Non-zero elements of the matrix can be specified in the similar way of bond Hamiltonians.

Twosites operators can be defined in the similar way how to define the bond Hamiltonian. As an example of twosites
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operator, spin-spin correlation on nearest neighbor bonds 𝑆𝑧
𝑖 𝑆

𝑧
𝑗 is defined as follows:

[[observable].twosite]] # twosite operator
name = "SzSz" # Name
group = 1 # Index of twosite operator (independent of indices of onesite)
dim = [2, 2] # Dimension
bonds = """ # Bond that acts on
0 1 0
1 1 0
2 1 0
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
ops = [0, 0] # When it can be written as a direct product of onesite operators,

# their indices.
# In this case, "Sz" is the onesite operator with index 0.
# Matrix elements can also be written explicitly as elements

When the twosites operator is written as the direct product of the two onesite operators, ops can be used to specify
them.

4.6.4 Example: Antiferromagnetic Heisenberg model in staggered field

Let us consider the antiferromagnetic Heisenberg model in staggered field. The Hamiltonian is as follows

ℋ = 𝐽
∑︁
⟨𝑖𝑗⟩

𝑆𝑖 · 𝑆𝑗 − ℎ
∑︁
𝑖∈𝐴

𝑆𝑧
𝑖 + ℎ

∑︁
𝑗∈𝐵

𝑆𝑧
𝑗 ,

where
∑︀

⟨𝑖𝑗⟩ is summation over the nearest neighbor bonds and 𝐴 and 𝐵 are the sublattices of the square lattice. The
bond Hamiltonian ℋ𝑖𝑗 can be written as follows

ℋ𝑖𝑗 = 𝐽𝑆𝑖 · 𝑆𝑗

=

⎛⎜⎜⎝
𝐽/4 0 0 0
0 −𝐽/4 𝐽/2 0
0 𝐽/2 −𝐽/4 0
0 0 0 𝐽/4

⎞⎟⎟⎠
and the site Hamiltonian ℋ𝑖 can be written as

ℋ𝑖 = −ℎ𝑆𝑧
𝑖

=

(︂
−ℎ/2 0
0 ℎ/2

)︂
When 𝐽 = 0, ℎ = 1, for example, an input file of tenes_std, std.toml (sample/06_std_model/std.toml), is as
follows

[parameter]
[parameter.general]
is_real = true
tensor_save = "tensor"
[parameter.simple_update]

(continues on next page)
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(continued from previous page)

num_step = 1000
tau = 0.01
[parameter.full_update]
num_step = 0
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 10

[tensor]
type = "square lattice"
L_sub = [2, 2]
skew = 0

[[tensor.unitcell]]
virtual_dim = [2, 2, 2, 2]
index = [0, 3]
physical_dim = 2
initial_state = [1.0, 0.0]
noise = 0.01

[[tensor.unitcell]]
virtual_dim = [2, 2, 2, 2]
index = [1, 2]
physical_dim = 2
initial_state = [0.0, 1.0]
noise = 0.01

[[hamiltonian]]
dim = [2]
sites = [0, 3]
elements = """
0 0 -0.5 0.0
1 1 0.5 0.0
"""

[[hamiltonian]]
dim = [2]
sites = [1, 2]
elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

[observable]
[[observable.onesite]]
name = "Sz"
group = 1
sites = []
dim = 2
elements = """
0 0 0.5 0.0

(continues on next page)
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(continued from previous page)

1 1 -0.5 0.0
"""

[[observable.twosite]]
name = "SzSz"
group = 1
dim = [2, 2]
bonds = """
0 1 0
1 1 0
2 1 0
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
ops = [1, 1]

We can calculate this model and obtain results as

$ tenes_std std.toml
$ tenes input.toml

... skipped ...

Onesite observables per site:
hamiltonian = -0.5 0
Sz = 0 0

Twosite observables per site:
SzSz = -0.5 0

... skipped

Especially, the expectation values of onesite operators written in output/onesite_obs.dat are:

# $1: op_group
# $2: site_index
# $3: real
# $4: imag

0 0 -5.00000000000000000e-01 0.00000000000000000e+00
0 1 -5.00000000000000000e-01 0.00000000000000000e+00
0 2 -5.00000000000000000e-01 0.00000000000000000e+00
0 3 -5.00000000000000000e-01 0.00000000000000000e+00
1 0 5.00000000000000000e-01 0.00000000000000000e+00
1 1 -5.00000000000000000e-01 0.00000000000000000e+00
1 2 -5.00000000000000000e-01 0.00000000000000000e+00
1 3 5.00000000000000000e-01 0.00000000000000000e+00
-1 0 2.20256797875764860e+04 0.00000000000000000e+00
-1 1 2.20198975366861232e+04 0.00000000000000000e+00
-1 2 2.20294461413457539e+04 0.00000000000000000e+00
-1 3 2.20236290136460302e+04 0.00000000000000000e+00
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Values of 𝑆𝑧 (op_group=) show that spins on the A sublattice (site_index=0,3) are up (0.5) and those on the B
(site_index=1,2) are down (-0.5). By imposing the staggered magnetic field (𝐽 = 0, ℎ = 1), a tensor product state
representing the Neel state is obtained. Tensors are saved into the tensor directory because we set tensor_save
= "tensor", and therefore we can use them as the initial states of another calculation by setting tensor_load =
"tensor".
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CHAPTER

FIVE

FILE FORMAT

5.1 Short summary for input files of TeNeS

Input files of TeNeS are written in TOML format and each file has some sections. tenes_simple and tenes_std
read some sections and generate an input file for tenes_std and tenes, respectively. tenes reads some sections and
performs simulation.

For example, tenes_simple reads model and lattice sections and generates tensor, observable, and
hamiltonian ones. Additionary, this copies parameter, correlation, and correlation_length sections.

The following table summarizes how each tool deal with sections.

Section tenes_simple tenes_std tenes

parameter copy in / copy in
model in
lattice in
tensor out in / copy in
observable out copy in
correlation copy copy in
correlation_length copy copy in
hamiltonian out in
evolution out in

• “in”

– Tool uses this section as input

• “out”

– Tool generates this section in output (= next input)

• “copy”

– Tool copies this section into output (= next input)

41
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5.2 Input file for tenes_simple

• File format is TOML format.

• The input file has four sections : model, parameter, lattice, correlation .

– The parameter section is copied to the standard mode input.

5.2.1 model section

Specify the model to calculate. In this version, spin system ("spin") and bosonic system ("boson") are defined.

Name Description Type Default
type Model type (“spin” or “boson”) String –

The parameter names such as interactions depend on the model type.

Spin system: "spin"

Hamiltonian is described as

ℋ =
∑︁
⟨𝑖𝑗⟩

[︃
𝑥,𝑦,𝑧∑︁
𝛼

𝐽𝛼
𝑖𝑗𝑆

𝛼
𝑖 𝑆

𝛼
𝑗 +𝐵

(︁
𝑆⃗𝑖 · 𝑆⃗𝑗

)︁2
]︃
−
∑︁
𝑖

𝑥,𝑦,𝑧∑︁
𝛼

ℎ𝛼𝑆𝛼
𝑖 −

∑︁
𝑖

𝐷 (𝑆𝑧
𝑖 )

2

The parameters of the one-body terms are defined as follows.

Name Description Type Default
S Magnitude of the local spin Real (integer

or half integer)
0.5

hx Magnetic field along 𝑆𝑥, ℎ𝑥 Real 0.0
hy Magnetic field along 𝑆𝑦 , ℎ𝑦 Real 0.0
hz Magnetic field along 𝑆𝑧 , ℎ𝑧 Real 0.0
D On-site spin anisotropy 𝐷 Real 0.0

The exchange interaction 𝐽 can have a bond dependency.

Name Description Type Default
J0 Exchange interaction of 0th direction nearest neighbor bond Real 0.0
J1 Exchange interaction of 1st direction nearest neighbor bond Real 0.0
J2 Exchange interaction of 2nd direction nearest neighbor bond Real 0.0
J0' Exchange interaction of 0th direction next nearest neighbor bond Real 0.0
J1' Exchange interaction of 1st direction next nearest neighbor bond Real 0.0
J2' Exchange interaction of 2nd direction next nearest neighbor bond Real 0.0
J0'' Exchange interaction of 0th direction third nearest neighbor bond Real 0.0
J1'' Exchange interaction of 1st direction third nearest neighbor bond Real 0.0
J2'' Exchange interaction of 2nd direction third nearest neighbor bond Real 0.0

For the next nearest and third nearest neighbor bond, please surround the keyname with the double-quotation marks, ".
The bond direction depends on the lattice defined in the lattice section. For a square lattice, for example, coupling
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constants along two bond directions can be defined, x-direction (0) and y-direction (1). By omitting the direction
number, you can specify all directions at once. You can also specify Ising-like interaction by adding one character of
xyz at the end. If the same bond or component is specified twice or more, an error will occur.

To summarize,

Order
omit : 1st nearest neighbor
’    : 2nd nearest neighbor
’’   : 3rd nearest neighbor

Bondtype (0,1,or 2)
omitting means 0=1=2

Spin component (x,y,or z)
omitting means x=y=z

The biquadratic interaction 𝐵 can also have a bond dependency like as 𝐽 .

Name Description Type Default
B0 Biquadratic interaction of 0th direction nearest neighbor bond Real 0.0
B1 Biquadratic interaction of 1st direction nearest neighbor bond Real 0.0
B2 Biquadratic interaction of 2nd direction nearest neighbor bond Real 0.0
B0' Biquadratic interaction of 0th direction next nearest neighbor bond Real 0.0
B1' Biquadratic interaction of 1st direction next nearest neighbor bond Real 0.0
B2' Biquadratic interaction of 2nd direction next nearest neighbor bond Real 0.0
B0'' Biquadratic interaction of 0th direction third nearest neighbor bond Real 0.0
B1'' Biquadratic interaction of 1st direction third nearest neighbor bond Real 0.0
B2'' Biquadratic interaction of 2nd direction third nearest neighbor bond Real 0.0

One-site operators 𝑆𝑧 and 𝑆𝑥 are automatically defined. If parameter.general.is_real = false, 𝑆𝑦 is also
defined. In addition, bond Hamiltonian

ℋ𝑖𝑗 =

[︃
𝑥,𝑦,𝑧∑︁
𝛼

𝐽𝛼
𝑖𝑗𝑆

𝛼
𝑖 𝑆

𝛼
𝑗 +𝐵

(︁
𝑆⃗𝑖 · 𝑆⃗𝑗

)︁2
]︃
− 1

𝑧

[︃
𝑥,𝑦,𝑧∑︁
𝛼

ℎ𝛼
(︀
𝑆𝛼
𝑖 + 𝑆𝛼

𝑗

)︀
+𝐷

(︁
(𝑆𝑧

𝑖 )
2
+
(︀
𝑆𝑧
𝑗

)︀2)︁]︃
,

and spin correlations on nearest neighbor bonds 𝑆𝛼
𝑖 𝑆

𝛼
𝑗 ( 𝛼 = 𝑥, 𝑦, 𝑧 ) are automatically defined as two-site operators.

In the bond Hamiltonian, one body terms (ℎ𝛼 and 𝐷 term) appear only in the nearest neighbor bonds, and 𝑧 is the
number of the coordinate number.
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Bosonic system: "boson"

Hamiltonian is described as

ℋ =
∑︁
𝑖<𝑗

[︁
−𝑡𝑖𝑗

(︁
𝑏†𝑖 𝑏𝑗 + 𝑏†𝑗𝑏𝑖

)︁
+ 𝑉𝑖𝑗𝑛𝑖𝑛𝑗

]︁
+

∑︁
𝑖

[︂
𝑈
𝑛𝑖(𝑛𝑖 − 1)

2
− 𝜇𝑛𝑖

]︂
,

where 𝑏† and 𝑏 are the creation and the annihilation operators of a boson, and 𝑛 = 𝑏†𝑏 is the number operator.

The parameters of the one-body terms are defined as follows.

Name Description Type Default
nmax Maximum number of particles on a site Integer 1
U Onsite repulsion Real 0.0
mu Chemical potential Real 0.0

The hopping constant 𝑡 and the offsite repulsion 𝑉 can have a bond dependency.

Name Description Type Default
t0 Hopping of 0th direction nearest neighbor bond Real 0.0
t1 Hopping of 1st direction nearest neighbor bond Real 0.0
t2 Hopping of 2nd direction nearest neighbor bond Real 0.0
t0' Hopping of 0th direction next nearest neighbor bond Real 0.0
t1' Hopping of 1st direction next nearest neighbor bond Real 0.0
t2' Hopping of 2nd direction next nearest neighbor bond Real 0.0
t0'' Hopping of 0th direction third nearest neighbor bond Real 0.0
t1'' Hopping of 1st direction third nearest neighbor bond Real 0.0
t2'' Hopping of 2nd direction third nearest neighbor bond Real 0.0
V0 Offsite repulsion of 0th direction nearest neighbor bond Real 0.0
V1 Offsite repulsion of 1st direction nearest neighbor bond Real 0.0
V2 Offsite repulsion of 2nd direction nearest neighbor bond Real 0.0
V0' Offsite repulsion of 0th direction next nearest neighbor bond Real 0.0
V1' Offsite repulsion of 1st direction next nearest neighbor bond Real 0.0
V2' Offsite repulsion of 2nd direction next nearest neighbor bond Real 0.0
V0'' Offsite repulsion of 0th direction third nearest neighbor bond Real 0.0
V1'' Offsite repulsion of 1st direction third nearest neighbor bond Real 0.0
V2'' Offsite repulsion of 2nd direction third nearest neighbor bond Real 0.0

The bond direction depends on the lattice defined in the lattice section. For a square lattice, for example, coupling
constants along two bond directions can be defined, x-direction (0) and y-direction (1). By omitting the direction
number, you can specify all directions at once.

One-site operators 𝑛, 𝑏, and 𝑏† are automatically defined. In addition, bond Hamiltonian

ℋ𝑖𝑗 =
[︁
−𝑡𝑖𝑗

(︁
𝑏†𝑖 𝑏𝑗 + 𝑏†𝑗𝑏𝑖

)︁
+ 𝑉𝑖𝑗𝑛𝑖𝑛𝑗

]︁
+

1

𝑧

[︂(︂
𝑈
𝑛𝑖(𝑛𝑖 − 1)

2
− 𝜇𝑛𝑖

)︂
+ (𝑖↔ 𝑗)

]︂
and short range correlations on nearest neighbor bonds 𝑛𝑖𝑛𝑗 , 𝑏†𝑖 𝑏𝑗 , and 𝑏𝑖𝑏†𝑗 are automatically defined as two-site
operators. In the bond Hamiltonian, one body terms (𝑈 and 𝜇 term) appear only in the nearest neighbor bonds, and 𝑧
is the number of the coordinate number.
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5.2.2 lattice section

Specify the lattices to calculate. Square, triangular, honeycomb, and Kagome lattices are defined.

Name Description Type Default
type lattice name (square, triangular or honeycomb lattice) String –
L Unit cell size in x direction Integer –
W Unit cell size in y direction Integer L
virtual_dim Bond dimension Integer –
initial Inital state String random
noise Noise for elements in initial tensor Real 1e-2

initial and noise are parameters that determine the initial state of the wave function. If tensor_load is set in
parameter.general, initial is ignored.

• initial

– "ferro" : Ferromagnetic state

∗ In spin system, all sites has 𝑆𝑧 = 𝑆

∗ In bosonic system, all sites has 𝑛 = 𝑛max particles

– "antiferro" : Antiferromagnetic state

∗ In spin system, for square lattice and honeycomb lattice, the Neel order state (𝑆𝑧 = 𝑆 for the A
sublattice and 𝑆𝑧 = −𝑆 for the B sublattice), and for triangular lattice and kagome lattice, the 120
degree order state (spins on sites belonging to the A, B, and C sublattice are pointing to (𝜃, 𝜑) =
(0, 0), (2𝜋/3, 0) and (2𝜋/3, 𝜋) direction, respectively.)

∗ In bosonic system, sites belonging to one sublattice have 𝑛max particles and the other sites have no
particles.

– "random" : Random state

• noise

– The amount of fluctuation in the elements of the initial tensor

Square lattice

A square lattice type = "square lattice" consists of L sites in the (1, 0) direction and W sites in the (0, 1) direction.
As a concrete example, Fig. 5.1 (a) shows the structure for L=3, W=3. In addition, the definitions of the first, second
and third nearest neighbor bonds are shown in Fig. 5.1 (b), (c), and (d), respectively. The blue line represents a bond
of bondtype = 0 and the red line represents a bond of bondtype = 1.

Triangular lattice

A triangular lattice type = "triangular lattice" consists of L sites in the (1, 0) direction and W sites in the
(1/2,

√
3/2) direction. As a concrete example, Fig. 5.2 (a) shows the structure for L=3, W=3. In addition, the defini-

tions of the first, second and third nearest neighbor bonds are shown in Fig. 5.2 (b), (c), and (d), respectively. The blue,
red, and green lines represent bonds of bondtype = 0, 1, and 2, respectively. (e) shows the corresponding square
TPS with L=3, W=3.
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bondtype = 0
bondtype = 1

bondtype = 0
bondtype = 1 bondtype = 0

bondtype = 1

(a) (b)

(c) (d)

Fig. 5.1: Square lattice. (a) Site structure with L=3, W=3 (b) Nearest neighbor bonds. bondtype=0 (blue) bond extends
in the 0 degree direction and bondtype=1 (red) one in the 90 degree direction. (c) Second nearest neighbor bonds.
bondtype=0 (blue) bond extends in the 45 degree direction and bondtype=1 (red) one in the -45 degree direction. (d)
Third nearest neighbor bonds. bondtype=0 (blue) bond extends in the 0 degree direction and bondtype=1 (red) one
in the 90 degree direction.
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(a)

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

(b)

(c) (d)

(e)

Fig. 5.2: Triangular lattice. (a) Site structure with L=3, W=3 (b) Nearest neighbor bonds. bondtype=0 (blue) bond
extends in the 0 degree direction, bondtype=1 (red) one in the 60 degree direction, and bondtype=2 (green) one in the
120 degree direction. (c) Second nearest neighbor bonds. bondtype=0 (blue) bond extends in the 90 degree direction,
bondtype=1 (red) one in the -30 degree direction, and bondtype=2 (green) one in the 30 degree direction. (d) Third
nearest neighbor bonds. bondtype=0 (blue) bond extends in the 0 degree direction, bondtype=1 (red) one in the 60
degree direction, and bondtype=2 (green) one in the 120 degree direction. (e) Corrensponding square TPS of the
triangular lattice with L=3, W=3.
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Honeycomb lattice

In a honeycomb lattice type = "honeycomb lattice", units consisting of two sites of coordinates (0, 0) and
(
√
3/2, 1/2) are arranged with L units in the (

√
3, 0) direction and W units in the (1/2, 3/2) direction. As a con-

crete example, Fig. 5.3 (a) shows the structure for L=2, W=2. In addition, the definitions of the first, second and third
nearest neighbor bonds are shown in Fig. 5.3 (b), (c), and (d), respectively. The blue, red, and green lines represent
bonds of bondtype = 0, 1, and 2, respectively. (e) shows the corresponding square TPS with L=2, W=2.

Kagome lattice

In a kagome lattice type = "kagome lattice", units consisting of three sites of coordinates (0, 0), (1, 0), and
(1/2,

√
3/2) are arranged with L units in the (2, 0) direction and W units in the (1,

√
3) direction. As a concrete

example, Fig. 5.4 (a) shows the structure for L=2, W=2. In addition, the definitions of the first, second and third nearest
neighbor bonds are shown in Fig. 5.4 (b), (c), and (d), respectively. The blue and the red lines represent bonds of
bondtype = 0, and 1, respectively. (e) shows the corresponding square TPS with L=2, W=2.

5.2.3 parameter section

Parameters defined in this section is not used in tenes_simple but they are copied to the input file of tenes_std.

Set various parameters that appear in the calculation, such as the number of updates. This section has five subsections:
general, simple_update, full_update, ctm, random.

parameter.general

General parameters for tenes.

Name Description Type Default
mode Calculation mode String \"ground

state\"
is_real Whether to limit all tensors to real valued ones Boolean false
iszero_tol Absolute cutoff value for reading operators Real 0.0
measure Whether to calculate and save observables Boolean true
measure_interval Interval of measurement in finite temperature

calculation and time evolution process
Integer or list
of integers

10

output Directory for saving result such as physical
quantities

String "output"

tensor_save Directory for saving optimized tensors String ""
tensor_load Directory for loading initial tensors String ""

• mode

– Specify the calculation mode

– "ground state"

∗ Search for the ground state of the Hamiltonian

∗ tenes_std calculates the imaginary time evolution operator 𝑈(𝜏) = 𝑒−𝜏𝐻 from the Hamiltonian 𝐻

– "time evolution"

∗ Calculate the time evolution of the observables from the initial state

∗ tenes_std calculates the time evolution operator 𝑈(𝑡) = 𝑒−𝑖𝑡𝐻 from the Hamiltonian 𝐻
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bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

(a) (b)

(c) (d)

(e)

Fig. 5.3: Honeycomb lattice. (a) Site structure with L=2, W=2. The dashed ellipse denotes one unit. (b) Nearest
neighbor bonds. bondtype=0 (blue) bond extends in the 30 degree direction, bondtype=1 (red) one in the 150 degree
direction, and bondtype=2 (green) one in the -90 degree direction. (c) Second nearest neighbor bonds. bondtype=0
(blue) bond extends in the 120 degree direction, bondtype=1 (red) one in the 60 degree direction, and bondtype=2
(green) one in the 0 degree direction. (d) Third nearest neighbor bonds. bondtype=0 (blue) bond extends in the -30
degree direction, bondtype=1 (red) one in the -150 degree direction, and bondtype=2 (green) one in the 90 degree
direction. (e) Corresponding square TPS of the honeycomb lattice with L=2, W=2. Note that the most top-right red
tensor in the honeycomb lattice moves to the most top-left position, and the boundary condition is skewed.
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bondtype = 0
bondtype = 1

(a) (b)

(c)

bondtype = 0
bondtype = 1

(d)

(e)

: dummy

Fig. 5.4: Kagome lattice. (a) Site structure with L=2, W=2. The dashed circle denotes one unit. (b) Nearest neighbor
bonds. bondtype=0 (blue) bonds form upper triangle and bondtype=1 (red) bonds form lowertriangle. (c) Second
nearest neighbor bonds. (d) Third nearest neighbor bonds. bondtype=0 (blue) bond passes over a site and bondtype=1
(red) one does not. (e) Corresponding square TPS of the kagome lattice with L=2, W=2. The white circles are the
dummy tensors with bonds of dimension one.
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– "finite temperature"

∗ Calculate the finite temperature expectation values of the observables

∗ tenes_std calculates the imaginary time evolution operator 𝑈(𝜏) = 𝑒−𝜏𝐻 from the Hamiltonian 𝐻

• is_real

– When set to true, the type of elements of the tensor becomes real.

– If one complex operator is defined at least, calculation will end in errors before starting.

• iszero_tol

– When the absolute value of operator elements loaded is less than iszero_tol, it is regarded as zero

• meaure

– When set to false, the stages for measuring and saving observables will be skipped

– Elapsed time time.dat is always saved

• measure_interval

– Specify the interval of measurement in time evolution process and finite temperature Calculation

– Physical quantitites are calculated and saved each after measure_interval updates

• output

– Save numerical results such as physical quantities to files in this directory

– Empty means "." (current directory)

• tensor_save

– Save optimized tensors to files in this directory

– If empty no tensors will be saved

• tensor_load

– Read initial tensors from files in this directory

– If empty no tensors will be loaded

parameter.simple_update

Parameters in the simple update procedure.

Name Description Type Default
tau (Imaginary) time step 𝜏 in (imaginary)

time evolution operator
Real or list
of real

0.01

num_step Number of simple updates Integer
or list of
integers

0

lambda_cutoff cutoff of the mean field to be considered
zero in the simple update

Real 1e-12

gauge_fix Whether the tensor gauge is fixed Boolean false
gauge_maxiter Maximum number of iterations for fixing

gauge
Integer 100

gauge_converge_epsilon Convergence criteria of iterations for fix-
ing gauge

Real 1e-2
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• tau

– Specify the (imaginary) time step 𝜏 in (imaginary) time evolution operator

∗ tenes_std uses it to calculate the imaginary time evolution operator 𝑒−𝜏𝐻 from the Hamiltonian

∗ tenes uses it to calculate the time of each measurement

· For finite temperature calculation, note that the inverse temperature increase 2𝜏 at a step because
𝜌(𝛽 + 2𝜏) = 𝑈(𝜏)𝜌(𝛽)𝑈̄(𝜏)

– When a list is specified, the time step can be changed for each group of time evolution operators

• num_step

– Specify the number of simple updates

– When a list is specified, the number of simple updates can be changed for each group of time evolution
operators

parameter.full_update

Parameters in the full update procedure.

Name Description Type Default
tau (Imaginary) time step 𝜏 in (imaginary)

time evolution operator
Real or list
of reals

0.01

num_step Number of full updates Integer
or list of
integers

0

env_cutoff Cutoff of singular values to be consid-
ered as zero when computing environ-
ment through full updates

Real 1e-12

inverse_precision Cutoff of singular values to be consid-
ered as zero when computing the pseu-
doinverse matrix with full update

Real 1e-12

convergence_epsilon Convergence criteria for truncation opti-
mization with full update

Real 1e-6

iteration_max Maximum iteration number for trunca-
tion optimization on full updates

Integer 100

gauge_fix Whether the tensor gauge is fixed Boolean true
fastfullupdate Whether the fast full update is adopted Boolean true

parameter.ctm

Parameters for corner transfer matrices, CTM.
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Name Description Type Default
dimension Bond Dimension of CTM 𝜒 Integer 4
projector_cutoff Cutoff of singular values to be considered

as zero when computing CTM projectors
Real 1e-12

convergence_epsilon CTM convergence criteria Real 1e-6
iteration_max Maximum iteration number of conver-

gence for CTM
Integer 100

projector_corner Whether to use only the 1/4 corner tensor
in the CTM projector calculation

Boolean true

use_rsvd Whether to replace SVD with random
SVD

Boolean false

rsvd_oversampling_factor Ratio of the number of the oversampled
elements to that of the obtained elements
in random SVD method

Real 2.0

meanfield_env Use mean field environment obtained
through simple update instead of CTM

Boolean false

For Tensor renomalization group approach using random SVD, please see the following reference, S. Morita, R.
Igarashi, H.-H. Zhao, and N. Kawashima, Phys. Rev. E 97, 033310 (2018) .

parameter.random

Parameters for random number generators.

Name Description Type Default
seed Seed of the pseudo-random number gen-

erator used to initialize the tensor
Integer 11

Each MPI process has the own seed as seed plus the process ID (MPI rank).

Example

[parameter]
[parameter.general]
is_real = true
[parameter.simple_update]
num_step = 100
tau = 0.01
[parameter.full_update]
num_step = 0 # No full update
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 9 # CHI
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5.2.4 correlation section

For tenes_simple , correlation functions 𝐶 = ⟨𝐴(0)𝐵(𝑟)⟩ are not calculated by default. For calculating correlation
functions, they have to be specified in the same file format as the input file of tenes. For details, See correlation
section Input file for tenes.

5.2.5 correlation_length section

Parameters defined in this section is not used in tenes_simple but they are copied to the input file of tenes_std.

This section describes how to calculate the correlation length 𝜉.

Name Description Type Default
measure Whether to calculate 𝑥𝑖 or not Bool true
num_eigvals The number of eigenvalues of the

transfer matrix to be calculated
Integer 4

maxdim_dense_eigensolverMaximum dimension of the trans-
fer matrix where the diagonalization
method for dense matrices is used

Integer 200

arnoldi_maxdim Dimension of the Hessenberg matrix
generated by the Arnoldi method

Integer 50

arnoldi_restartdimThe number of the initial vectors gen-
erated by the restart process of the IRA
method

Integer 20

arnoldi_maxiterationsMaximum number of iterations in the
IRA method

Integer 1

arnoldi_rtol Relative tolerance used in the Arnoldi
method

Float 1e-10

The correlation length 𝜉 will be calculated from the dominant eigenvalues of the transfer matrices. If the dimension
of the transfer matrix is less than or equal to maxdim_dense_eigensolver, an eigensolver for dense matrices (LA-
PACK’s *geev routines) will be used. If not, an iterative method, the implicit restart Arnoldi method (IRA method),
will be used.

In the IRA method, a Hessenberg matrix with the size of arnoldi_maxdim is generated by the Arnoldi process. Its
eigenvalues are approximants of the first arnoldi_maxdim eigenvalues of the original matrix. If not converged, the
IRA method restarts the Arnoldi process with the newly generated arnoldi_restartdim initial vectors. In the many
cases of the transfer matrices, such a process is not necessary (arnoldi_maxiterations = 1).

5.3 Input file for tenes_std

• File format: TOML format

• This file has 5 sections: parameter, tensor, hamiltonian, observable, correlation
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5.3.1 parameter section

Set various parameters that appear in the calculation, such as the number of updates. This section has five subsections:
general, simple_update, full_update, ctm, random.

parameter.general

General parameters for tenes.

Name Description Type Default
mode Calculation mode String \"ground

state\"
is_real Whether to limit all tensors to real valued ones Boolean false
iszero_tol Absolute cutoff value for reading operators Real 0.0
measure Whether to calculate and save observables Boolean true
measure_interval Interval of measurement in finite temperature

calculation and time evolution process
Integer or list
of integers

10

output Directory for saving result such as physical
quantities

String "output"

tensor_save Directory for saving optimized tensors String ""
tensor_load Directory for loading initial tensors String ""

• mode

– Specify the calculation mode

– "ground state"

∗ Search for the ground state of the Hamiltonian

∗ tenes_std calculates the imaginary time evolution operator 𝑈(𝜏) = 𝑒−𝜏𝐻 from the Hamiltonian 𝐻

– "time evolution"

∗ Calculate the time evolution of the observables from the initial state

∗ tenes_std calculates the time evolution operator 𝑈(𝑡) = 𝑒−𝑖𝑡𝐻 from the Hamiltonian 𝐻

– "finite temperature"

∗ Calculate the finite temperature expectation values of the observables

∗ tenes_std calculates the imaginary time evolution operator 𝑈(𝜏) = 𝑒−𝜏𝐻 from the Hamiltonian 𝐻

• is_real

– When set to true, the type of elements of the tensor becomes real.

– If one complex operator is defined at least, calculation will end in errors before starting.

• iszero_tol

– When the absolute value of operator elements loaded is less than iszero_tol, it is regarded as zero

• meaure

– When set to false, the stages for measuring and saving observables will be skipped

– Elapsed time time.dat is always saved

• measure_interval
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– Specify the interval of measurement in time evolution process and finite temperature Calculation

– Physical quantitites are calculated and saved each after measure_interval updates

• output

– Save numerical results such as physical quantities to files in this directory

– Empty means "." (current directory)

• tensor_save

– Save optimized tensors to files in this directory

– If empty no tensors will be saved

• tensor_load

– Read initial tensors from files in this directory

– If empty no tensors will be loaded

parameter.simple_update

Parameters in the simple update procedure.

Name Description Type Default
tau (Imaginary) time step 𝜏 in (imaginary)

time evolution operator
Real or list
of real

0.01

num_step Number of simple updates Integer
or list of
integers

0

lambda_cutoff cutoff of the mean field to be considered
zero in the simple update

Real 1e-12

gauge_fix Whether the tensor gauge is fixed Boolean false
gauge_maxiter Maximum number of iterations for fixing

gauge
Integer 100

gauge_converge_epsilon Convergence criteria of iterations for fix-
ing gauge

Real 1e-2

• tau

– Specify the (imaginary) time step 𝜏 in (imaginary) time evolution operator

∗ tenes_std uses it to calculate the imaginary time evolution operator 𝑒−𝜏𝐻 from the Hamiltonian

∗ tenes uses it to calculate the time of each measurement

· For finite temperature calculation, note that the inverse temperature increase 2𝜏 at a step because
𝜌(𝛽 + 2𝜏) = 𝑈(𝜏)𝜌(𝛽)𝑈̄(𝜏)

– When a list is specified, the time step can be changed for each group of time evolution operators

• num_step

– Specify the number of simple updates

– When a list is specified, the number of simple updates can be changed for each group of time evolution
operators
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parameter.full_update

Parameters in the full update procedure.

Name Description Type Default
tau (Imaginary) time step 𝜏 in (imaginary)

time evolution operator
Real or list
of reals

0.01

num_step Number of full updates Integer
or list of
integers

0

env_cutoff Cutoff of singular values to be consid-
ered as zero when computing environ-
ment through full updates

Real 1e-12

inverse_precision Cutoff of singular values to be consid-
ered as zero when computing the pseu-
doinverse matrix with full update

Real 1e-12

convergence_epsilon Convergence criteria for truncation opti-
mization with full update

Real 1e-6

iteration_max Maximum iteration number for trunca-
tion optimization on full updates

Integer 100

gauge_fix Whether the tensor gauge is fixed Boolean true
fastfullupdate Whether the fast full update is adopted Boolean true

parameter.ctm

Parameters for corner transfer matrices, CTM.

Name Description Type Default
dimension Bond Dimension of CTM 𝜒 Integer 4
projector_cutoff Cutoff of singular values to be considered

as zero when computing CTM projectors
Real 1e-12

convergence_epsilon CTM convergence criteria Real 1e-6
iteration_max Maximum iteration number of conver-

gence for CTM
Integer 100

projector_corner Whether to use only the 1/4 corner tensor
in the CTM projector calculation

Boolean true

use_rsvd Whether to replace SVD with random
SVD

Boolean false

rsvd_oversampling_factor Ratio of the number of the oversampled
elements to that of the obtained elements
in random SVD method

Real 2.0

meanfield_env Use mean field environment obtained
through simple update instead of CTM

Boolean false

For Tensor renomalization group approach using random SVD, please see the following reference, S. Morita, R.
Igarashi, H.-H. Zhao, and N. Kawashima, Phys. Rev. E 97, 033310 (2018) .
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parameter.random

Parameters for random number generators.

Name Description Type Default
seed Seed of the pseudo-random number gen-

erator used to initialize the tensor
Integer 11

Each MPI process has the own seed as seed plus the process ID (MPI rank).

Example

[parameter]
[parameter.general]
is_real = true
[parameter.simple_update]
num_step = 100
tau = 0.01
[parameter.full_update]
num_step = 0 # No full update
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 9 # CHI

5.3.2 tensor section

Specify the unit cell information (Information of bonds is given in the hamiltonian (tenes_std) and evolution
(tenes) sections.). Unit cell has a shape of a rectangular with the size of Lx times Ly. lattice section has an array
of subsections unitcell .

Name Description Type Default
L_sub Unit cell size Integer or a list of integer –
skew Shift value in skew boundary

condition
Integer 0

When a list of two integers is passed as L_sub, the first element gives the value of Lx and the second one does Ly. A
list of three or more elements causes an error. If L_sub is an integer, both Lx and Ly will have the same value.

Sites in a unit cell are indexed starting from 0. These are arranged in order from the x direction.

skew is the shift value in the x direction when moving one unit cell in the y direction.
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0 1

2 3

x

y

4 5

Fig. 5.5: An example for L_sub = [2,3].

x

y

0 1 2

3 4 5

0 1 2

3 4 5

2

5

Fig. 5.6: An example for L_sub = [3,2], skew = 1 (ruled line is a separator for unit cell).
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tensor.unitcell subsection

The information of site tensors 𝑇 (𝑛)
𝑖𝑗𝑘𝑙𝛼 is specified. Here, 𝑖, 𝑗, 𝑘, 𝑙 indicate the index of the virtual bond, 𝛼 indicates the

index of the physical bond, and 𝑛 indicates the site number.

Name Description Type
index Site number Integer or a list of integer
physical_dim Dimension of physical bond for a site

tensor
Integer

virtual_dim Dimension of virtual bonds 𝐷 for a site
tensor

Integer or a list of integer

initial_state Initial tensor a list of real
noise Noise for initial tensor Real

Multiple sites can be specified at once by setting a list to index. An empty list [] means all sites.

By setting a list to virtual_dim, individual bond dimensions in four directions can be specified. The order is left (-x),
top (+y), right (+x), and bottom (-y).

An initial state of a system |Ψ⟩ is represented as the direct product state of the initial states at each site 𝑖, |Ψ𝑖⟩:

|Ψ⟩ = ⊗𝑖|Ψ𝑖⟩,

where |Ψ𝑖⟩ =
∑︀

𝛼𝐴𝛼|𝛼⟩𝑖 is the initial state at 𝑖 site. Site tensors are initialized to realize this product state with some
noise. initial_state specifies (real) values of expansion coefficient 𝐴𝛼, which will be automatically normalized.
The tensor itself is initialized such that all elements with a virtual bond index of 0 are 𝑇0000𝛼 = 𝐴𝛼. The other elements
are independently initialized by a uniform random number of [-noise, noise). For example, in the case of 𝑆 = 1/2
, set initial_state = [1.0, 0.0] when you want to set the initial state as the state |Ψ𝑖⟩ = | ↑⟩ = |0⟩. When you
want to set the initial state as the state |Ψ𝑖⟩ = (| ↑⟩+ | ↓⟩) /

√
2, set initial_state = [1.0, 1.0].

When an array consisting of only zeros is passed as initil_state, all the elements of the initial tensor will be
initialized independently by uniform random value [-noise, noise) .

5.3.3 observable section

Define various settings related to physical quantity measurement. This section has two types of subsections, onesite
and twosite.

observable.onesite

Define one-body operators that indicate physical quantities defined at each site 𝑖.

Name Description type
name Operator name String
group Identification number of operators Integer
sites Site number Integer or a list of integer
dim Dimension of an operator Integer
elements Non-zero elements of an operator String

name specifies an operator name.

group specifies an identification number of one-site operators.
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sites specifies a site number where an operater acts on. By using a list, the operators can be defined on the multiple
sites at the same time. An empty list [] means all sites.

dim specifies a dimension of an operator.

elements is a string specifying the non-zero element of an operator. One element is specified by one line consisting
of two integers and two floating-point numbers separated by spaces.

• The first two integers are the state numbers before and after the act of the operator, respectively.

• The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.

Example

As an example, the case of 𝑆𝑧 operator for S=1/2

𝑆𝑧 =

(︂
0.5 0.0
0.0 −0.5

)︂
is explained.

First, set the name to name = "Sz" and the identification number to group = 0.

Next, if the same operator is used at all sites, set sites = []. Otherwise, for example, if there are sites with different
spin length 𝑆, specify a specific site number such as sites = [0,1].

The dimension of the operator is dim = 2, because it is the size of the matrix shown above.

Finally, the operator element is defined. When we label two basis on site as | ↑⟩ = |0⟩ and | ↓⟩ = |1⟩, non-zero
elements of 𝑆𝑧 are represented as

elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

As a result, 𝑆𝑧 operator for S=1/2 is defined as follows:

[[observable.onesite]]
name = "Sz"
group = 0
sites = []
dim = 2
elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""
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observable.twosite

Define two-body operators that indicate physical quantities defined on two sites.

Name Description Type
name Operator name String
group Identification number of operators Integer
bonds Bond String
dim Dimension of an operator Integer
elements Non-zero elements of an operator String
ops Index of onesite operators A list of integer

name specifies an operator name.

group specifies an identification number of two sites operators.

bonds specifies a string representing the set of site pairs on which the operator acts. One line consisting of three
integers means one site pair.

• The first integer is the number of the source site.

• The last two integers are the coordinates (dx, dy) of the other site (target site) from the source site.

– Both dx and dy must be in the range −3 ≤ 𝑑𝑥 ≤ 3.

dim specifies a dimension of an operator. In other words, the number of possible states of the site where the operator
acts on. In the case of interaction between two 𝑆 = 1/2 spins, for example, dim = [2, 2] .

elements is a string specifying the non-zero element of an operator. One element consists of one line consisting of
four integers and two floating-point numbers separated by spaces.

• The first two integers are the status numbers of the source site and target site before the operator acts on.

• The next two integers show the status numbers of the source site and target site after the operator acts on.

• The last two floats indicate the real and imaginary parts of the elements of the operator.

Using ops, a two-body operator can be defined as a direct product of the one-body operators defined in observable.
onesite. For example, if 𝑆𝑧 is defined as group = 0 in observable.onesite, 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 can be expressed as ops =

[0,0].

If both elements and ops are defined, the process will end in error.

Example

As an example, for the calculation of the energy of the bond Hamiltonian for S=1/2 Heisenberg model on square lattice
at Lsub=[2,2] , the way to define two site operators (equal to the Hamiltonian)

ℋ𝑖𝑗 = 𝑆𝑧
𝑖 𝑆

𝑧
𝑗 +

1

2

[︀
𝑆+
𝑖 𝑆

−
𝑗 + 𝑆−

𝑖 𝑆
+
𝑗

]︀
is explained below.

First, the name and identification number is set as name = "hamiltonian" and group = 0. dim = [2,2] because
the state of each site is a superposition of the two states | ↑⟩ and | ↓⟩.

Next, let’s define the bonds. In this case, site indecies are given as shown in bond_22 . The bond connecting 0 and 1
is represented as 0 1 0 because 1 is located at (1,0) from 0. Similarly, The bond connecting 1 and 3 is represented as
1 0 1 because 3 is located at (0,1) from 1.
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Fig. 5.7: Site indecies of the S=1/2 Heisenberg model on square lattice at Lsub=[2,2] .

Finally, how to define the elements of the operator is explained. First, the basis of the site is needed to be la-
beled. Here, we label | ↑⟩ as 0 and | ↓⟩ as 1. Using this basis and label number, for example, one of diago-
nal elements ⟨↑𝑖↑𝑗 |ℋ𝑖𝑗 | ↑𝑖↑𝑗⟩ = 1/4 is specified by 0 0 0 0 0.25 0.0. Likewise, one of off-diagonal elements
⟨↑𝑖↓𝑗 |ℋ𝑖𝑗 | ↓𝑖↑𝑗⟩ = 1/2 is specified by 1 0 0 1 0.5 0.0.

As a result, the Heisenberg Hamiltonian for S=1/2 is defined as follows:

[[observable.twosite]]
name = "hamiltonian"
group = 0
dim = [2, 2]
bonds = """
0 0 1
0 1 0
1 0 1
1 1 0
2 0 1
2 1 0
3 0 1
3 1 0
"""
elements = """
0 0 0 0 0.25 0.0
1 0 1 0 -0.25 0.0
0 1 1 0 0.5 0.0
1 0 0 1 0.5 0.0
0 1 0 1 -0.25 0.0
1 1 1 1 0.25 0.0
"""
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observable.multisite

Define multi-body operators that indicate physical quantities defined on three or more sites. It is defined as a direct
product of one-body operators defined in observable.onesite.

Name Description Type
name Operator name String
group Identification number of operators Integer
multisites Sites String
ops Index of onesite operators List of integers

name specifies an operator name.

group specifies an identification number of two sites operators.

multisites specifies a string representing the set of sets of sites on which the operator acts. One line consisting of
integers means a set sites.

• The first integer is the number of the source site.

• The following integers are the coordinates (dx, dy) of the other sites from the source site.

– source_site dx2 dy2 dx3 dy3 ... dxN dyN for N-site operator.

– All sites must be within a square of size 4× 4.

Using ops, a multi-body operator can be defined as a direct product of the one-body operators defined in observable.
onesite. For example, if 𝑆𝑧 is defined as group = 0 in observable.onesite, 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 𝑆

𝑧
𝑘 can be expressed as ops

= [0,0,0].

5.3.4 hamiltonian section

Let the whole Hamiltonian be the sum of the site Hamiltonian (one-site Hamiltonian) and bond Hamiltonian (two-site
Hamiltonian).

ℋ =
∑︁
𝑖

ℋ𝑖 +
∑︁
𝑖,𝑗

ℋ𝑖𝑗

In hamiltonian section, each local Hamiltonian is defined. The format is similar to that of the one-site and two-site
operator specified in observable.onesite and observable.twosite.

Name Description Type
dim Dimension of an operator A list of integers
sites Site A list of integers
bonds Bond String
elements Non-zero elements of an operator String

dim specifies a dimension of an operator. In other words, the number of possible states of the site where the operator
acts on. In the case of interaction between two 𝑆 = 1/2 spin, for example, dim = [2,2] . tenes_std judges whether
a local Hamiltonian is site one or bond one from the number of integers in dims; if one, a site Hamiltonian is defined
and otherwise a bond one.

sites, a list of integers, specifies a set of sites where the site operator acts. An empty list ([]) means all the sites.

bonds specifies a string representing the set of site pairs on which the operator acts. One line consisting of three
integers means one site pair.
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• The first integer is the number of the source site.

• The last two integers are the coordinates (dx, dy) of the destination site (target) from the source site.

elements is a string specifying the non-zero element of an operator. One element consists of one line consisting of
two (site) or four (bond) integers and two floating-point numbers separated by spaces.

• For site Hamiltonian

– The first integer is the index of the state of the site before the operator acts on.

– The next one shows the index of the state of the site after the operator acts on.

– The last two indicate the real and imaginary parts of the elements of the operator.

• For bond Hamiltonian

– The first two integers are the indices of the states of the source site and target site before the operator acts
on.

– The next two show the indices of the states of the source site and target site after the operator acts on.

– The last two indicate the real and imaginary parts of the elements of the operator.

5.3.5 correlation section

In this section, the parameters about the site-site correlation function 𝐶 = ⟨𝐴(𝑟0)𝐵(𝑟0 + 𝑟)⟩ is specified. If you omit
this section, no correlation functions will be calculated.

Coordinates 𝑟, 𝑟0 measured in the system of square lattice TNS. For example, the coordinate of the right neighbor
tensor is 𝑟 = (1, 0) and that of the top neighbor one is 𝑟 = (0, 1). TeNeS calculates the correlation functions along
the positive direction of 𝑥 and 𝑦 axis, that is,

𝑟 = (0, 0), (1, 0), (2, 0), . . . , (𝑟max, 0), (0, 1), (0, 2), . . . , (0, 𝑟max)

The coordinate of each site of the unitcell is used as the center coordinate, 𝑟0.

Name Description Type
r_max Maximum distance 𝑟 of the correlation function Integer
operators Indices of operators A and B to be measured A list of integer

The operators defined in the observable.onesite section are used.

Example

For example, if 𝑆𝑧 is defined as 0th operator and 𝑆𝑥 is defined as 1st one, then 𝑆𝑧(0)𝑆𝑧(𝑟), 𝑆𝑧(0)𝑆𝑥(𝑟), 𝑆𝑥(0)𝑆𝑥(𝑟)
for 0 ≤ 𝑟 ≤ 5 are measured by the following definition:

[correlation]
r_max = 5
operators = [[0,0], [0,1], [1,1]]
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5.3.6 correlation_length section

This section describes how to calculate the correlation length 𝜉.

Name Description Type Default
measure Whether to calculate 𝑥𝑖 or not Bool true
num_eigvals The number of eigenvalues of the

transfer matrix to be calculated
Integer 4

maxdim_dense_eigensolverMaximum dimension of the trans-
fer matrix where the diagonalization
method for dense matrices is used

Integer 200

arnoldi_maxdim Dimension of the Hessenberg matrix
generated by the Arnoldi method

Integer 50

arnoldi_restartdimThe number of the initial vectors gen-
erated by the restart process of the IRA
method

Integer 20

arnoldi_maxiterationsMaximum number of iterations in the
IRA method

Integer 1

arnoldi_rtol Relative tolerance used in the Arnoldi
method

Float 1e-10

The correlation length 𝜉 will be calculated from the dominant eigenvalues of the transfer matrices. If the dimension
of the transfer matrix is less than or equal to maxdim_dense_eigensolver, an eigensolver for dense matrices (LA-
PACK’s *geev routines) will be used. If not, an iterative method, the implicit restart Arnoldi method (IRA method),
will be used.

In the IRA method, a Hessenberg matrix with the size of arnoldi_maxdim is generated by the Arnoldi process. Its
eigenvalues are approximants of the first arnoldi_maxdim eigenvalues of the original matrix. If not converged, the
IRA method restarts the Arnoldi process with the newly generated arnoldi_restartdim initial vectors. In the many
cases of the transfer matrices, such a process is not necessary (arnoldi_maxiterations = 1).

5.4 Input file for tenes

• File format is TOML format.

• The input file has five sections: parameter, tensor, evolution, observable, correlation.

5.4.1 parameter section

Set various parameters that appear in the calculation, such as the number of updates. This section has five subsections:
general, simple_update, full_update, ctm, random.
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parameter.general

General parameters for tenes.

Name Description Type Default
mode Calculation mode String \"ground

state\"
is_real Whether to limit all tensors to real valued ones Boolean false
iszero_tol Absolute cutoff value for reading operators Real 0.0
measure Whether to calculate and save observables Boolean true
measure_interval Interval of measurement in finite temperature

calculation and time evolution process
Integer or list
of integers

10

output Directory for saving result such as physical
quantities

String "output"

tensor_save Directory for saving optimized tensors String ""
tensor_load Directory for loading initial tensors String ""

• mode

– Specify the calculation mode

– "ground state"

∗ Search for the ground state of the Hamiltonian

∗ tenes_std calculates the imaginary time evolution operator 𝑈(𝜏) = 𝑒−𝜏𝐻 from the Hamiltonian 𝐻

– "time evolution"

∗ Calculate the time evolution of the observables from the initial state

∗ tenes_std calculates the time evolution operator 𝑈(𝑡) = 𝑒−𝑖𝑡𝐻 from the Hamiltonian 𝐻

– "finite temperature"

∗ Calculate the finite temperature expectation values of the observables

∗ tenes_std calculates the imaginary time evolution operator 𝑈(𝜏) = 𝑒−𝜏𝐻 from the Hamiltonian 𝐻

• is_real

– When set to true, the type of elements of the tensor becomes real.

– If one complex operator is defined at least, calculation will end in errors before starting.

• iszero_tol

– When the absolute value of operator elements loaded is less than iszero_tol, it is regarded as zero

• meaure

– When set to false, the stages for measuring and saving observables will be skipped

– Elapsed time time.dat is always saved

• measure_interval

– Specify the interval of measurement in time evolution process and finite temperature Calculation

– Physical quantitites are calculated and saved each after measure_interval updates

• output

– Save numerical results such as physical quantities to files in this directory
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– Empty means "." (current directory)

• tensor_save

– Save optimized tensors to files in this directory

– If empty no tensors will be saved

• tensor_load

– Read initial tensors from files in this directory

– If empty no tensors will be loaded

parameter.simple_update

Parameters in the simple update procedure.

Name Description Type Default
tau (Imaginary) time step 𝜏 in (imaginary)

time evolution operator
Real or list
of real

0.01

num_step Number of simple updates Integer
or list of
integers

0

lambda_cutoff cutoff of the mean field to be considered
zero in the simple update

Real 1e-12

gauge_fix Whether the tensor gauge is fixed Boolean false
gauge_maxiter Maximum number of iterations for fixing

gauge
Integer 100

gauge_converge_epsilon Convergence criteria of iterations for fix-
ing gauge

Real 1e-2

• tau

– Specify the (imaginary) time step 𝜏 in (imaginary) time evolution operator

∗ tenes_std uses it to calculate the imaginary time evolution operator 𝑒−𝜏𝐻 from the Hamiltonian

∗ tenes uses it to calculate the time of each measurement

· For finite temperature calculation, note that the inverse temperature increase 2𝜏 at a step because
𝜌(𝛽 + 2𝜏) = 𝑈(𝜏)𝜌(𝛽)𝑈̄(𝜏)

– When a list is specified, the time step can be changed for each group of time evolution operators

• num_step

– Specify the number of simple updates

– When a list is specified, the number of simple updates can be changed for each group of time evolution
operators
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parameter.full_update

Parameters in the full update procedure.

Name Description Type Default
tau (Imaginary) time step 𝜏 in (imaginary)

time evolution operator
Real or list
of reals

0.01

num_step Number of full updates Integer
or list of
integers

0

env_cutoff Cutoff of singular values to be consid-
ered as zero when computing environ-
ment through full updates

Real 1e-12

inverse_precision Cutoff of singular values to be consid-
ered as zero when computing the pseu-
doinverse matrix with full update

Real 1e-12

convergence_epsilon Convergence criteria for truncation opti-
mization with full update

Real 1e-6

iteration_max Maximum iteration number for trunca-
tion optimization on full updates

Integer 100

gauge_fix Whether the tensor gauge is fixed Boolean true
fastfullupdate Whether the fast full update is adopted Boolean true

parameter.ctm

Parameters for corner transfer matrices, CTM.

Name Description Type Default
dimension Bond Dimension of CTM 𝜒 Integer 4
projector_cutoff Cutoff of singular values to be considered

as zero when computing CTM projectors
Real 1e-12

convergence_epsilon CTM convergence criteria Real 1e-6
iteration_max Maximum iteration number of conver-

gence for CTM
Integer 100

projector_corner Whether to use only the 1/4 corner tensor
in the CTM projector calculation

Boolean true

use_rsvd Whether to replace SVD with random
SVD

Boolean false

rsvd_oversampling_factor Ratio of the number of the oversampled
elements to that of the obtained elements
in random SVD method

Real 2.0

meanfield_env Use mean field environment obtained
through simple update instead of CTM

Boolean false

For Tensor renomalization group approach using random SVD, please see the following reference, S. Morita, R.
Igarashi, H.-H. Zhao, and N. Kawashima, Phys. Rev. E 97, 033310 (2018) .
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parameter.random

Parameters for random number generators.

Name Description Type Default
seed Seed of the pseudo-random number gen-

erator used to initialize the tensor
Integer 11

Each MPI process has the own seed as seed plus the process ID (MPI rank).

Example

[parameter]
[parameter.general]
is_real = true
[parameter.simple_update]
num_step = 100
tau = 0.01
[parameter.full_update]
num_step = 0 # No full update
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 9 # CHI

5.4.2 tensor section

Specify the unit cell information (Information of bonds is given in the hamiltonian (tenes_std) and evolution
(tenes) sections.). Unit cell has a shape of a rectangular with the size of Lx times Ly. lattice section has an array
of subsections unitcell .

Name Description Type Default
L_sub Unit cell size Integer or a list of integer –
skew Shift value in skew boundary

condition
Integer 0

When a list of two integers is passed as L_sub, the first element gives the value of Lx and the second one does Ly. A
list of three or more elements causes an error. If L_sub is an integer, both Lx and Ly will have the same value.

Sites in a unit cell are indexed starting from 0. These are arranged in order from the x direction.

skew is the shift value in the x direction when moving one unit cell in the y direction.

70 Chapter 5. File format



TeNeS Documentation, Release 2.0.0

0 1

2 3

x

y

4 5

Fig. 5.8: An example for L_sub = [2,3].
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0 1 2
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Fig. 5.9: An example for L_sub = [3,2], skew = 1 (ruled line is a separator for unit cell).
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tensor.unitcell subsection

The information of site tensors 𝑇 (𝑛)
𝑖𝑗𝑘𝑙𝛼 is specified. Here, 𝑖, 𝑗, 𝑘, 𝑙 indicate the index of the virtual bond, 𝛼 indicates the

index of the physical bond, and 𝑛 indicates the site number.

Name Description Type
index Site number Integer or a list of integer
physical_dim Dimension of physical bond for a site

tensor
Integer

virtual_dim Dimension of virtual bonds 𝐷 for a site
tensor

Integer or a list of integer

initial_state Initial tensor a list of real
noise Noise for initial tensor Real

Multiple sites can be specified at once by setting a list to index. An empty list [] means all sites.

By setting a list to virtual_dim, individual bond dimensions in four directions can be specified. The order is left (-x),
top (+y), right (+x), and bottom (-y).

An initial state of a system |Ψ⟩ is represented as the direct product state of the initial states at each site 𝑖, |Ψ𝑖⟩:

|Ψ⟩ = ⊗𝑖|Ψ𝑖⟩,

where |Ψ𝑖⟩ =
∑︀

𝛼𝐴𝛼|𝛼⟩𝑖 is the initial state at 𝑖 site. Site tensors are initialized to realize this product state with some
noise. initial_state specifies (real) values of expansion coefficient 𝐴𝛼, which will be automatically normalized.
The tensor itself is initialized such that all elements with a virtual bond index of 0 are 𝑇0000𝛼 = 𝐴𝛼. The other elements
are independently initialized by a uniform random number of [-noise, noise). For example, in the case of 𝑆 = 1/2
, set initial_state = [1.0, 0.0] when you want to set the initial state as the state |Ψ𝑖⟩ = | ↑⟩ = |0⟩. When you
want to set the initial state as the state |Ψ𝑖⟩ = (| ↑⟩+ | ↓⟩) /

√
2, set initial_state = [1.0, 1.0].

When an array consisting of only zeros is passed as initil_state, all the elements of the initial tensor will be
initialized independently by uniform random value [-noise, noise) .

5.4.3 observable section

Define various settings related to physical quantity measurement. This section has two types of subsections, onesite
and twosite.

observable.onesite

Define one-body operators that indicate physical quantities defined at each site 𝑖.

Name Description type
name Operator name String
group Identification number of operators Integer
sites Site number Integer or a list of integer
dim Dimension of an operator Integer
elements Non-zero elements of an operator String

name specifies an operator name.

group specifies an identification number of one-site operators.
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sites specifies a site number where an operater acts on. By using a list, the operators can be defined on the multiple
sites at the same time. An empty list [] means all sites.

dim specifies a dimension of an operator.

elements is a string specifying the non-zero element of an operator. One element is specified by one line consisting
of two integers and two floating-point numbers separated by spaces.

• The first two integers are the state numbers before and after the act of the operator, respectively.

• The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.

Example

As an example, the case of 𝑆𝑧 operator for S=1/2

𝑆𝑧 =

(︂
0.5 0.0
0.0 −0.5

)︂
is explained.

First, set the name to name = "Sz" and the identification number to group = 0.

Next, if the same operator is used at all sites, set sites = []. Otherwise, for example, if there are sites with different
spin length 𝑆, specify a specific site number such as sites = [0,1].

The dimension of the operator is dim = 2, because it is the size of the matrix shown above.

Finally, the operator element is defined. When we label two basis on site as | ↑⟩ = |0⟩ and | ↓⟩ = |1⟩, non-zero
elements of 𝑆𝑧 are represented as

elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

As a result, 𝑆𝑧 operator for S=1/2 is defined as follows:

[[observable.onesite]]
name = "Sz"
group = 0
sites = []
dim = 2
elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""
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observable.twosite

Define two-body operators that indicate physical quantities defined on two sites.

Name Description Type
name Operator name String
group Identification number of operators Integer
bonds Bond String
dim Dimension of an operator Integer
elements Non-zero elements of an operator String
ops Index of onesite operators A list of integer

name specifies an operator name.

group specifies an identification number of two sites operators.

bonds specifies a string representing the set of site pairs on which the operator acts. One line consisting of three
integers means one site pair.

• The first integer is the number of the source site.

• The last two integers are the coordinates (dx, dy) of the other site (target site) from the source site.

– Both dx and dy must be in the range −3 ≤ 𝑑𝑥 ≤ 3.

dim specifies a dimension of an operator. In other words, the number of possible states of the site where the operator
acts on. In the case of interaction between two 𝑆 = 1/2 spins, for example, dim = [2, 2] .

elements is a string specifying the non-zero element of an operator. One element consists of one line consisting of
four integers and two floating-point numbers separated by spaces.

• The first two integers are the status numbers of the source site and target site before the operator acts on.

• The next two integers show the status numbers of the source site and target site after the operator acts on.

• The last two floats indicate the real and imaginary parts of the elements of the operator.

Using ops, a two-body operator can be defined as a direct product of the one-body operators defined in observable.
onesite. For example, if 𝑆𝑧 is defined as group = 0 in observable.onesite, 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 can be expressed as ops =

[0,0].

If both elements and ops are defined, the process will end in error.

Example

As an example, for the calculation of the energy of the bond Hamiltonian for S=1/2 Heisenberg model on square lattice
at Lsub=[2,2] , the way to define two site operators (equal to the Hamiltonian)

ℋ𝑖𝑗 = 𝑆𝑧
𝑖 𝑆

𝑧
𝑗 +

1

2

[︀
𝑆+
𝑖 𝑆

−
𝑗 + 𝑆−

𝑖 𝑆
+
𝑗

]︀
is explained below.

First, the name and identification number is set as name = "hamiltonian" and group = 0. dim = [2,2] because
the state of each site is a superposition of the two states | ↑⟩ and | ↓⟩.

Next, let’s define the bonds. In this case, site indecies are given as shown in bond_22 . The bond connecting 0 and 1
is represented as 0 1 0 because 1 is located at (1,0) from 0. Similarly, The bond connecting 1 and 3 is represented as
1 0 1 because 3 is located at (0,1) from 1.

74 Chapter 5. File format



TeNeS Documentation, Release 2.0.0

0 1

2 3

x

y

Fig. 5.10: Site indecies of the S=1/2 Heisenberg model on square lattice at Lsub=[2,2] .

Finally, how to define the elements of the operator is explained. First, the basis of the site is needed to be la-
beled. Here, we label | ↑⟩ as 0 and | ↓⟩ as 1. Using this basis and label number, for example, one of diago-
nal elements ⟨↑𝑖↑𝑗 |ℋ𝑖𝑗 | ↑𝑖↑𝑗⟩ = 1/4 is specified by 0 0 0 0 0.25 0.0. Likewise, one of off-diagonal elements
⟨↑𝑖↓𝑗 |ℋ𝑖𝑗 | ↓𝑖↑𝑗⟩ = 1/2 is specified by 1 0 0 1 0.5 0.0.

As a result, the Heisenberg Hamiltonian for S=1/2 is defined as follows:

[[observable.twosite]]
name = "hamiltonian"
group = 0
dim = [2, 2]
bonds = """
0 0 1
0 1 0
1 0 1
1 1 0
2 0 1
2 1 0
3 0 1
3 1 0
"""
elements = """
0 0 0 0 0.25 0.0
1 0 1 0 -0.25 0.0
0 1 1 0 0.5 0.0
1 0 0 1 0.5 0.0
0 1 0 1 -0.25 0.0
1 1 1 1 0.25 0.0
"""
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observable.multisite

Define multi-body operators that indicate physical quantities defined on three or more sites. It is defined as a direct
product of one-body operators defined in observable.onesite.

Name Description Type
name Operator name String
group Identification number of operators Integer
multisites Sites String
ops Index of onesite operators List of integers

name specifies an operator name.

group specifies an identification number of two sites operators.

multisites specifies a string representing the set of sets of sites on which the operator acts. One line consisting of
integers means a set sites.

• The first integer is the number of the source site.

• The following integers are the coordinates (dx, dy) of the other sites from the source site.

– source_site dx2 dy2 dx3 dy3 ... dxN dyN for N-site operator.

– All sites must be within a square of size 4× 4.

Using ops, a multi-body operator can be defined as a direct product of the one-body operators defined in observable.
onesite. For example, if 𝑆𝑧 is defined as group = 0 in observable.onesite, 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 𝑆

𝑧
𝑘 can be expressed as ops

= [0,0,0].

5.4.4 evolution section

Specify the imaginary time evolution opetrators used in simple and full updates. One-site and two-sites (nearest neigh-
bor bond) operators can be defined. This section has two subsections: simple and full.

Name Description Type
group Group of the evolution operator Integer (0-)
site Index of site Integer (0-)
source_site Index of source site Integer (0-)
source_leg Direction from source site to target site Integer (0-3)
dimensions Dimension of a tensor of imaginary time evolution

operator
A list of integers

elements Non-zero elements of a tensor of imaginary time
evolution operator

String

group specifies the group of the evolution operator (the default value is 0). It corresponds to the index of tau and
num_steps in parameter.simple_update and parameter.full_update.

site is available for one-site operator, and source_site and source_leg are for two-site operator.

source_leg is specified as an integer from 0 to 3. Defined as 0: -x, 1: + y, 2: + x, 3: -y in the clock-
wise order from the -x direction.

dimensions is different from dim in observable section, so you need to specify the dimensions of all legs. The order
of the legs is source_initial, target_initial, source_final, target_final, just like elements.
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[evolution]

# One site
[[evolution.simple]]
site = 0
dimensions = [2, 2]
elements = """
0 0 1.0012507815756226 0.0
1 1 0.9987507809245809 0.0
"""

# Two site
[[evolution.simple]]
source_site = 0
source_leg = 2
dimensions = [2, 2, 2, 2]
elements = """
0 0 0 0 0.9975031223974601 0.0
1 0 1 0 1.0025156589209967 0.0
0 1 1 0 -0.005012536523536871 0.0
1 0 0 1 -0.005012536523536871 0.0
0 1 0 1 1.0025156589209967 0.0
1 1 1 1 0.9975031223974601 0.0
"""

5.4.5 correlation section

In this section, the parameters about the site-site correlation function 𝐶 = ⟨𝐴(𝑟0)𝐵(𝑟0 + 𝑟)⟩ is specified. If you omit
this section, no correlation functions will be calculated.

Coordinates 𝑟, 𝑟0 measured in the system of square lattice TNS. For example, the coordinate of the right neighbor
tensor is 𝑟 = (1, 0) and that of the top neighbor one is 𝑟 = (0, 1). TeNeS calculates the correlation functions along
the positive direction of 𝑥 and 𝑦 axis, that is,

𝑟 = (0, 0), (1, 0), (2, 0), . . . , (𝑟max, 0), (0, 1), (0, 2), . . . , (0, 𝑟max)

The coordinate of each site of the unitcell is used as the center coordinate, 𝑟0.

Name Description Type
r_max Maximum distance 𝑟 of the correlation function Integer
operators Indices of operators A and B to be measured A list of integer

The operators defined in the observable.onesite section are used.
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For example, if 𝑆𝑧 is defined as 0th operator and 𝑆𝑥 is defined as 1st one, then 𝑆𝑧(0)𝑆𝑧(𝑟), 𝑆𝑧(0)𝑆𝑥(𝑟), 𝑆𝑥(0)𝑆𝑥(𝑟)
for 0 ≤ 𝑟 ≤ 5 are measured by the following definition:

[correlation]
r_max = 5
operators = [[0,0], [0,1], [1,1]]

5.4.6 correlation_length section

This section describes how to calculate the correlation length 𝜉.

Name Description Type Default
measure Whether to calculate 𝑥𝑖 or not Bool true
num_eigvals The number of eigenvalues of the

transfer matrix to be calculated
Integer 4

maxdim_dense_eigensolverMaximum dimension of the trans-
fer matrix where the diagonalization
method for dense matrices is used

Integer 200

arnoldi_maxdim Dimension of the Hessenberg matrix
generated by the Arnoldi method

Integer 50

arnoldi_restartdimThe number of the initial vectors gen-
erated by the restart process of the IRA
method

Integer 20

arnoldi_maxiterationsMaximum number of iterations in the
IRA method

Integer 1

arnoldi_rtol Relative tolerance used in the Arnoldi
method

Float 1e-10

The correlation length 𝜉 will be calculated from the dominant eigenvalues of the transfer matrices. If the dimension
of the transfer matrix is less than or equal to maxdim_dense_eigensolver, an eigensolver for dense matrices (LA-
PACK’s *geev routines) will be used. If not, an iterative method, the implicit restart Arnoldi method (IRA method),
will be used.

In the IRA method, a Hessenberg matrix with the size of arnoldi_maxdim is generated by the Arnoldi process. Its
eigenvalues are approximants of the first arnoldi_maxdim eigenvalues of the original matrix. If not converged, the
IRA method restarts the Arnoldi process with the newly generated arnoldi_restartdim initial vectors. In the many
cases of the transfer matrices, such a process is not necessary (arnoldi_maxiterations = 1).

5.5 Output files

Output files are generated in the output directry.
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5.5.1 For all modes

parameters.dat

Paramters in the parameter and lattice sections defined in the input file are outputted.

Example:

simple_num_step = [10]
simple_tau = [0.01]
simple_inverse_lambda_cutoff = 1e-12
simple_gauge_fix = 0
simple_gauge_maxiter = 100
simple_gauge_convergence_epsilon = 0.01

full_num_step = [0]
full_inverse_projector_cutoff = 1e-12
full_inverse_precision = 1e-12
full_convergence_epsilon = 1e-06
full_iteration_max = 100
full_gauge_fix = true
full_fastfullupdate = true

ctm_dimension = 10
ctm_inverse_projector_cutoff = 1e-12
ctm_convergence_epsilon = 1e-06
ctm_iteration_max = 10
ctm_projector_corner = true
use_rsvd = false
rsvd_oversampling_factor = 2
meanfield_env = true

mode = ground state
simple
Lcor = 0
seed = 11
is_real = 0
iszero_tol = 0
measure = 1
tensor_load_dir =
tensor_save_dir = save_tensor
outdir = output

Lsub = [ 2 , 2 ]
skew = 0

start_datetime = 2023-06-08T16:41:50+09:00
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time.dat

The calculation time is outputted.

Example:

time simple update = 1.64429
time full update = 0
time environmnent = 0.741858
time observable = 0.104487

5.5.2 For ground state calculation mode

density.dat

The expectation value per site of each observable is outputted. When the name of the operator (name) is an empty, the
index of the operator is written. Energy means the summation of site hamiltonian and bond hamiltonian.

Example:

Energy = -5.00499902760266346e-01 0.00000000000000000e+00
site hamiltonian = -4.99999945662006270e-04 0.00000000000000000e+00
Sz = 4.99999945662006284e-01 0.00000000000000000e+00
Sx = 9.24214061616647275e-05 0.00000000000000000e+00
Sy = -2.34065881671767322e-06 0.00000000000000000e+00
bond hamiltonian = -4.99999902814604325e-01 2.22346094146706503e-21
SzSz = 4.99999902814604380e-01 -1.80051315353166456e-21
SxSx = 1.12631053560300631e-05 6.08792260271591701e-21
SySy = -1.12817627661272438e-05 4.76468712680822333e-21

onesite_obs.dat

• The expected values of the site operator ⟨𝐴𝛼
𝑖 ⟩ = ⟨Ψ|𝐴𝛼

𝑖 |Ψ⟩/⟨Ψ|Ψ⟩ are outputted.

• Each row consists of four columns.

1. Index of the operator 𝛼

2. Index of the sites 𝑖

3. Real part of the expected value Re⟨𝐴𝛼
𝑖 ⟩

4. Imag part of the expected value Im⟨𝐴𝛼
𝑖 ⟩

• In addition, norm of the wave function ⟨Ψ|Ψ⟩ is outputted as an operator with index of -1.

– If the imaginary part is finite, something is wrong. A typical cause is that the bond dimension of the CTM
is too small.

Example:

# The meaning of each column is the following:
# $1: op_group
# $2: site_index
# $3: real
# $4: imag

(continues on next page)
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# The names of op_group are the following:
# 0: site hamiltonian
# 1: Sz
# 2: Sx
# 3: Sy
# -1: norm

0 0 -4.99999945520001373e-04 0.00000000000000000e+00
0 1 -4.99999967900088089e-04 0.00000000000000000e+00
0 2 -4.99999894622883147e-04 0.00000000000000000e+00
0 3 -4.99999974605052581e-04 0.00000000000000000e+00
1 0 4.99999945520001376e-01 0.00000000000000000e+00
1 1 4.99999967900088049e-01 0.00000000000000000e+00
1 2 4.99999894622883134e-01 0.00000000000000000e+00
1 3 4.99999974605052522e-01 0.00000000000000000e+00
... Skipped ...

-1 3 1.00000000000000044e+00 0.00000000000000000e+00

twosite_obs.dat

• Expectation values for two-site operations are outputted.

• Each row consists of six columns.

1. Index of the two-site operator

2. Index of the source site

3. x coordinate of the target site from the source site

4. y coordinate of the target site from the source site

5. Real part of the expected value

6. Imaginary part of the expected value

• In addition, norm of the wave function ⟨Ψ|Ψ⟩ is outputted as an operator with index of -1.

– If the imaginary part is finite, something is wrong. A typical cause is that the bond dimension of the CTM
is too small.

Example:

# The meaning of each column is the following:
# $1: op_group
# $2: source_site
# $3: dx
# $4: dy
# $5: real
# $6: imag
# The names of op_group are the following:
# 0: bond hamiltonian
# 1: SzSz
# 2: SxSx
# 3: SySy
# -1: norm

(continues on next page)
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0 0 0 1 -2.49999925774909121e-01 3.38316768671362694e-21
0 0 1 0 -2.49999967989907063e-01 4.24343236807659553e-22
0 1 0 1 -2.49999972903562101e-01 -2.06825262200104597e-25
0 1 1 0 -2.49999957625646446e-01 2.06789370628128221e-24
0 2 0 1 -2.49999931343147630e-01 3.11801499860976615e-28
0 2 1 0 -2.49999939447834718e-01 1.65429596395607220e-24
... Skipped ...

-1 3 1 0 1.00000000000000067e+00 0.00000000000000000e+00

multisite_obs_#.dat

• Expectation values for multi-site operations are outputted.

• # in the filename is replaced by the number of sites in the operator, 𝑁 .

• Each row consists of 4 + 2(𝑁 − 1) columns.

• The first column is the index of the operator.

• The second column is the index of the site, which is the origin of the coordinate.

• The following columns are the relative coordinates of the other sites.

• The last two columns are the real and imaginary parts of the expected value.

correlation.dat

• Correlation functions 𝐶𝛼𝛽
𝑖 (𝑥, 𝑦) ≡ ⟨𝐴𝛼(𝑥𝑖, 𝑦𝑖)𝐴

𝛽(𝑥𝑖 + 𝑥, 𝑦𝑖 + 𝑦)⟩ are outputted.

• Each row consists of seven columns.

1. Index of the left operator 𝛼

2. Index of the left site 𝑖

3. Index of the right operator 𝛽

4. x coordinate of the right site 𝑥

5. y coordinate of the right site 𝑦

6. Real part Re𝐶

7. Imaginary part Im𝐶

Example:

# $1: left_op
# $2: left_site
# $3: right_op
# $4: right_dx
# $5: right_dy
# $6: real
# $7: imag

0 0 0 1 0 -1.71759992763061836e-01 1.36428299157186382e-14
0 0 0 2 0 1.43751794649139675e-01 -1.14110668277268192e-14

(continues on next page)
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0 0 0 3 0 -1.42375391377041444e-01 1.14103263451826963e-14
0 0 0 4 0 1.41835919840103741e-01 -1.11365361507372103e-14
0 0 0 5 0 -1.41783912096811515e-01 1.12856813523671142e-14
0 0 0 0 1 -1.72711348845767942e-01 1.40873628493918905e-14
0 0 0 0 2 1.43814797743900907e-01 -1.17958665742991377e-14
0 0 0 0 3 -1.42415176172922653e-01 1.22109610917000360e-14
0 0 0 0 4 1.41838862178711583e-01 -1.19321507524565005e-14
0 0 0 0 5 -1.41792935491960648e-01 1.23094733264734764e-14
1 0 1 1 0 -7.95389427681298805e-02 6.15901595234210079e-15
1 0 1 2 0 2.01916094009441903e-02 -1.27162373457160362e-15
... Skipped ...
2 3 2 0 5 -1.41888376278899312e-03 -2.38672137694415560e-16

correlation_length.dat

The correlation length 𝜉 is outputted. Each row consists of 3+n columns.

1. Direction (0: x, 1: y)

2. When direction is 0 it is 𝑦 coodinate, and otherwise 𝑥 coordinate

3. Correlation length 𝜉 = 1/𝑒1

The 4th and the subsequent columns show the logarithm of the absolute value of the eigenvalues of the transfer matrix,
𝑒𝑖 = − log |𝜆𝑖/𝜆0| (𝑖 > 0). This information may be used to estimate the bond dimension dependence of the correlation
length. See PRX 8, 041033 (2018) and PRX 8, 031030 (2018) for more information.

Example:

# The meaning of each column is the following:
# $1: direction 0: +x, 1: +y
# $2: y (dir=0) or x (dir=1) coorinates
# $3: correlation length xi = 1/e_1
# $4-: eigenvalues e_i = -log|t_i/t_0|
# where i > 0 and t_i is i-th largest eigenvalue of T

0 0 2.18785686529154477e-01 4.57068291744370647e+00 4.57068291744370647e+00 4.
→˓88102462824739991e+00
0 1 2.20658864940629751e-01 4.53188228022952533e+00 4.53188228022952533e+00 4.
→˓56359469233104953e+00
1 0 2.23312072254469030e-01 4.47803824443704013e+00 4.47803824443704013e+00 6.
→˓03413555039678595e+00
1 1 2.00830966658579996e-01 4.97931178960083720e+00 4.97931178960083720e+00 5.
→˓08813099309339911e+00
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5.5.3 For time evolution mode

TE_density.dat

The expectation value per site of each obesrvable is outputted. Each row consists of four columns.

1. Time 𝑡

2. Operator ID 𝛼

3. Real part of the expected value Re⟨𝐴𝛼
𝑖 ⟩

4. Imag part of the expected value Im⟨𝐴𝛼
𝑖 ⟩

Example:

# The meaning of each column is the following:
# $1: time
# $2: observable ID
# $3: real
# $4: imag
# The meaning of observable IDs are the following:
# 0: Energy
# 1: site hamiltonian
# 2: Sz
# 3: Sx
# 4: Sy
# 5: bond hamiltonian
# 6: SzSz
# 7: SxSx
# 8: SySy

0.00000000000000000e+00 0 -5.00684745572451129e-01 0.00000000000000000e+00
0.00000000000000000e+00 1 -6.84842757985213292e-04 0.00000000000000000e+00
0.00000000000000000e+00 2 4.99999945661913914e-01 0.00000000000000000e+00
0.00000000000000000e+00 3 9.24214061616496842e-05 0.00000000000000000e+00
... Skipped ...

4.99999999999993783e+00 8 2.54571641402435656e-01 3.25677610112348483e-17

TE_onesite_obs.dat

The expected values of the site operators ⟨𝐴𝛼
𝑖 ⟩ = ⟨Ψ|𝐴𝛼

𝑖 |Ψ⟩/⟨Ψ|Ψ⟩ are outputted. Each row consists of five columns.

1. Time 𝑡

2. Index of the operator 𝛼

3. Index of the sites 𝑖

4. Real part of the expected value Re⟨𝐴𝛼
𝑖 ⟩

5. Imag part of the expected value Im⟨𝐴𝛼
𝑖 ⟩

• In addition, norm of the wave function ⟨Ψ|Ψ⟩ is outputted as an operator with index of -1.

– If the imaginary part is finite, something is wrong. A typical cause is that the bond dimension of the CTM
is too small.

Example:
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# The meaning of each column is the following:
# $1: time
# $2: op_group
# $3: site_index
# $4: real
# $5: imag
# The names of op_group are the following:
# 0: site hamiltonian
# 1: Sz
# 2: Sx
# 3: Sy
# -1: norm

0.00000000000000000e+00 0 0 -6.43318936197596913e-04 0.00000000000000000e+00
0.00000000000000000e+00 0 1 -6.73418200262321655e-04 0.00000000000000000e+00
0.00000000000000000e+00 0 2 -9.89240026254938282e-04 0.00000000000000000e+00
0.00000000000000000e+00 0 3 -4.33393869225996210e-04 0.00000000000000000e+00
0.00000000000000000e+00 1 0 4.99999945519898625e-01 0.00000000000000000e+00
0.00000000000000000e+00 1 1 4.99999967900020936e-01 0.00000000000000000e+00
0.00000000000000000e+00 1 2 4.99999894622765451e-01 0.00000000000000000e+00
... Skipped ...

4.99999999999993783e+00 -1 3 9.99999999999999667e-01 0.00000000000000000e+00

TE_twosite_obs.dat

• Expectation values for two-site operations are outputted.

• Each row consists of six columns.

1. Time 𝑡

2. Index of the two-site operator

3. Index of the source site

4. x coordinate of the target site from the source site

5. y coordinate of the target site from the source site

6. Real part of the expected value

7. Imaginary part of the expected value

• In addition, norm of the wave function ⟨Ψ|Ψ⟩ is outputted as an operator with index of -1.

– If the imaginary part is finite, something is wrong. A typical cause is that the bond dimension of the CTM
is too small.

Example:

# The meaning of each column is the following:
# $1: time
# $2: op_group
# $3: source_site
# $4: dx
# $5: dy
# $6: real

(continues on next page)
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# $7: imag
# The names of op_group are the following:
# 0: bond hamiltonian
# 1: SzSz
# 2: SxSx
# 3: SySy
# -1: norm

0.00000000000000000e+00 0 0 0 1 -2.49999925774803150e-01 -1.01660465821037727e-20
0.00000000000000000e+00 0 0 1 0 -2.49999967989888300e-01 4.23516895582898471e-22
0.00000000000000000e+00 0 1 0 1 -2.49999972903488521e-01 -6.20403358955599675e-25
0.00000000000000000e+00 0 1 1 0 -2.49999957625561042e-01 4.13590865617858526e-25
0.00000000000000000e+00 0 2 0 1 -2.49999931343070220e-01 8.27316466562544801e-25
... Skipped ...

4.99999999999993783e+00 -1 3 1 0 9.99999999999999445e-01 1.38777878078144568e-17

TE_multisite_obs_#.dat

• Expectation values for multi-site operations are outputted.

• # in the filename is replaced by the number of sites in the operator, 𝑁 .

• Each row consists of 5 + 2(𝑁 − 1) columns.

• The first column is the time 𝑡.

• The second column is the index of the operator.

• The third column is the index of the site, which is the origin of the coordinate.

• The following columns are the relative coordinates of the other sites.

• The last two columns are the real and imaginary parts of the expected value.

TE_correlation.dat

• Correlation functions 𝐶𝛼𝛽
𝑖 (𝑥, 𝑦) ≡ ⟨𝐴𝛼(𝑥𝑖, 𝑦𝑖)𝐴

𝛽(𝑥𝑖 + 𝑥, 𝑦𝑖 + 𝑦)⟩ are outputted.

• Each row consists of eight columns.

1. Time 𝑡

2. Index of the left operator 𝛼

3. Index of the left site 𝑖

4. Index of the right operator 𝛽

5. x coordinate of the right site 𝑥

6. y coordinate of the right site 𝑦

7. Real part Re𝐶

8. Imaginary part Im𝐶

Example:
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# The meaning of each column is the following:
# $1: time
# $2: left_op
# $3: left_site
# $4: right_op
# $5: right_dx
# $6: right_dy
# $7: real
# $8: imag
# The names of operators are the following:
# 0: site hamiltonian
# 1: Sz
# 2: Sx
# 3: Sy

0.00000000000000000e+00 0 0 0 1 0 1.83422488349707711e-04 1.90382762094233524e-20
0.00000000000000000e+00 0 0 0 2 0 8.30943360551218668e-07 -4.19695835411528090e-23
0.00000000000000000e+00 0 0 0 3 0 4.12158436385765748e-07 -1.04903226091485958e-23
0.00000000000000000e+00 0 0 0 4 0 4.13819451426396547e-07 1.74438421668770658e-23
0.00000000000000000e+00 0 0 0 5 0 4.33224506806043380e-07 -8.71850465073480394e-24
... Skipped ...

4.99999999999993783e+00 2 3 2 0 5 3.96301355731331212e-02 -1.37659660157453792e-18

TE_correlation_length.dat

The correlation length 𝜉 is outputted. Each row consists of 4+n columns.

1. Time 𝑡

2. Direction (0: x, 1: y)

3. When direction is 0 it is 𝑦 coodinate, and otherwise 𝑥 coordinate

4. Correlation length 𝜉 = 1/𝑒1

The 5th and the subsequent columns show the logarithm of the absolute value of the eigenvalues of the transfer matrix,
𝑒𝑖 = − log |𝜆𝑖/𝜆0| (𝑖 > 0). This information may be used to estimate the bond dimension dependence of the correlation
length. See PRX 8, 041033 (2018) and PRX 8, 031030 (2018) for more information.

Example:

# The meaning of each column is the following:
# $1: time
# $2: direction 0: +x, 1: +y
# $3: y (dir=0) or x (dir=1) coorinates
# $4: correlation length xi = 1/e_1
# $5-: eigenvalues e_i = -log|t_i/t_0|
# where i > 0 and t_i is i-th largest eigenvalue of T

0.00000000000000000e+00 0 0 2.18785686529220424e-01 4.57068291744232891e+00 4.
→˓57068291744232891e+00 4.88102462824919758e+00
0.00000000000000000e+00 0 1 2.20658864940612931e-01 4.53188228022987083e+00 4.
→˓53188228022987083e+00 4.56359469232955917e+00
0.00000000000000000e+00 1 0 2.23312072254560540e-01 4.47803824443520515e+00 4.
→˓47803824443520515e+00 6.03413555040836602e+00

(continues on next page)

5.5. Output files 87



TeNeS Documentation, Release 2.0.0

(continued from previous page)

0.00000000000000000e+00 1 1 2.00830966658709920e-01 4.97931178959761578e+00 4.
→˓97931178959761667e+00 5.08813099310449513e+00
9.99999999999999917e-02 0 0 2.02379048126702904e-01 4.94122296382149528e+00 4.
→˓94122296382149617e+00 6.74309974506451315e+00
9.99999999999999917e-02 0 1 2.20416567580991346e-01 4.53686404327366777e+00 4.
→˓53686404327366777e+00 6.18101616573088020e+00
9.99999999999999917e-02 1 0 2.12137154053103655e-01 4.71393143960851368e+00 4.
→˓71393143960851368e+00 7.17220113786375002e+00
9.99999999999999917e-02 1 1 1.90367314703518503e-01 5.25300260476656966e+00 5.
→˓25300260476656966e+00 7.61893825410630487e+00
2.00000000000000039e-01 0 0 1.96835348300227503e-01 5.08038829730281805e+00 5.
→˓08038829730281805e+00 7.35176717846311778e+00
2.00000000000000039e-01 0 1 2.02355022722768896e-01 4.94180963014702801e+00 4.
→˓94180963014702801e+00 6.57691315725687975e+00
2.00000000000000039e-01 1 0 2.05314677188187883e-01 4.87057239986509760e+00 4.
→˓87057239986509760e+00 7.90951918842309798e+00
2.00000000000000039e-01 1 1 1.63323696507474692e-01 6.12281023136305169e+00 6.
→˓12281023136305169e+00 7.83104916294462416e+00
... Skipped ...

4.99999999999993783e+00 1 1 4.61585992965019176e-01 2.16644355600232430e+00 2.
→˓16644355600232430e+00 2.29497956495965427e+00

5.5.4 For finite temperature calculation mode

The formats of the files are the same as those in the real time evolution mode. The only difference is that the file name
starts with FT_ instead of TE_, and the first column is the inverse temperature 𝛽 = 1/𝑇 instead of the time 𝑡.
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6.1 Tensor Network States

Tensor network states (TNS) are variational wavefunctions represented as products of small tensors [TNS]. For example,
in the case of 𝑆 = 1/2 spin system with 𝑁 sites, a wavefunction can be represented by using the product state basis as

|Ψ⟩ =
∑︁

𝑠𝑖±↑,↓

Ψ𝑠1,𝑠2,...,𝑠𝑁 |𝑠1, 𝑠2, . . . , 𝑠𝑁 ⟩

In a tensor network state, Ψ𝑠1,𝑠2,...,𝑠𝑁 is represented as a tensor network, e.g,

Ψ𝑠1,𝑠2,...,𝑠𝑁 = tTr
[︁
𝑇 (1)[𝑠1]𝑇

(2)[𝑠2] · · ·𝑇 (𝑁)[𝑠𝑁 ]
]︁
,

where tTr[. . . ] represents tensor network contraction and 𝑇 (𝑖)[𝑠𝑖] is a tensor. In the case of a matrix product state
(MPS) [MPS] , 𝑇 (𝑖)[𝑠𝑖] becomes a matrix for a given 𝑠𝑖 and tTr[. . . ] becomes usual matrix products as

ΨMPS
𝑠1,𝑠2,...,𝑠𝑁 = 𝑇 (1)[𝑠1]𝑇

(2)[𝑠2] · · ·𝑇 (𝑁)[𝑠𝑁 ],

where we assume that shapes of 𝑇 (1)[𝑠1] , 𝑇 (𝑖)[𝑠𝑖](𝑖 ̸= 1, 𝑁), and 𝑇 (𝑁)[𝑠𝑁 ] are 1×𝐷1 𝐷𝑖−1 ×𝐷𝑖 ,and 𝐷𝑁−1 × 1,
respectively. When we use TNS in order to approximate the ground state wavefunction, the accuracy is determined by
𝐷𝑖. 𝐷𝑖 is usually called as bond dimension. By using a tensor network diagram, MPS is represented as follows:

This MPS represents a wavefunction for a finite size system. Similarly, we can also consider an infinitely long MPS to
represent an infinite system. Especially, when we assume a lattice translational symmetry, with a certain period, we can
construct an infinite MPS (iMPS) with a few independent tensors. In the case of two-site periodicity, an iMPS looks as

where tensors with the same color indicate identical tensors.
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In TeNeS, we consider two-dimensional infinite tensor product states (iTNS), which are natural extensions of iMPS to
higher dimensions. We assume a square lattice tensor network with a translational symmetry, whose diagram is shown
as

and try to find an approximate ground state wavefunction of two-dimensional quantum many-body systems. Notice
that square lattice tensor networks can represent lattices other than the square lattice, such as the honeycomb and the
triangular lattices, by considering proper mapping.

6.2 Contraction of iTPS

In order to calculate expectation values over a TNS, ⟨Ψ|𝑂|Ψ⟩/⟨Ψ|Ψ⟩, generally we need to contract tensor networks
corresponding to ⟨Ψ|𝑂|Ψ⟩ and ⟨Ψ|Ψ⟩. For example, a tensor network corresponding to ⟨Ψ|Ψ⟩ is given by
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which is often called a double layered tensor network. The contraction of a double layered tensor network often needs
huge computation costs. In the case of MPS (and iMPS), fortunately, we can contract it efficiently, e.g, by considering a
transfer matrix which consists of local tensors. However, in the case of TPS (and iTPS), exact contraction is impossible
except for small finite size systems (or infinite cylinders) and we often use approximate contraction methods. Among
several efficient methods for contracting iTPS in two-dimension, TeNeS supports corner transfer matrix renormalization
group (CTMRG) method [CTMRG], which expresses an infinitely extended double layered tensor network by using
corner transfer matrices and edge tensors.

When we simplify the double layered tensor network by using a locally contracted tensor,

a tensor network diagram for the corner transfer matrix representation is given as

A corner transfer matrix and an edge tensor are defined as

Corner transfer matrix Edge tensor
The accuracy of the corner transfer matrix representation is determined by the bond dimension 𝜒 of corner transfer
matrices, which is indicated as thick lines in the diagrams.

In the CTMRG algorithm, we iteratively optimise corner transfer matrices and edge tensors by absorbing local tensors
until they converges. For example, an absorbing procedure, so called left move, is described as follows:
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:Projector

Left move in CTMRG

The projectors in the above diagram is calculated in several ways [CTMRG] and they reduces the degree of freedoms
to 𝜒.

When we consider iTPS with the bond dimension 𝐷 and CTMs with the bond dimension 𝜒, the leading computation
cost of CTMRG scales as 𝑂(𝜒2𝐷6) and 𝑂(𝜒3𝐷4). Notice that the bond dimension of the double layered tensor
network becomes 𝐷2 by using locally contracted tensors. Thus, typically we increase 𝜒 as 𝜒 ∝ 𝑂(𝐷2). In this setup,
the leading computation cost of CTMRG algorithm is reduced to 𝑂(𝐷10), while the memory usage scales 𝑂(𝐷8). In
order to achieve the computation cost discussed above, we need to use a partial singular value decomposition (SVD) (or
the truncated SVD) technique. When we use the full SVD instead of the partial SVD, the computation cost becomes
𝑂(𝐷12).

Once we obtain the corner transfer matrices and edge tensors, we can also calculate ⟨Ψ|𝑂|Ψ⟩ efficiently. For example,
a local magnetization ⟨Ψ|𝑆𝑧

𝑖 |Ψ⟩ is represented as

,

and similarly the nearest neighbor correlation ⟨Ψ|𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1|Ψ⟩ is represented as
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,

Notice that by using the second representation, we can calculate expectation values of any two-site operators. Although
we can generalize such a diagram for any operator, the computation cost to contract the tensor network becomes huge
for larger clusters.

6.3 Optimization of iTPS

In order to use iTPS as variational wavefunctions for the ground state, we need to optimize it so that it give us the
minimum energy expectation value,

𝐸 =
⟨Ψ|ℋ|Ψ⟩
⟨Ψ|Ψ⟩

,

where ℋ represents the Hamiltonian of the target system. Among two types of popular optimization algorithms, the
imaginary evolution (ITE) and the variational optimization, we support the ITE in TeNeS. In TeNeS, we consider
approximate ITE within the iTPS ansatz:

|ΨiTPS⟩ ≃ 𝑒−𝑇ℋ|Ψ0⟩,

where |Ψ0⟩ is an arbitrary initial iTPS. If 𝑇 is sufficiently large, the left hand side, |ΨiTPS⟩, is expected to be a good
approximation of the ground state.

In TeNeS, we assume that the Hamiltonian can be represented as a sum of short range two-body interactions as

ℋ =
∑︁

{(𝑖,𝑗)}

𝐻𝑖𝑗 ,

and apply Suzuki-Trotter decomposition to the ITE operator with small time step 𝜏 :

𝑒−𝜏ℋ =
∏︁

{(𝑖,𝑗)}

𝑒−𝜏𝐻𝑖𝑗 +𝑂(𝜏2).

We can also consider higher order Suzuki-Trotter decomposition. By using the Suzuki-Trotter decomposition form,
the ITE is represented as

𝑒−𝑇ℋ|Ψ0⟩ =

⎛⎝ ∏︁
{(𝑖,𝑗)}

𝑒−𝜏𝐻𝑖𝑗

⎞⎠𝑁𝜏

|Ψ0⟩+𝑂(𝜏),
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where 𝑁𝜏 = 𝑇/𝜏 is the number of ITEs with sufficiently small 𝜏 . In order to simulate the right hand side of the
equation, we divide

∏︀
{(𝑖,𝑗)} into several subsets. In each subset, (local) ITE operators satisfy two properties: they

commute with each other and they have the same translation symmetry with the iTPS ansatz. For example, in the case
of two-site iMPS for the one-dimensional nearest-neighbor interaction Hamiltonian, we have two subsets:

Subset 1:

Subset 2:

Then, we approximate the wavefunction after multiplication of each ITE-operator subset as an iTPS with the bond
dimension 𝐷:

|ΨiTPS
𝜏 ⟩ ≃

∏︁
{(𝑖,𝑗)∈subset𝑛}

𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩,

where
∏︀

{(𝑖,𝑗)∈subset𝑛} means the product of operators in the 𝑛th subset, and |ΨiTPS
𝜏 ⟩ is a new iTPS. By using a

diagram, it is represented as follows:

Bond dimension = DBond dimension = D

Notice that by applying 𝑒−𝜏𝐻𝑖𝑗 the bond dimension of the exact iTPS representation generally increases. In order to
continue the simulation stably, we need to truncate the bond dimension to a constant 𝐷.

Naively, efficient truncation can be done by solving the minimization problem

min

⃦⃦⃦⃦
⃦⃦|ΨiTPS

𝜏 ⟩ −
∏︁

{(𝑖,𝑗)∈subset𝑛}

𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩

⃦⃦⃦⃦
⃦⃦
2

.

However, in practice, solving this minimization problem needs a huge computation cost because it is a highly nonlinear
problem due to the translational symmetry of iTPS. Thus, instead, we usually consider an alternative local problem
where we apply only a local ITE operator and try to find optimal iTPS |ΨiTPS

𝜏 ⟩ in which only a few local tensors are
modified from the original |ΨiTPS⟩. This minimization problem is written as

min
⃦⃦
|ΨiTPS

𝜏 ⟩ − 𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩
⃦⃦2
.

In the case of the nearest-neighbor interaction on the one-dimensional chain, the diagrams corresponding to this mini-
mization problems are

Bond dimension = DBond dimension = D

The squared norm
⃦⃦
|ΨiTPS

𝜏 ⟩ − 𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩
⃦⃦2 can be calculated by using, e.g., CTMRG and we can solve the min-

imization problem easily [ITE]. Although this new iTPS breaks translational symmetry, we make translationally sym-
metric iTPS by copying updated local tensors to other parts so that the obtained iTPS can be considered as an approxi-
mated solution of the original minimization problem:
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Copy Copy

This ITE approach is often called as full update. The leading computation cost of the full update come from CTMRG
and then it scales as 𝑂(𝐷10) or 𝑂(𝐷12) depending on SVD algorithms.

The simple update (or simplified update) is a cheaper version of ITE optimization. In order to avoid expensive envi-
ronment calculation by CTMRG, we consider a part of the tensor network instead to treat the whole [SimpleUpdate]
in the simple update. For example, in the case of the nearest-neighbor interaction, we consider the following local
optimization problem:

: Non-negative diagonal matrix
In this diagram, 𝜆𝑖 represents a non-negative diagonal matrix considered to be a mean field corresponding to the
neglected environment beyond the bond 𝑖. The definition of 𝜆𝑖 will be given later. This optimization problem can be
viewed as the low rank approximation of a matrix consisting of two tensors and a ITE operator, and then we can solve
it by SVD. The procedure of the simple update is given in the following diagram:

SVD

Truncation to
bond-dimension D

Matrix
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The singular values obtained from the SVD of the matrix are used as the mean field 𝜆 in the next step. The computation
cost of the simple update is𝑂(𝐷5), if we use QR decomposition before we construct the matrix [QR]. Thus, it is much
cheaper than that of the full update.

Although the computation cost of the simple update is cheaper than that of the full update, it is known that the simple
update shows strong initial state dependence and it tends to overestimate the local magnetization. Thus, for complicated
problems, we need to carefully check results obtained by the simple update.

6.4 Real-time evolution by iTPS

The algorithms of imaginary time evolution used for computing the ground state, such as the simple update method and
the full update method, can also be used to calculate the real-time evolution of a quantum state. In TeNeS, similarly to
the case of imaginary time evolution, the quantum state at time 𝑡

|Ψ(𝑡)⟩ = 𝑒−𝑖𝑡ℋ|Ψ0⟩,

is approximated by iTPS, which allows for the calculation of approximate time evolution. The difference between
imaginary and real-time evolution lies only in whether the coefficient of the Hamiltonian ℋ in the exponent is −𝜏 or
−𝑖𝑡, hence real-time evolution can also be computed using the same simple update and full update methods applied in
imaginary time evolution, by employing the Suzuki-Trotter decomposition.

Real-time evolution using iTPS (and other tensor network states) differs significantly from imaginary time evolution
used for ground state calculation in two main aspects.

One major difference is the size of the quantum entanglement of the target quantum state. In imaginary time evolution,
as the evolution progresses towards the ground state, the quantum entanglement of the state does not become excessively
large. Thus, the description by iTPS works well. However, in real-time evolution, typically (unless the initial state’s
iTPS is an eigenstate of the Hamiltonian), quantum entanglement can increase over time. To maintain the approximation
accuracy of iTPS, it is necessary to increase the bond dimension of iTPS as the time gets longer. Naturally, increasing the
bond dimension also increases computational costs, so with realistic computational resources, accurately approximating
real-time evolution using iTPS is limited to short times. The applicable time range depends on the model, but for
example, in spin models, the limit is often around a time 𝑡 = 𝑂(1/𝐽) with respect to the typical interaction strength 𝐽 .

Another difference is the characteristics of the physical phenomenon to be reproduced. When using imaginary time
evolution to calculate the ground state, it is sufficient to reach the ground state after a sufficiently long evolution, so
minor deviations from the correct path of imaginary time evolution are not a significant issue. On the other hand, in
real-time evolution, there is often interest not only in the final state but also in the time evolution of the quantum state
itself. To accurately approximate the path of time evolution, it is necessary to not only increase the bond dimension
of iTPS but also to make the time increment 𝛿𝑡 of the Suzuki-Trotter decomposition sufficiently small. Depending on
the situation, it may be more efficient to use higher-order Suzuki-Trotter decompositions. In TeNeS, it is possible to
handle higher-order Suzuki-Trotter decompositions by editing the evolution section of the input file that is ultimately
entered into TeNeS.

6.5 Finite temperature simulation

So far, we considered the tensor network representation of a pure state |Ψ⟩, but similarly, we can consider the tensor
network representation for a mixed state at finite temperature

𝜌(𝛽) =
𝑒−𝛽ℋ

Tr𝑒−𝛽ℋ

where 𝛽 represents the inverse temperature corresponding to temperature 𝑇 as 𝛽 = 1/𝑇 .
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Similarly to pure states, if we consider a system of 𝑁 quantum spins with 𝑆 = 1/2 at finite temperature, the mixed
state can be expressed as

𝜌(𝛽) =
∑︁

𝑠𝑖=↑,↓,𝑠′𝑖=↑,↓

(𝜌(𝛽))
𝑠′1,𝑠

′
2,...,𝑠

′
𝑁

𝑠1,𝑠2,...,𝑠𝑁
|𝑠′1, 𝑠′2, . . . , 𝑠′𝑁 ⟩⟨𝑠1, 𝑠2, . . . , 𝑠𝑁 |

The expansion coefficients (𝜌(𝛽))𝑠
′
1,𝑠

′
2,...,𝑠

′
𝑁

𝑠1,𝑠2,...,𝑠𝑁
can be expressed, for example, using a Matrix Product Operator (MPO),

generalized from MPS to matrices (operators), as(︀
𝜌MPO(𝛽)

)︀𝑠′1,𝑠′2,...,𝑠′𝑁
𝑠1,𝑠2,...,𝑠𝑁

= 𝑇 (1)[𝑠1, 𝑠
′
1]𝑇

(2)[𝑠2, 𝑠
′
2] · · ·𝑇 (𝑁)[𝑠𝑁 , 𝑠

′
𝑁 ]

and the corresponding diagram can be drawn as

For mixed states with translational symmetry, just like in the case of pure states, an infinite MPO (iMPO) can represent
the state of an infinite system by repeating the same tensor infinitely. For example, for a one-dimensional, two-site
translational symmetric state, the corresponding iMPO diagram would be

As a tensor network represention of mixed states, in TeNeS, we handle a two-dimensional infinite tensor product oper-
ator (iIPO) [TPO], specifically assuming a square lattice network with translational symmetry. The diagram for such
an iTPO can be written as
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In TeNeS, the mixed state at finite temperature 𝜌(𝛽) is computed using imaginary time evolution from the initial state
corresponding to infinite temperature 𝜌(𝛽 = 0)

𝜌(𝛽) = 𝑒−
𝛽
2 ℋ𝜌(0)𝑒−

𝛽
2 ℋ

Note that at infinite temperature, the density matrix is the identity matrix. From this property, for example, the iMPO
representation of the state at infinite temperature becomes a tensor product of local identity matrices, and the diagram
in this case would be drawn as

with “lines” corresponding to the local identity matrix.

The imaginary time evolution of a mixed state is calculated by a simple extension of the imaginary time evolution for
pure states, as an approximate imaginary time evolution within the iTPO representation. The Suzuki-Trotter decom-
position, simple update method, and full update method used for pure states can be almost directly applied to the case
of mixed states. (TeNeS does not support the full update currently.)

The local minimization problem for mixed states can be described as

min
⃦⃦⃦
𝜌iTPO
𝜏 − 𝑒−

𝜏
2ℋ𝑖𝑗/2𝜌iTPO𝑒−

𝜏
2ℋ𝑖𝑗

⃦⃦⃦2
and the corresponding diagram, for clarity in the form of iMPO, would be
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Bond dimension = DBond dimension = D

The biggest difference between the computations of finite temperature states by iTPO and pure states by iTPS appears
in the tensor network for expectation value calculations. The expectation value of a physical quantity 𝑂 for a given
mixed state 𝜌 is calculated as

⟨𝑂⟩𝜌 =
Tr(𝜌𝑂)

Tr𝜌
.

The trace Tr corresponds to connecting the corresponding upper and lower legs of the iTPO. Using a tensor obtained
by connecting upper and lower legs of a local tensor in iTPO,

the denominator Tr𝜌 becomes the same structure as the two-dimensional square lattice diagram appeared in the ex-
pectation values for pure states. Thus, we can apply the same approximate calculation using corner transfer matrix
representation and CTMRG.

The computation cost of CTMRG for the corner transfer matrix representation with bond dimension 𝜒 and iTPO
with bond dimension 𝐷 scales with 𝑂(𝜒2𝐷4) and 𝑂(𝜒3𝐷3). Note that this computation cost is smaller compared
to CTMRG for pure states with the same bond dimension𝐷. The difference is due to the bond dimension of the tensor
indicated by the black circle being 𝐷2 in pure state calculations, while 𝐷 for mixed states. Correspondingly, the bond
dimension 𝜒 of the corner transfer matrices can be increased proportionally to 𝐷, i.e., 𝜒 ∝ 𝑂(𝐷). Under this condi-
tion, the computation cost of CTMRG becomes 𝑂(𝐷6), and the required memory amount becomes 𝑂(𝐷4). Thus, the
computation cost of finite temperature calculations using iTPO is significantly lower than that of iTPS with the same
𝐷. It allows us to use larger bond dimensions 𝐷 in finite temperature calculations.

Similarly to pure states, once the converged corner transfer matrices and edge tensors are computed, Tr(𝜌𝑂) can also
be efficiently calculated. For example, when we define the tensor containing the operator as

the local magnetization Tr(𝜌𝑆𝑧
𝑖 ) is calculated using the same diagram as ⟨Ψ|𝑆𝑧

𝑖 |Ψ⟩.

Lastly, it is important to mention the drawbacks of approximation by iTPO. The density matrix of a mixed state is
Hermitian and positive semidefinite, with non-negative eigenvalues. However, when approximating the density matrix
with iTPO, this positive semidefiniteness is not guaranteed, and physical quantities calculated from the iTPO approx-
imation might exhibit unphysical behavior, such as energies lower than the ground state energy. This is a problem of
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iTPO representation, and cannot be avoided just by improving the accuracy of CTMRG in expectation value calculation
by increasing the bond dimension 𝜒. To recover physical behavior, it is necessary to increase the bond dimension𝐷 of
iTPO to improve the approximation accuracy of the density matrix.

As an alternative representation to avoid such unphysical behavior, a method has been proposed using purification of the
density matrix, representing the purified density matrix with iTPO [Purification]. However, in this case, the diagram
appearing in the expectation value calculation becomes a double-layer structure similar to pure states. This structre
requires a larger computational cost, and the manageable bond dimension 𝐷 becomes smaller than in the direct iTPO
representation.
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CHAPTER

SEVEN

FAQ

Q1. How can I set the number of full updates?

A1. The full update improves the accuracy of the calculation, but its computational time becomes longer. The number of
full updates should be determined by balancing computer performance, bond dimensions, and required computational
accuracy. One way to see what happens is to just do a simple update first. Also, if you do a simple update before the full
update and approach the ground state, the full update can be done efficiently. However, if you have a complex quantum
state (such as a spin liquid) and the simple update does not approach the correct ground state, you must do a full update
from the beginning.

Q2. How can I set the number of the simple updates?

A2. Increasing the number of simple updates over time should bring the simulated quantum state closer to the ground
state, but this is not necessarily the case; if the bond dimension is small, the calculation accuracy may deteriorate during
the update. To see if the calculation works, plot the ground state energy against the number of simple updates. It is a
good idea to increase the number of updates and adopt the minimum energy as the calculation result. Another strategy
is to increase the number of the simple update so that the energy is almost the same, but that is not necessarily the
minimum energy.

Q3. How do I get the bond dimension?

A3. Increasing the bond dimension improves calculation accuracy but increases calculation time. It is necessary to
determine the bond dimension by considering the balance of the computer resources and the accuracy required for the
physical quantity desired. It is also important to change parameter.ctm.dimension together when changing the bond
dimension assigned by lattice.virtual_dim. Typically, the latter takes a value greater than or equal to the square of the
former.

Q4. How should I test the correctness of the calculated ground state?

A4. It is difficult to guarantee that the calculated ground state is correct, but the easiest way is to check whether lower
energy states are obtained or not by using multiple seed numbers. It is also useful to calculate the initial configuration
guessed from several candidate ground states and compare their energies, though its computational cost is expensive.
It is also important to change the shape of the unit cell to check for other low-energy states. Although there is a size
issue, it is recommended to compare with other methods such as exact diagonalization. (The exact diagonalization can
be easily performed using H Φ .)
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CHAPTER

NINE

CONTACTS

• Report bugs

Please report all problems and bugs on the GitHub Issues page

Follow these guidelines when reporting:

– Please specify the version of TeNeS, OS, and compiler you are using.

– If there are problems for installation, please include input / output of cmake and make, and CMakeCache.txt
(one of the output file of cmake).

– If a problem occurs during execution, please show the input file used and obtained output.

Thank you for your cooperation.

• Others

If you have any questions about topics related to your research that are difficult to consult in public (e.g., at Issue
page on GitHub), please send an e-mail to the following address:

E-mail: tenes-dev__at__issp.u-tokyo.ac.jp (replace __at__ by @).
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