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Chapter 1

What is SUSHI?

In Octa project, several simulators for polymeric materials based on mesoscale models are under devel-
opment. The simulator explained in this manual is named “SUSHI” (Simulation Utilities for Soft and Hard
Interfaces). The phenomena that can be dealt with by SUSHI are over the length scale of 10-100 nm and
the time scale of 10−8 ∼ 1 sec. Typical structures characteristic to such length scales are the interfaces of
polymer melts or polymer solutions. Therefore, SUSHI can be regarded as a simulator for the interfacial
structures of polymer systems. One of the advantages of SUSHI is that it can simulate heterogeneous systems,
for example micro-phase separations and micelles. Moreover, by analyzing the numerical data obtained by
SUSHI, one can obtain physical quantities relevant to the interfacial tension, critical micelle concentration,
and so on.

SUSHI can carry out static and dynamic simulations based on Self Consistent Field (SCF) theory [1, 2,
3, 4, 5, 6, 7, 8, 9, 10]. Hereafter, the dynamic calculation will be called “dynamic mean field method” (or
“dynamic density functional method”). There are some other techniques that can treat the phenomena on
the intermediate length and time scales. The “Phenomenological Density Functional(PDF)” based on the
functional Taylor series expansion of the free energy of the system is one such example [11, 12] .

Although the calculation cost of the SCF method is higher than the PDF method, the SCF method can
correctly take the conformation of the chains into consideration (within the resolution of the coarse-grained
length scale).

As one can confirm in table 1.1, SUSHI is designed as flexible as possible. Any chain topology and
monomer (segment) sequence can be dealt with. Effective bond length and specific volume of segments can
be arbitrarily specified. According to the problem, one can select a suitable spatial mesh, such as regular,
rectangular, spherical, or cylindrical mesh. Boundary conditions can also be selected as periodic boundary,
solid wall, or reflective wall. Both canonical and grand canonical ensembles are supported. Functions to
graft polymers onto a wall or to confine polymers in a certain region are also available. Owing to these
flexibility and generality of SUSHI, it can be applied to a wide variety of problems, and SUSHI is expected
to be very useful in various scenes in the material design.

In order to guarantee such high flexibility, various extensions of the theory are made in SUSHI, and
therefore the basic mathematical formalism is a little complicated. In order to avoid complexity, in Chapter
2, we start describing the outline of the basic concepts and formalism of the SCF theory using a homopolymer
blend system as a simple example. In Section 2.9, we describe the details of the numerical techniques to solve
the theoretical equations. Chapter 3 is devoted to a simple guide for operating SUSHI. Chapter 4 is for some
introductory exercises for using SUSHI, where the following problems are discussed; The interfacial physical
properties, such as the toughness of the interfaces in polydisperse polymer blends, the interaction between
surfaces onto which polymers are adsorbed, and the critical micelle concentration of block copolymers in a
solvent (i.e. surfactant systems), and so on. The details of the input parameters for SUSHI are explained in
Chapter 5.

Usage of simple Python tools to draw graphs or pictures from the numerical data of SUSHI on GOURMET
is described in Chapter 6.

Although the Flory’s χ-parameters are used in SUSHI as important input parameters to specify the
character of the system, the procedure to estimate these parameters is non-trivial. To eliminate such a
difficulty, in Chapter 7, we offer Python scripts named “CPC” (Chi Parameter Calculator) that can be used
to estimate these χ-parameters.

In order to calculate the real space correlation functions of the domain morphology obtained by the

1
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simulation, a simulator “SPCF” (Spatial Correlation Function calculator) is prepared. In Chapter 8, we
describe how to use this SPCF and show several examples.

How to compile the source codes and how to extend the simulator are briefly described in the appendices.
There is a special-purpose simulator called “InterfaceSimulator” that uses the basic functions of SUSHI. The
outline of this simulator is described in the appendices.

Fixed bugs by SUSHI10.0

• The conformational entropy effect of a polymer was lacked in the free energy calculation when the
canonical ensamble and any wall boundary conditions were satisfied.

• Powder pattern of scattering function was not circular averaged.

Fixed bugs by SUSHI10.3

• Strong polyelectrolite calculations could not be converged.

• Outputs of cylindrical mesh calculations were abnormal with asymmetric mesh sizes.

• Cylindrical mesh calculations with walls (at cylinder ends) could not be converged.

• Action plot 1D outputs were abnormal with walls.

• SUSHIInput.zoom.sigma per b was miss type and SUSHIInput.zoom.b per sigma was added. The
SUSHIInput.zoom.sigma per b in UDF of previous versions is recognized as SUSHIInput.zoom.b per sigma.

• Zooming options with -Z did not output coordinates of beads.

• Soft particles calculations had a bug in periodic BDC treatment.

• Calculations including solvents + wall had a bug.

Fixed bugs by SUSHI10.4

• Abnormal terminations with zero values of constV and constW.

• Abnormal terminations of MPI+GPU+hydrodynamics calculations.
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Table 1.1: Functions of SUSHI 1/2

Item Function
1 Purpose Mesoscale simulator based on the dynamical mean field theory

for polymer melts and polymer solutions
2 Version Version 9.2
3 Programming language C++
4 Compilers Microsoft VC++ Ver. 2010 or higher

g++ library for gcc Ver. 4 or higher
5 Mean field method Self consistent field method

with path integral formalism
Ginzburg-Landau theory using
Random Phase Approximation

Code name: SCF Code name: GRPA
(Self Consistent Field) (GL using RPA)

6 Polymer architecture SCF GRPA
Topology Any type Any type
Sequence Any type Any type
Character of segment Effective bond length, Specific

volume
Effective bond length

7 System
State Polymer melt

Polymer solution(including void)
Boundary condition Periodic, Reflective, Wall
Mesh Regular mesh 1D∼3D

Rectangular mesh
(Cartesian mesh with inhomogeneous mesh width) 1D∼3D
Cylindrical mesh 2D
Spherical mesh 1D

8 Calculation method Static equilibrium (Eq),
Dynamics (Dy),
Monte Carlo (Eq)

9 Ensemble Canonical ensemble
Grand canonical ensemble (SCF)

10 External field Surface force due to wall(SCF)
11 Grafting Grafting polymer to wall(SCF)
12 Scheme for calculating path integral Explicit scheme, Implicit scheme (SCF)
13 Scheme for dynamic equation (Dy) Explicit scheme, Implicit scheme
14 Mask of free end of polymer (Eq) Micelle can be simulated by restricting the free ends of poly-

mers to within a certain region. (SCF)
15 Common use of path integral (Eq) Computation time is reduced by commonly using the same

path integral for similar polymer structures. (SCF)
16 Domain specification (Eq) Target morphology is realized by giving appropriate initial

conditions for the self-consistent fields. (SCF)
17 Radius of gyration The radius of gyration of a sub-chain and full chain can be

calculated. (SCF)
18 Mobility (Dy) Value and type of mobility of segment can be specified.
19 Adsorption dynamics (Dy) The adsorption dynamics onto wall is available. (SCF)
20 Chemical reaction dynamics (Dy) 1)Rapid reaction

2)Active-site reaction (SCF)
3)Grafting reaction (SCF)

21 Polyelectrolyte The strong polyelectrolyte simulation is available.
22 Quench χ parameter can be changed in the dynamic simulation. (Dy)
23 Sheared dynamics (Dy) Shear can be introduced to dynamics. (SCF)
24 Compressible dynamics (Dy) Compressibility can be introduced to dynamics. (SCF)
25 Thermal fluctuation (Dy) Thermal fluctuation can be introduced to dynamics. (SCF)
26 System size optimization System size can be optimized to minimize the free energy den-

sity.
27 Scattering function The Scattering function between segments can be calculated.

“Eq” means that the function is valid in the static equilibrium calculation.
“Dy” means that the function is valid in the dynamic calculation.
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Table 1.2: Functions of SUSHI 2/2
Item Function

28 GRPA (Dy) Dynamic density functional theory based on Ginzburg-Landau
(GL) theory using Random Phase Approximation (RPA)

29 Hybrid (Dy) Density functinoal theory hybridizing SCF and GRPA
30 Hydrodynamics (Dy) Dynamic density functional theory introducing hydrodynamic

effects
31 External Electric Field (Dy) Dynamic density functional theory introducing un external

electric field
32 Obstacles (Eq) 1)Particles can exist in systems as obstacles in SCF calcula-

tions. The region of an obstacle can be selected as either inner
side or outer side of the particle’s shell(SCF).
2)Fibers can exist in systems as obstacles in SCF calculations.
The region of an obstacle can be selected as either inner side
or outer side of the particle’s shell(SCF).
3)Surface chi parameters χs can be set on obstacles.
4)Ends of polymers can be grafted on obstacles.

33 Zooming SUSHI supports to make the input file for COGNAC.
34 Modification of the parallel

calculation
Wall can be introduced (MPI,GPU) but only for static calcu-
lation. MPI calculation can accept no divided axes.

35 The obstacle defined by trian-
gle polygon data

Any shape of obstacles can be inputted, which is defined by
triangle polygons.

36 Soft particles The particle defined by fixed shape of solvent can be inputted.
37 Hydrodynamic effects to MPI

+ GPU
Hydrodynamic effects can be introduced to MPI+GPU calcu-
lations.

38 Bugs fix Unexecutable bugs are fixed with MPI + GPU.

“Eq” means that the function is valid in the static equilibrium calculation.
“Dy” means that the function is valid in the dynamic calculation.



Chapter 2

Theoretical background

2.1 Self consistent field theory

In this chapter, we describe the outline of the Self-Consistent Field (SCF) theory using linear homopolymer
chains and their blends as examples.

We consider a system with volume V. Boundary conditions are decided according to the physical proper-
ties of the system at the boundaries, such as periodic boundary conditions, Neumann boundary conditions,
and Dirichlet boundary conditions. The minimum unit that constitutes the system is called a segment, and
the polymers are composed of several kinds of segments specified by the index K = 1, 2, · · ·. The polymer
species are specified by the index p = 1, 2, · · ·. The degree of polymerization of the p-type polymer chain
is denoted as N (p), and the total number of p-type polymer chains in the system is Mp. We number the
segments on the p-type chain with the index i = 0, 1, 2, · · · , N (p) from one end of the polymer. Note that,
in homopolymer blend systems, the index K for the segment species can be identified with the index p for
the polymer species. As we use only homopolymer blends in this chapter, the index K will be used instead
of the index p.

In the SCF theory, we can calculate the equilibrium concentration (or the volume fraction) distribution
ϕK(r) of K-type segments taking the chain conformations into account using the path integral formalism.
To give a simple explanation of the path integral formalism of polymers, we adopt a random walk model on a
cubic lattice with lattice constant b. In the SCF theory, the chain conformations are treated statistically using
probability distributions of conformations. To calculate the statistical distribution of the chain conformation,
we focus on a single chain in a system composed of mutually interacting many chains, and approximate this
tagged chain by a single ideal chain in a mean field. For the reason mentioned below, this mean field is called
self consistent field. The self consistent field is a potential field that accounts for the external conditions
such as the interaction between segments and the incompressible conditions, and has the following form

VK(r) = WK(r) +
[
potential decided by incompressible condition

]
, (2.1)

where WK(r) is the mean field resulting from the interaction between segments, and is given by

WK(r) =
∑
K′

χKK′ϕK′(r). (2.2)

The 2nd term on the right-hand-side of eq. (2.1) is the constraint force (it is equivalent to a Lagrange
multiplier) due to the constraints imposed on the system, such as the incompressible condition. In Section
2.5, we give the definite forms of the constraint force for some constraining conditions.

Under such mean field approximation using the self consistent field, we can divide a polymer chain into
subchains whose conformations are statistically independent of each other. Therefore, the calculation of the
statistical probability distribution of the conformation of the whole chain can be reduced to the calculation
of those of individual subchains. In the following, we show how to calculate such statistical probability
distributions of conformations of subchains using path integrals.

We consider a homopolymer chain composed of K-type segments, and focus on a section of the chain
(subchain) between the segment i and the segment j. Let us define a quantity QK(i, ri; j, rj) (so-called path
integral) as the equilibrium statistical weight of this subchain to have a conformation with the i-th and the

5



6 CHAPTER 2. THEORETICAL BACKGROUND

j-th segments at ri and rj . If we write the self consistent field (mean field) acting on the K-type segment at
position r as VK(r), the statistical weight of the subchain with its segments locating at ri, ri+1, · · · , rj−1, rj
is expressed as

exp
[
−β

{1

2
VK(ri) + VK(ri+1) + · · ·+ VK(rj−1) +

1

2
VK(rj)

}]
(2.3)

apart from a constant factor. Here, β = 1/kBT and the contributions from the end segments are assumed to
be one half of those from the inner segments because a junction point is shared by two subchains meeting
at that segment. By using eq. (2.3), the path integral QK(i, ri; j, rj) is given by a sum of Boltzmann factors
for all possible conformations under the conditions that the both ends are fixed at positions ri and rj ,
respectively. Therefore, we have

QK(i, ri; j, rj) =
1

z|i−j|

∑
all conformation

exp
[
−β

{1

2
VK(ri) +

j−1∑
k=i+1

VK(rk) +
1

2
VK(rj)

}]
, (2.4)

where z is the number of nearest neighbor lattice sites. From eq. (2.4), the following recurrence formula can
easily be derived.

QK(i, ri; j + 1, r) =
∑
r′

QK(i, ri; j, r
′)× 1

z
exp

[
−1

2
β
{
VK(r′) + VK(r)

}]
(2.5)

where
∑

r′ means the sum over the nearest neighbor lattice sites to r. If we assume that QK varies slowly
on the length scale of the lattice spacing, QK(i, ri; j + 1, r) can be expanded around r = r′, and we obtain

QK(i, ri; j + 1, r) =
1

z
e−βVK(r)/2

∑
r′

[
e−βVK(r)/2QK(i, ri; j, r)

+∇
{
e−βVK(r)/2QK(i, ri; j, r)

}
· (r− r′)

+
1

2
∇2

{
e−βVK(r)/2QK(i, ri; j, r)

}
: (r− r′)(r− r′) + · · ·

]
. (2.6)

We further assume that βVK(r) are small, then eq. (2.6) reduces to the following Schrödinger type time
evolution equation

∂

∂i
QK(i′, r′; i, r) =

[b2
6
∇2 − βVK(r)

]
QK(i′, r′; i, r). (2.7)

Here, the lattice constant b corresponds to the average distance between a segment and its adjacent segment
along the chain, and is called the effective bond length, which in general depends on the segment species
K. When we regard the segment index i as time, the evolution equation eq. (2.7) is identified with the
diffusion equation. Thus, the chain conformation can be regarded as a path of a Brownian particle in the
self consistent field. The initial condition for the partial differential equation eq. (2.7) is given by

QK(i′, r; i′, r′) = δ(r− r′), (2.8)

which can easily be understood from the definition of the path integral.

Using the path integral obtained by solving eqs. (2.7) and (2.8), the concentration of the K-type segments
at position r is expressed as

ϕK(r) = CK

∑
i

∫
dr0

∫
drNKQK(0, r0; i, r)QK(i, r;NK , rNK ), (2.9)

where NK is the total number of segments composing the K-type polymer, CK is the normalization constant,
and r0 and rNK

are the positions of the segments 0 and NK at both ends of the chain, and
∑

i means the
sum over all NK segments.

The expression of the normalization constant CK in eq. (2.9) changes depending on whether the statistical
ensemble of this chain is the canonical ensemble where the total number of chains in the system is fixed or
the grand canonical ensemble where the system is in equilibrium with a reservoir of particles with a fixed
concentration.
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1) Canonical ensemble

CK =
MK∫

dr0
∫
drNK

QK(0, r0;NK , rNK
)
, (2.10)

where MK is the total number of chains in the system.

2) Grand canonical ensemble
We assume that the system is in chemical equilibrium with the external uniform reservoir (bulk system).

Let us denote the concentration of the chains in the bulk as ϕ
(bulk)
K . When ϕK(r) ≡ ϕ

(bulk)
K , CK is

expressed in terms of the potential WK(r) ≡ W
(bulk)
K calculated using eq. (2.2) as follows;

CK =
ϕ
(bulk)
K

NK
exp

[
NK(W

(bulk)
K + constant)

]
. (2.11)

The constant term on the right-hand-side originates from the arbitrariness in the self consistent field
defined by eq. (2.1), and we drop this term without loss of generality. Such a procedure corresponds
to assuming no constraints in the bulk phase in the grand canonical ensemble.

For the actual calculations, it is convenient to integrate QK(i, r;NK , rNK
) and QK(0, r0; i, r) (path integrals)

appearing in the formula eq. (2.7) with respect to their initial positions, and introduceQK(i, ri) and Q̃K(i, ri)
as follows.

QK(i, ri) =

∫
dr0QK(0, r0; i, ri) (2.12)

Q̃K(NK − i, ri) =

∫
drNK

QK(NK , rNK
; i, ri). (2.13)

Then, the path integrals QK(i, ri) and Q̃K(i, ri) are obtained by solving the evolution equations

∂

∂i
QK(i, r) =

[b2
6
∇2 − βVK(r)

]
QK(i, r) (2.14)

∂

∂i
Q̃K(i, r) =

[b2
6
∇2 − βVK(r)

]
Q̃K(i, r) (2.15)

using the following initial conditions.

QK(0, r) = Q̃K(0, r) = 1. (2.16)

By using the path integrals obtained from eqs. (2.14) and (2.15), the segment density at position r is given
using eqs. (2.9), (2.12) and (2.13) as follows.

ϕK(r) = CK

∑
i

QK(i, r)Q̃K(NK − i, r). (2.17)

As is shown in eq. (2.1), the self consistent field VK(r) depends on the segment concentration ϕK(r).
Then, ϕK(r) is calculated from the path integral QK(i, r) through eq. (2.17). Finally, the path integral
QK(i, r) is obtained by solving eqs. (2.14) and (2.15) that contain the self consistent field VK(r). Therefore,
VK(r), ϕK(r) and QK(i, r) define themselves in a recursive manner as shown in fig. 2.1. This diagram shows
that the three quantities should be obtained in a self consistent manner. This is the origin of the name of
the self consistent field.

Figure 2.1: The basic scheme of the self consistent field (SCF) theory
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2.2 Extension to branched chains and block copolymers

When we treat block copolymers, branched polymers, etc. by SCF, an extension of the treatment of the
homopolymer blends described above is necessary. For such a case, as is shown in fig. 2.2, we have to
divide the polymer into a set of linear subchains. Here we introduce an index r to specify the subchains.
The connecting points of subchains are called junctions. Let us assume that the r-th subchain of the p-th

polymer consists of N
(p)
r segments. Then, these N

(p)
r segments are numbered from its one end to the other

using an index i.

Figure 2.2: Dividing a chain into subchains

The same statistical treatment on the chain conformation as that adopted in the preceding section for
the linear polymers can also be used for the present case. When we divide a branching polymer chain into
some subchains (fig. 2.2), these subchains are statistically independent under the mean field approximation.
Therefore, the conformational statistics of the whole polymer chain is obtained by independently calculating
the statistics of each subchain. The method to calculate the conformational statistics of the subchains using
path integrals is almost the same as that for the linear homopolymers but with only minor modifications.
In the following, the technique for calculating the path integrals for branched chains is described.

In the linear homopolymer case discussed in Section 2.1, both ends of a polymer chain were free ends.
On the other hand, in the case of branched chains or block copolymers, in general, some other subchains
are connected to the end segments of the subchain. Therefore, when calculating the statistical weight of
the conformation of a subchain, one has to take into consideration the statistical weight of all the subchains
connected to the end segments of the target subchain. In this case, the contribution from the r-th subchain
of the p-th polymer to the segment concentration at position r is expressed as

ϕ(p)
r (r) = C(p)

r

∑
i

∫
dr0

∫
drNq0(r0)QK(0, r0; i, r)QK(i, r;N, rN )qN (rN ), (2.18)

where QK(i, ri; j, rj) is the same path integral calculated using eqs. (2.7) and (2.8), and K is the segment

species (namely, K
(p)
r ) that constitutes this subchain. C

(p)
r is the normalization constant, N is the total

number of segments contained in this subchain (namely N
(p)
r ), r0 and rN are the positions of the segments

0 and N at both ends, and q0(r0) and qN (rN ) express the statistical weights of the remaining parts of

the whole chain connected to each end segment. The sum
∑N

i=0 should be taken over all N + 1 segments
belonging to the target subchain. For the physical meaning of eq. (2.18), readers should refer fig. 2.3.
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Figure 2.3: Schematic picture showing the physical meaning of eq. (2.18)

Similarly to eqs. (2.10) and (2.11), the expression of the normalization constant in eq. (2.18) depends
on whether the statistical ensemble of the polymer to which the target subchain belongs is the canonical
ensemble or the grand canonical ensemble.

1) Canonical ensemble

C(p)
r =

M
(p)
r∫

dr0
∫
drNq0(r0)QK(0, r0;N, rN )qN (rN )

, (2.19)

where M
(p)
r is the total number of the subchains of type (p, r) contained in the system. It is obviously

equal to the total number of p-th chains. Similarly, we can easily show that C
(p)
r does not depend on

the index r of the subchain but on the type of the chain p.(Therefore, we can denote this as C(p).)

2) Grand canonical ensemble

C(p)
r =

ϕ
(bulk)
p∑

r′′

N
(p)
r′′

exp
[∑

r′

N
(p)
r′ W

(bulk)

K
(p)

r′

]
, (2.20)

where ϕ
(bulk)
p is the equilibrium bulk concentration of the p-type polymer. Similarly to the canonical

case, we can show that C
(p)
r does not depend on the subchain type r but only on the chain type

p.(Thus, we can write C(p).)

Similarly to eqs. (2.12) and (2.13) in the previous section, it is again convenient to use the following path
integrals that are integrated over their initial positions,

QK(i, ri) =

∫
dr0q0(r0)QK(0, r0; i, ri) (2.21)

Q̃K(N − i, ri) =

∫
drNqN (rN )QK(N, rN ; i, ri). (2.22)

These quantities obey the same evolution equations as eqs. (2.14) and (2.15) but with modified initial
conditions given by

QK(0, r) = q0(r) (2.23)

Q̃K(0, r) = qN (r). (2.24)

Starting from these initial conditions, the path integrals are calculated by solving the evolution equations
eqs. (2.14) and (2.15). Then, the contribution from this subchain to the segment density at position r is
given by

ϕ(p)
r (r) = C(p)

r

∑
i

QK(i, r)Q̃K(N (p)
r − i, r). (2.25)

The path integral for the whole chain can be obtained by performing the above-mentioned calculation on
all the subchains. Then, the segment concentration ϕK(r) at position r is calculated by adding up eq. (2.25)
for all subchains that consist of K-type segments.

ϕK(r) =
∑
p

∑
r ∈the subchain of K species

ϕ(p)
r (r). (2.26)
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The definition of the self consistent field for branched chains is the same as that given by eq. (2.1), and
should be determined in a self consistent manner as in Section 2.1.

2.3 Extension to systems with internal states

The formulation given in Sections 2.1 and 2.2 for subchains composed of a single kind of monomers can
easily be extended to that for subchains composed of two or more kinds of monomers, for example

1) Tapered copolymers

2) Multi-state polymers where each segment can occupy either a ground state or one of the excited states

Calculation of the conformational statistics of these polymers becomes available by introducing the concept
of the multi-states (two or more internal states) into the definition of the path integral given in Section 2.1.

A typical example is the tapered block copolymer that consists of two kinds of segments, i.e. A segment
and B segment. In a tapered block copolymer, the A-segments and the B-segments are arranged randomly
with changing their average compositions from one end of the chain to the other. In order to calculate the
conformation of a tapered block copolymer, one has to calculate two path integrals QA(i, r) and QB(i, r)
simultaneously. In solving such a coupled path integrals, the characteristic properties of the distributions of
the segments along the chain (or subchain) are introduced through the following transition state probability
matrix. (This is the matrix element for the calculation of the path integral in the direction from i = 0 to
i = N , where 0 and N are indices of the both ends of the chain.)

TKK′(i) ≡
[

The probability that (i + 1)th segment is K′ species,
when ith segment is K species.

]
. (2.27)

Now we give an example of this transition state probability matrix using the A-B tapered block copolymer
discussed above. Let us denote the average fractions of the A and B segments at i-th monomer as fA(i) = f(i)
and fB(i) = 1 − f(i), respectively. If we assume that there is no correlation between the probability
distributions at i th segment and the i+ 1 th segment, the elements TKK′(i) is given by

TAA(i) = TBA(i) = f(i+ 1), TAB(i) = TBB(i) = 1− f(i+ 1) . (2.28)

By using the transition state probability matrix, the evolution equation of the path integral, eq. (2.14),
is extended as follows:

∂

∂i
QK(i, r) =

∑
K′

TKK′(i)
[b2K′

6
∇2 − βVK′(r)

]
QK′(i, r), (2.29)

where the dependence of the effective bond length b on the segment type K is explicitly described.

2.4 Free energy

The free energy of the system is composed of two contributions; one is the entropic contribution (mainly
degrees of freedom of the chain conformation) and the other is the interaction between segments and the
interaction between segments and the external fields. Using the path integrals introduced in the preceding
sections, one can calculate the free energy taking the conformational entropy into consideration. As the
branching structure and the effects of the conformational change can be taken into account in the SCF
method, it is very useful in evaluating the free energy of the system composed of arbitrary chain architectures
with sufficient accuracy. Such effects are almost neglected in the usual Flory-Huggins theory.

Here we skip all the details of the derivation of the expression of the free energy, and only show the final
result. The Helmholtz free energy can be given in terms of the path integral as follows.

F
[
{ϕK}, {VK}

]
= −kBT

∑
p

Mp lnZp +W
[
{ϕK}

]
−
∑
K

∫
drVK(r)ϕK(r)

+kBT
∑
p

Mp lnMp. (2.30)
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In the first term on the right-hand-side of eq. (2.30), Zp is the partition function of a single chain of type p
in the self consistent field, and is defined by

Zp =
∑

all conformation of chain

exp
[
−β

∑
all segments i

VK(i)(ri)
]
, (2.31)

where K(i) is the species of the i-th segment. In case there are no loops in the chain, eq. (2.31) can further
be written using the path integral as

Zp =

∫
drQ(i, r)Q̃(N (p)

r − i, r), (2.32)

where, the integration is taken over the position of an arbitrary chosen segment i on the subchain r.
As is easily understood from eq. (2.31), the first term on the right-hand-side of eq. (2.30) corresponds to

the conformational entropy of the chain. The third term and the forth term are the contribution from the
constraint conditions and that from the mixing entropy, respectively, the latter being a constant depending
on the composition of the system. The second term on the right-hand-side of eq. (2.30) is the interaction
between segments, whose explicit expression is given as follows.

W
[
{ϕK}

]
=

1

2

∑
K

∑
K′

∫
drϵKK′ϕK(r)ϕK′(r). (2.33)

Here, ϵKK′ is the interaction energy between a pair of segments K and K ′, and is related to the Flory’s χ
parameter by the following relation.

χKK′ = zβ
[
ϵKK′ − 1

2
(ϵKK + ϵK′K′)

]
. (2.34)

Another way of evaluating the free energy is the Approximate Density Functional method, where the
free energy is expressed as an approximate functional of the volume fraction ϕK . For example, as the free
energy model for an AB homopolymer blend, one can use the Flory-Huggins free energy defined by

F
kBT

=
ϕA

NA
lnϕA +

1− ϕA

NB
ln(1− ϕA) + χϕA(1− ϕA). (2.35)

or its power series expansion with respect to ϕA around its average value. The contribution from the spatial
variation of the segment density ϕA is taken into consideration in the following Flory-Huggins-de Gennes
free energy

F
[
{ϕA(r)}

]
kBT

=

∫
dr
[ ϕA

NA
lnϕA +

1− ϕA

NB
ln(1− ϕA) + χϕA(1− ϕA) +

b2

36ϕA(1− ϕA)
|∇ϕA|2, (2.36)

where the relation ϕB = 1− ϕA due to the incompressibility condition is used.

2.5 Chemical potential and constraint force

Suppose that the segment concentration is constrained to a given profile {ϕK(r)}. Even if this given profile
{ϕK(r)} is not an equilibrium profile, one can imagine an equilibrium state of chains under such a constraint
on the segment concentration profile. In such a case, using the definition of the path integral and the
free energy expression eq. (2.30), the chemical potential µK(r) ≡ δF/δϕK(r) acting on a K-type segment
(K = A,B,C, · · ·) at position r is expressed as

µK(r) = −VK(r) +
∑
K′

ϵKK′ϕK′(r) = −VK(r) +WK(r), (2.37)

where the definition of WK(r) in eq. (2.2) is used. In other words, the constraint force in eq. (2.1) is given by
−µK(r), i.e. the minus of the chemical potential when the segment concentration is restricted to {ϕK(r)}.

If we are interested only in the full equilibrium state of the segment concentration distributions, the only
constraint condition is the following local incompressible condition.∑

K

ϕK(r) = 1. (2.38)
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In such a case, all the µK(r)’s given by eq. (2.37) should be equal irrespective of the segment type K.

µK(r) = µ(r) for all K. (2.39)

Namely the constraint force for the local incompressible condition is given by −µ(r) which does not depend
on the segment species. Precisely speaking, there can be a constant difference between µK(r)’s because of
the constant uncertainty in the self consistent field. Therefore, eq. (2.39) is a sufficient condition for µK to
give the full equilibrium concentration distributions of the segments.

If some constraint conditions are given and the corresponding constraint forces are decided, the equi-
librium state is achieved by obtaining the self consistent solutions of the set of equations eqs. (2.1), (2.14)
(2.15) and (2.17) as is shown in fig. 2.1.

2.6 Ginzburg-Landau theory using Random Phase Approxima-
tion

The SCF theory is a accurate theory but it demands much computational time. Thus we propose a dynamic
density functional theory which is not so accurate but can reduces the computational time. The method is
based on the Ginzburg-Landau theory using the Random Phase Approximation (RPA). We will abbreviate
this method as GRPA. The free energy model by Bohbot-Raviv and Wang is used, which is given by [11].

F [{ϕi}] =
1

β

∫
dr

∑
i

ϕi(r)

Ni
lnϕi(r)−

1

2β

∫
dr

∑
i

1

Niϕ̄i
δϕi(r)δϕi(r)

+
1

2β

∑
ij

∫
dqS−1

ij (q)δϕi(q)δϕj(−q), (2.40)

where the first term on the right-hand side is the Flory-Huggins entropy terms of the subchains. The second
term is the minus of the second order term in the expansion of the entropy term (first term) in the segment
density fluctuation δϕi(r) given by

δϕi(r) ≡ ϕi(r)− ϕ̄i (2.41)

where ϕ̄i is the average segment density in the system. The third term in eq.(2.40) is the Fourier transfor-
mation of the second order term in the expansion of the free energy in the segment density fluctuation δϕi(r)
of which the coefficient becomes the scattering function S−1

ij (q) between the segment density fluctuations
of the i-th and j-th subchains. This second term is necessary to cancel the double counting of the second
order terms in the expansion of the entropy term which is explicitly given by the third term. The scattering
function S−1

ij (q) can be calculated by using the RPA for any polymer structures [12]. After calculating
the third term in reciprocal space, it can be transformed to the term in reciprocal space by inverse Fourier
transformation as

F [{ϕi}] =
1

β

n∑
i

∫
dr

ϕi(r)

Ni
lnϕi(r)−

1

2β

n∑
i

∫
dr

1

Niϕ̄i
δϕi(r)δϕi(r)

+
1

2

∫
dr xT (r)u(r) (2.42)

where x(r) is a vector whose elements are the segment density fluctuations and xT (r) is the transposed
vector of x(r).

The chemical potential of the i-th subchain is given by the functional derivative of the free energy in
terms of ϕi(r) under the incompressible condition as

µi(r) =
δF [{ϕi}]
δϕi(r)

(2.43)

=
1

β

{ lnϕi(r)

Ni
+

1

Ni
− lnϕn(r)

Nn
− 1

Nn
− 1

ϕ̄iNi
δϕi(r) +

1

ϕ̄nNn
δϕn(r)

}
+ui(r).

(2.44)
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We can use µi(r) for dynamic density functional theory. GRPA uses the RPA thus it strictly can be used
in the weak segregation region but it can reproduces a qualitative phase behavior of the polymer melts and
blends. Thus GRPA is a useful method but available systems are restricted by boundary conditions due to
the Fourier transformation.

2.7 Obstacles

It is important for polymeric materials to study the state of polyme melts in which obstacles exist.
SUSHI can introduce nano particles to systems in SCF calculations. Polymers can be existed in either

inner side or outer side of a particle.

2.7.1 Soft particle dynamics

The SCF calculation cost of obstacles with hard interface is high. One idea to reduce the cost is to use soft
interface obstacles. SUSHI was modified to introduce such a soft particle as followings[13].

Set the particle as a fixed shape solvent region which has the segment density gradient on the surface
defined as

ϕp(r) =
tanh{α(r − |r− r0|)}+ 1

2
. (2.45)

where α is the coefficient to set the depth of the surface, r is the radius of the paricle and r0 is the coordinate of
the center of particle. Solve the static SCF calculation with fixed the shape of particle. Afetr the calculation,
we can obtained the chemical potential at rs on the surface as µp(rs) with the integration of the chemical
potential within the soft region. Using this µp(rs), we can define the effective force to the paricle as

Fp = De

∫
S

∇µp(rs)
r− r0
|r− r0|

ds (2.46)

where De is the effective diffusion constant of the particle. Using the force, we can move the particle and
return to the static SCF calculation. By the iteration on those manner, we can simulate a particle dynamics.

2.8 Dynamical mean field method

The dynamical mean field method is a method to simulate diffusion dynamics of the segments driven by the
gradient of the chemical potential, where the conformational entropy is taken into account through the path
integral.

Let ϕK(r, t) and µK(r, t) be the segment concentration and the chemical potential at time t, then the
time evolution equation of the segment density is in general assumed to be

∂

∂t
ϕK(r, t) =

∑
K′

∫
dr′ΛKK′(r, r′)µK′(r′, t) + ξK(r, t). (2.47)

In order to integrate this time evolution equation, one has to evaluate the chemical potential µK(r) using
eq. (2.37) where the contribution from the conformational entropy is calculated by solving the set of self
consistent equations described in the preceding sections. Then, substituting the result into eq. (2.47), one
can simulate the diffusion dynamics of the segment taking the chain conformational entropy into account.
ΛKK′(r, r′) accounts for the transmission rate of an external force acting on the K ′-type segment at position
r′ to the K-type segment at position r, and is called a non-local mobility. ξK(r, t) is the random noise due
to the thermal fluctuation, which satisfies the following fluctuation-dissipation relation.

⟨ξK(r, t)ξK′(r′, t′)⟩ = 2kBTΛKK′(r, r′)δ(t− t′). (2.48)

In the dynamic mean field method adopted in SUSHI, we only consider the case where the change in the
segment distribution is caused by the diffusion flux of segments that is proportional to the gradient of the
chemical potential (Fick’s law). In this case, eq. (2.47) reduces to the following simple form

∂

∂t
ϕK(r, t) = ∇ · [LK(r, t)∇{µK(r, t) + λ(r, t)}] + ξK(r, t), (2.49)
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where LK(r, t) expresses the mobility of the K-type segment, and λ(r, t) is a Lagrange multiplier for the
local incompressible condition. When the density of the K-type segments becomes very low, the dependence
of LK(r, t) on the local segment density ϕK(r, t) should explicitly be taken into account as

LK(r, t) =
N

kBT
DGϕK(r, t) (ϕK ≪ 1), (2.50)

where DG is the diffusion coefficient of the center-of-mass of a chain of the dilute component. Note that this
diffusion constant changes according to the environment. There are two typical extreme limits for DG.

1) For a K-type polymer dilutely dissolved into a solvent (Rouse Dynamics condition), DG is expressed
as

DG =
kBT

NKζ
(2.51)

and we obtain

LK(r, t) =
1

ζ
ϕK(r, t) (ϕK ≪ 1). (2.52)

2) For a K-type polymer in a polymer melt (Reptation Dynamics condition), DG is given by

DG = (
a2

b2K
)
kBT

3N2
Kζ

(2.53)

and then we obtain

LK(r, t) = (
a2

b2K
)

1

3NKζ
ϕK(r, t) (ϕK ≪ 1), (2.54)

where ζ is the viscosity of the matrix (the solvent or the melt) surrounding the tagged chain, and
a is the characteristic length of the network formed by the surrounding entangled polymers (average
distance between entangling points)[20],[21].

When the concentration of the K-type chain is high, the validity of these approximations are not guar-
anteed. However, these expressions in the dilute limit can still be used even for a high density polymer
component as a phenomenological model.

The Lagrange multiplier λ(r, t) is determined by the local incompressible condition, and is expressed as

∇λ(r, t) = −
∑

K′ LK′(r, t)∇µK′(r, t)∑
K′′ LK′′(r, t)

. (2.55)

The thermal noise, ξK(r, t) is assumed to be a Gaussian noise that satisfies

⟨ξK(r, t)ξK′(r′, t′)⟩ = 2kBTLKK′(r, t)∇2δ(r− r′)δ(t− t′), (2.56)

where LKK′(r, t) is given by the mobility coefficient LK(r, t) as

LKK′(r, t) = LK(r, t)δKK′ +
LK(r, t)LK′(r, t)∑

K′′

LK′′(r, t)
. (2.57)

In the dynamic mean field method, the self consistent equations are solved under the constraint that the
concentration profiles of the segments are constrained to the given profiles {ϕK(r)} that change according
to the time evolution. The actual numerical scheme for performing this procedure will be described in the
next section.

The final structure obtained by the dynamic mean field calculation of eq. (2.49) should in principle be
the same as that obtained by the static equilibrium calculation because both structures satisfy the condition
eq. (2.39). However, the structure thus-obtained does not always give the minimum free energy but in many
cases gives a local minimum of the free energy. For example, a dynamic simulation on the micro-phase
separation of a block copolymer often results in a metastable state containing many defects, although the
number of such defects can be controlled by changing the temperature. On the other hand, similar metastable
states can usually be obtained in real experiments where the system is quenched from a high temperature
uniform state to a coexisting state. In this sense, we can insist that the metastable state obtained by the
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dynamic calculation correctly reflects the history of the system. In order to reproduce the dynamical process
faithfully, inclusion of the noise term in eq. (2.49) may be important. However, such a noise term can usually
be neglected for melts of long chains due to the strong suppression of the thermal fluctuation.

The dynamic calculation can also be performed using the Approximate Density Functional method.
Since an analytic expression of the chemical potential is easily be obtained for this model (see eqs. (2.35) or
(2.36)), computational cost is considerably lower than the dynamic mean field method combined with the
self consistent field method. However, since conformational entropy of the chains is not correctly taken into
consideration in the Approximate Density Functional method, the simulation result may be quantitatively
less accurate.

2.8.1 Shear

An external flow can be introduced to the dynamics of K-type segment density. The dynamical equation
(2.49) is extended by the itroduction of the velocity vK(r) of external flow as

∂

∂t
ϕK(r, t) = ∇ · [LK(r, t)∇{µK(r, t) + λ(r, t)}] + ξK(r, t)−∇{vK(r)ϕK(r)}. (2.58)

In regular mesh, The velocity of shear flow in parallel to XY plane and in the direction of X is given by

vK(r) =
(
γ̇(ry − ry0), 0, 0

)
(2.59)

where γ̇ is the shear rate

γ̇ =
∂vx
∂y

(2.60)

and ry0 is the position where the shear rate is 0 in Y axis. Lees-Edwards boundary condition must be
introduced in this calculation.

2.8.2 Compressible dynamics

The dynamics of segment density is available without the Lagrange multiplier λ(r, t) in eq. (2.49) by the
introduction of the compressibility κ [6]. In this method, the elastic energy term is introduced to the free
energy equation（2.30) as

F
[
{ϕK}, {VK}

]
= −kBT

∑
p

Mp lnZp +W
[
{ϕK}

]
−
∑
K

∫
drVK(r)ϕK(r)

+kBT
∑
p

Mp lnMp

+
1

2κ

(∑
K

ϕK(r)− 1
)2
. (2.61)

The self consistent field equation（2.1) is also extended by the introduction as

VK(r) = WK(r) + Vc(r) +
[
potential decided by incompressible condition

]
(2.62)

where Vc(r) is the elastic potential expressed by

Vc(r) =
1

κ

(∑
K

ϕK(r)− 1
)
. (2.63)

The dynamics without λ(r, t) but with the compressibility does not satisfy the complete incompressibility,
i.e.

∑
K ϕk(r) ̸= 1.
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2.8.3 Handling of chemical reaction

One can perform a simulation on a chemical reaction by adding a chemical reaction term to the right-hand-
side of the dynamic mean field equation eq. (2.49). For example, if we consider a First order reaction where
the A species changes into B species with a reaction constant k, the explicit expression of the reaction term
is given by

∂ϕ(A)(r, t)

∂t
=

∂ϕ(A)(r, t)

∂t

∣∣∣
diffusion

− kϕ(A)(r, t) (2.64)

∂ϕ(B)(r, t)

∂t
=

∂ϕ(B)(r, t)

∂t

∣∣∣
diffusion

+ kϕ(A)(r, t) (2.65)

Here, the first term on the right-hand-side is the contribution from the diffusion of segments given by the
right-hand-side of eq. (2.49). The second term is the contribution from the reaction. The actual simulation
method will be described in the next section.

2.8.4 Hybrid method

The hybridization of the dynamic GRPA and the dynamic SCF method accelerates the dynamic SCF cal-
culation without spoiling the accuracy of the SCF calculation [12].

In the hybridization, the chemical potential of the GRPA is corrected by the chemical potential of the
SCF theory. We denote the chemical potentials of the hybrid and the dynamic GRPA method at a position
r and at a time t by µHYB

i (r, t) and µRAP
i (r, t), respectively. The hybridized chemical potential is given by

µHYB
i (r, t) = µRPA

i (r, t) + ∆µ̄i(r) (2.66)

where ∆µ̄i(r) is a correction term which is given by the difference between µRAP
i (r, t) and the chemical

potential of the SCF theory µSCF
i (r, t0) as

∆µ̄i(r) = µSCF
i (r, t0)− µRAP

i (r, t0). (2.67)

The t0 is the update time of the ∆µ̄i(r) and is set longer than the time step of the dynamics scheme.
Therefore the calculation speed is accelerated due to the GRPA calculation but the result is corrected by
the SCF theory.

2.8.5 Hydrodynamic effects

Hydrodynamic effects can be introduced to the density functional theory [19]. Reader should read the detail
in Muffin manual.

The Navier-Stokes equation to be solved is given by

ρ
∂v(r, t)

∂t
= −ρ{v(r, t) · ∇}v(r, t)−∇p(r, t) +∇{η(r, t)∇ · v(r, t)} −

∑
i

ϕi(r, t)∇µi(r, t), (2.68)

where p(r, t) is a pressure、η(r, t) is a local viscosity, and the last term on the right-hand side is a volume
force which couples the density functional theory and the hydrodynamics. The viscosity η(r, t) is assumed
to be the sum of each viscosity of the segment as

η(r, t) =
∑

ηKϕK(r, t), (2.69)

where ηK is assumed to be a viscosity ofK-type segment and ϕK(r, t) is a volume fraction ofK-type segment.
Introducing the incompressible conditions

∇ · v(r, t) = 0, (2.70)

and assuming the adiabatic condition
∂v(r, t)

∂t
= 0, (2.71)

the Poisson equation for p(r, t) is given by

∇2p(r, t) = ∇ · [−ρ{v(r, t) · ∇}v(r, t) +∇{η(r, t)∇ · v(r, t)} −
∑
i

ϕi(r, t)∇µi(r, t).} (2.72)

Solving this equation and insert p(r, t) to eq. (2.68), we can update v(r, t). The updated v(r, t) can be used
for eq. (2.58) and the hydrodynamic effects are introduced to the dynamic density functional theory.
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2.8.6 External electric field

Treatment of the weak effect of external electric field

When an external electric field is applied and the effect is weak, a simple modification can be introduced to
the dynamics equation eq. (2.47) as follows [14, 15, 16, 17, 18] :

∂

∂t
ϕK(r, t) = L∇2µK(r′, t) + α

∂2

∂z2
ϕK(r, t), (2.73)

where the constant mobility L is assumed to the all segments and the random noise term is neglected. The
final term includes the effect of the external electric fields and is given by

α =
ϵ0ϵ

2
1

ϵ̄
E2

0vL, (2.74)

where ϵ0 is the dielectric constant of vacuum, E0 is the amplitude of the applied electric field and v is the
volume of a single polymer chain.

The detail is described as fllows [14].

We define a system under an external electric field whose direction is Z direction expressed as E0 ≡
(0, 0, E0). Under the E0, the system causes a dielectric polarization then an electrostatic potential φ(r) is
generated by the dielectric polarization. Thus the effective electric field is given by

E(r) = E0 −∇φ(r). (2.75)

We also assume that the effect of the external electric field is weak and the local dielectric constant is given
by

ϵ(r) ≈ ϵ̄+ ϵ1(ϕA(r)− f) (2.76)

ϵ̄ = ϵ|ϕA=f = ϵAf + ϵB(1− f) (2.77)

ϵ1 = (∂ϵ/∂ϕA) |ϕA=f = ϵA − ϵB . (2.78)

The Poisson’s equation ∇ · ϵ(r)E(r) = 0 must be satisfied. Thus

∇ · {ϵ̄+ ϵ1(ϕA(r)− f)}{E0 −∇φ(r)} (2.79)

≈ ∇ · {−ϵ̄∇φ(r) + ϵ1ϕA(r)E0} = 0, (2.80)

where the heigher order term is neglected. Therefore

ϵ̄∇2φ(r) = ϵ1E0∇ZϕA(r). (2.81)

The chemical potential caused by the electrostatic energy to ϕA(r) is derived as

µel(r) = −v
δ

δϕA(r)

[ϵ0
2

∫
dr

E(r)2ϵ(r)

4π

]
, (2.82)

where the Legendre transformation is used to change the independent variable from E(r) to ϕ(r), and the
sign in front of the right hand side is set to minus.

Using the eqs. (2.75), (2.76) and (2.81), ∇2µel(r) is given by

∇2µel(r) = −vϵ0
8π

∇2ϵ1(E
2
0 − 2E0∇Zφ(r) + (∇φ(r))2) (2.83)

≈ vϵ0ϵ1E0

4π
∇Z{∇2φ(r)} (2.84)

=
vϵ0ϵ

2
1E

2
0

4πϵ̄
∇2

ZϕA(r). (2.85)

Multiplication of the mobility L to the right-hand side of the final equation gives eq. (2.74).
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General treatment of the effect of external electric field

Here we introduce the external electric field faithfully. Under an external electric field E0(r), the following
modified Poisson equation should be satisfied.

∇ · ϵ(r){∇U ′(r)− E0(r)} = −ρ(r), (2.86)

where ϵ(r) is the local dielectric constant and ρ(r) is the local charge. The U ′(r) is the induced electrostatic
potential by the external electric field and the local charge.

We assume that the local dielectric constant ϵ(r) and the local charge ρ(r) are given by

ϵ(r) = ϵ0
∑
K

ϵKϕK(r), (2.87)

ρ(r) =
∑
K

ρKϕK(r), (2.88)

where ϵK and ρK are the relative dielectric constant and charge of K-type segment per volume, respectively.

Equation (2.86) can be modified as

∇ϵ(r)∇U ′(r) = −ρ(r) +∇ · ϵ(r)E0(r). (2.89)

By solving this equation, we can get the induced electrostatic potential U ′(r). The effective electrostatic
potential U(r) and the effective electric field E(r) to the system can be given by

U(r) = U(r)′ −
∫

E0(r)dr (2.90)

E(r) = −∇U(r)′ + E0(r) (2.91)

These effective term can be involved to the SCF calculation through the following free energy equation.

F ′ = F +
1

2

∫
U(r)ρ(r)dv − 1

2

∫
ϵ(r)E2(r)dv, (2.92)

where, in the right-hand side, F is the free energy without the electrostatic effect, the second term is the
effect of the local charge, and the third term is the effect of the electric field. The self-consistent field V (r)
is modified by using this free energy equaiton as follow.

V ′
K(r) = W ′

K(r)− µK(r), (2.93)

where W ′
K(r) is the modified interaction energies concerning to the segments given by

W ′
K(r) = WK(r) + ρKU(r)− ϵKE2

K(r). (2.94)

2.9 Method of calculation

2.9.1 Branch structure

Branch structure is one of the important features in the coarse-grained polymer model. In case of the
SCF simulation, it is crucial how this branch structure is modeled. In the calculation by using SUSHI, as
explained in Sections 2.1 and 2.2 before, a branched polymer is modeled as a set of subchains each of which
are composed of a specific monomer sequence and are connected at junctions (junction points). Here, the
subchain is defined as a linear chain not only composed of a single type of segment but also composed of
several types of segments with arbitrary monomer sequences such as random, alternative, tapered etc. The
junction point is defined as the point that connects these subchains. The junction point is assumed to have
a vanishing specific volume. See fig. 2.4.
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Figure 2.4: Model of branched polymer

In SUSHI, a simple input method is offered for three types of typical branch structures that are shown
in fig. 2.5.

1) Linear-type block copolymer

2) Comb-type block copolymer

3) Star-type block copolymer

For general branch structures other than these three types, the network structure composed of the subchains
should be specified directly using a more general method. The details of such a general method will be
explained in Chapter 5.

Figure 2.5: Simple branched block copolymer: (1) Linear-type, (2) Star-type, and (3) Comb-type

2.9.2 Calculation of path integrals

As is shown in Section 2.2, the statistical probability distribution of the conformation of the whole chain is
obtained by numerically solving the evolution equation for the path integral QK(s, r), eq. (2.21), for each
of the subchains. Here, the segments are labeled by a continuous variable s instead of the discrete index i
used in Section 2.1. The contributions from the other subchains connected to the junction point s = 0 are
reflected through the following initial condition.

QK(0, r) = q0(r). (2.95)

By taking the internal states (multi-states) introduced in Section 2.3 into account, the evolution equation
eq. (2.29) is extended to the following equation.

QK(s+ds, r) = exp
[
−βrKVK(r)ds/2

]∑
K′

TKK′(s)
(
1+

b2K′

6
Lds

)(
exp

[
−βrK′VK′(r)ds/2

]
QK′(s, r)

)
, (2.96)

where QK(s, r) is the statistical weight of a subchain of length s starting (s = 0) from an arbitrary position
with an arbitrary internal state and ending at position r with the internal state K, and VK(r) is the self-
consistent field acting on the segment with the internal state K at position r. TKK′(s) is the state transition
probability defined as the probability of finding the s+ds segment in the internal state K provided that the
s segment was found in the internal state K ′. L is the Laplace operator ∇2, and bK is the effective bond
length that is equivalent to the size of the segment. We also introduced the ”specific volume” rK , which
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is defined as the dimensionless segment molar volume normalized by a standard segment volume. For the
sake of the convenience in the numerical calculations, the evolution equation eq. (2.96) has been transformed
into the integral form that corresponds to the recurrence formula eq. (2.5). In order to perform numerical
calculation, we descretize the continuous segment index s and the spatial coordinate r. The discretization of
s is realized by substituting a finite value into ds in the evolution equation eq. (2.96). The discretization of
r is performed by introducing a spatial mesh and a corresponding discrete Laplace operator L on the mesh.
These methods will be described in the next section.

2.9.3 Various spatial mesh structures

Since the main part of the calculation performed in SUSHI is a numerical integration of the partial differential
equations for the path integrals and the segment density fields, a discretization of the space is required to
calculate these fields of physical quantities. In SUSHI, various types of spatial meshes (spatial lattices) are
prepared according to the types of the target phenomena.

The targets of the SCF calculation can be categorized into the following two classes.

1) Highly symmetric structures such as a single interface or a micelle with the spherical or the rod-like
structure.

2) Disordered domain structures formed in the phase separation processes.

For the former symmetric case, it is computationally efficient to choose an appropriate coordinate system
for the symmetry of the problem such as the polar coordinate or the cylindrical coordinate. On the other
hand, for the latter case, usually cubic lattice or a cartesian coordinate system is used. The spatial meshes
that are now available in SUSHI are listed below.

1) 1,2 and 3 dimensional regular meshes (RegularMesh, fig. 2.6)
These are cartesian coordinate systems with their axes along the x, y and z directions. These meshes
are used for the calculations of the general structures with the lowest symmetry, such as an irregular
structure.

Figure 2.6: 3D Regular mesh: The mesh sizes along the 3 axes are all fixed.

2) 1,2 and 3 dimensional rectangular meshes (RectangularMesh, fig. 2.7)
These are cartesian coordinate systems with the coordinate axes parallel to the x, y, and z directions
but with non-uniform grid sizes. These are suitable for the calculation of the systems in which physical
quantity changes abruptly only in a small region, such as a domain structures divided by a flat interface.
The mesh sizes shown in fig. 2.7 can be non-uniform.
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Figure 2.7: Three dimensional rectangular mesh. The mesh width can be non-uniform.

3) Polar-coordinate mesh (SphericalMesh, fig. 2.8)
3-dimensional polar coordinate system with the spherical symmetry is described using only the radial
coordinate r. It is used for the calculation of spherically symmetric systems such as a spherical micelle
and a spherical vesicle. The mesh width should be uniform.

Figure 2.8: 3-dimensional polar coordinate system

4) Cylindrical mesh (CylindricalMesh,fig. 2.9)
3-dimensional cylindrical coordinate with the uniaxial symmetry is described using the radial coordi-
nate r and the coordinate along its axis h. It is suitable for the calculations of bodies of revolution,
such as a cylindrical micelle. The mesh width should be uniform.
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Figure 2.9: 3-dimensional cylindrical mesh: The mesh width is fixed and uniform.

For all of these meshes except for the rectangular mesh, the mesh width is indirectly specified by giving
the side length of the simulation box in each coordinate axis and the total number of cells separated by the
mesh points along the direction. In the rectangular mesh, the width is specified by directly specifying the
positions of all the mesh points.

2.9.4 Boundary condition

Conceptually, the boundary conditions used in SUSHI can be classified into the following two categories.

1) Geometrical boundary conditions

2) Physical boundary conditions

The meaning of these categories are explained below.

1) Geometrical boundary conditions
This boundary condition expresses the geometric (or topological) property of the system. For example,
a 2-dimensional rectangular mesh system can be regarded as a rectangular-shaped system (non-period
system) in contact with the external reservoir at the boundaries, or it can be regarded as a surface of
a torus (periodic system) with the periodic boundary conditions where the two boundaries on both
ends of the system are identified. As is shown in fig. 2.10, in SUSHI, these boundary conditions can
be specified for each coordinate axis independently.
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Figure 2.10: Explanation of the geometric boundary condition

Different treatments are used for the lattice points on a boundary depending on whether the boundary
is a periodic boundary or a non-periodic boundary. For an axis with the periodic boundary condition,
both ends of this axis is identical, while for an axis with non-periodic boundary condition, these two
points are regarded as distinct.

2) Physical boundary conditions
Physical boundary conditions are the boundary conditions to specify the behavior of the field of the
physical quantity on the boundary of a system. There are two types of the physical boundary condition.

1) Neumann boundary condition :The value of the first derivative of the physical quantity is fixed.

2) Dirichlet boundary condition :The value of the physical quantity itself is fixed.

For example, a diffusion field faced to a non-penetrable wall can be regarded as a Neumann boundary at
which the first derivative of the field is vanishing due to the conditions of vanishing flux perpendicular
to the wall. When we consider a temperature distribution field is faced to a heat-conductive wall with
a constant temperature, the wall should be treated as a Dirichlet boundary where the temperature is
fixed. Possible combinations of the geometric boundary condition and the physical boundary condition
are listed in table 2.1.

Table 2.1: Possible combinations of the boundary conditions

Geometric Boundary Physical Boundary

Non-Periodic
Neumann
Dirichlet

Periodic Periodic

In the path integral calculation, the Dirichlet condition with the vanishing boundary value is used for
the impenetrable solid wall. On the other hand, in the time evolution equation of the segment density field,
such a solid wall is treated as a Neumann boundary with vanishing gradient of the segment density field.
Therefore, a single geometrical boundary may be regarded as different physical boundaries for the path
integral and for the segment density field. All the combinations listed in table 2.1 are possible for the regular
mesh and the rectangular mesh, while only the non-periodic geometrical boundary condition is allowed for
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the radial coordinate for the polar-coordinate mesh and the cylinder coordinate mesh, where the origin of
the radial coordinate should always be a Neumann boundary due to the symmetry.

2.9.5 Discrete Laplace operator

The explicit form of the discrete Laplace operator L introduced in Section 2.9.2 depends on the mesh type.
Even for a single type of mesh, several forms of the discrete Laplace operator can be defined. The scalar
field in 3-dimensional space is expressed by a set of values {A(i, j, k)} given at the mesh points specified by
the combination of three integers (i, j, k). When the discrete Laplace operator is operated on a scalar field
A(r), the value of the resulting field LA(r) at the mesh point (i, j, k) is in general given by

LA(i, j, k) =
∑

l,m,n=0 or ±1

C(l,m, n)A(i+ l, j +m, k + n) (2.97)

using the values of A(r) at up to 27 nearest mesh points to the mesh point (i, j, k). Here, C(l,m, n) is a
coefficient depending on the mesh type and the method of discretization of the Laplace operator. Except for
the regular mesh, the coefficient C(l,m, n) depends on the position (i, j, k) due to the non-uniform nature
of the mesh. In the following, examples of the set of values of the coefficient C(l,m, n) are given for various
types of the space meshes.

1) Regular Mesh
As mentioned in Section 2.9.3, all the mesh widths along each axis are the same (∆x). In this case,
the following four types of discretized Laplacian can be used. (The mesh widths in all the directions
are temporarily be assumed to be the same value ∆x for simplicity.)

i) 1NN-P:The second derivative is approximated by a central difference using consecutive three mesh
points in each of the directions x, y and z. For the three dimensional system, the central mesh
point and the six nearest neighbor mesh points are used. For one and two dimensional systems,
the discretized Laplace operators are identical to the projections of the three-dimensional discrete
Laplacian onto one and two dimensions.

ii) 2NN-NP:To improve the isotropy, second nearest neighbor points are included in the differ-
ence scheme for the two and three-dimensional discrete Laplace operators. Although the one-
dimensional 2NN-NP Laplace operator coincides with the projection of the higher-dimensional
2NN-NP operator, the two-dimensional one does not coincide with the projection of the three-
dimensional 2NN-NP operator.

iii) 2NN-P:As in the case of 2NN-NP, the nearest neighbors and the next nearest neighbors are also
used but the coefficients are adjusted so that the two-dimensional discretized Laplace operator
coincides with the projection of the three-dimensional operator. Both one and three-dimensional
operators are the same as those in 2NN-NP case.

iv) 3NN-P:The isotropy is more improved for the three dimensional operator by using 27 mesh points
up to the third nearest neighbor mesh points. Both one and two dimensional operators coincide
with the projections of the three-dimensional one.

The actual values of the coefficients are listed in table 2.2. “Center” means the coefficient of the
central mesh point, “NN”, “NNN” and “NNNN” mean the coefficients of the “nearest neighbor”,
“next (second) nearest neighbor” and “next-next (third) nearest neighbor” mesh points, respectively.

2) Rectangular mesh
In the rectangular mesh, the indices i, j, and k specify the coordinates of the mesh point (denoting
xi, yj , and zk, respectively) in the x, y and z directions. In the current version of SUSHI, a method
of approximating the second derivative by a central difference using three consecutive mesh points in
each of the x, y and z directions is available. In this case, the value of LA(r) at the mesh point (i, j, k)
is expressed as follows.

LA(i, j, k) =
∑

l2+m2+n2=0 or 1

C(i, j, k; l,m, n)A(i+ l, j +m, k + n) (2.98)

If the surrounding mesh width of given mesh point (i, j, k) is expressed as

∆x(+) ≡ xi+1 − xi, ∆x(−) ≡ xi − xi−1, ∆x ≡ (xi+1 − xi−1)/2,
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Table 2.2: The actual numerical values of the coefficients in the various types of the discretized Laplace
operator defined on a regular mesh

Type
Center

(×∆x−2)
NN

(×∆x−2)
NNN

(×∆x−2)
NNNN

(×∆x−2)

1D −2 1 0 0
1NN-P 2D −4 1 0 0

3D −6 1 0 0
1D −2 1 0 0

2NN-NP 2D −3 1/2 1/4 0
3D −9/2 1/2 1/8 0
1D −2 1 0 0

2NN-P 2D −7/2 3/4 1/8 0
3D −9/2 1/2 1/8 0
1D −2 1 0 0

3NN-P 2D −34/11 6/11 5/22 0
3D −40/11 3/11 3/22 1/22

∆y(+) ≡ yj+1 − yj , ∆y(−) ≡ yj − yj−1, ∆y ≡ (yj+1 − yj−1)/2,

∆z(+) ≡ zk+1 − zk, ∆z(−) ≡ zk − zk−1, ∆z ≡ (zk+1 − zk−1)/2,

the values of the coefficients C(i, j, k; l,m, n) are listed in table 2.3. The one and the two dimensional
operators coincide the projections of the three dimensional one. This discretized Laplacian operator
reduces to the 1 NN-P operator for a regular mesh, when the mesh width is chosen to be uniform.

Table 2.3: The values of the coefficients of the discretized Laplacian operator defined on a rectangular mesh

(l,m, n) C(i, j, k; l,m, n)

(1, 0, 0) 1/(∆x(+)∆x)

(−1, 0, 0) 1/(∆x(−)∆x)

(0, 1, 0) 1/(∆y(+)∆y)

(0,−1, 0) 1/(∆y(−)∆y)

(0, 0, 1) 1/(∆z(+)∆z)

(0, 0,−1) 1/(∆z(−)∆z)

(0, 0, 0) −2/(∆x(+)∆x(−))− 2/(∆y(+)∆y(−))− 2/(∆z(+)∆z(−))

3) Polar coordinate mesh and Cylindrical mesh

i) Polar coordinate mesh and one-dimensional cylindrical coordinate mesh.
In these cases, as the coordinate system is essentially one-dimensional with the radial coordinate
r, the 1NN-P type is adopted for the descretization of the coordinate r.

ii) Two-dimensional cylindrical mesh
The mesh is a two-dimensional mesh with the radial coordinate r and the coordinate h in the
direction parallel to the axis of revolution. For the diecretized Laplacian operator, the 2NN-NP
type discretization is used.

2.9.6 Treatment of grafted chains

In SUSHI, any junction points of a polymer chain can be grafted to arbitrary mesh point or to an arbitrary
region of the mesh (set of mesh points). For a subchain whose end segment s = 0 is grafted to the point r,
its path integration is calculated using the initial condition q0(r0) = δ(r0− r) in eq. (2.23). When a polymer
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is grafted to a certain region, q0(r0) takes the value unity inside of the region and vanishing outside the
region so that the specified junction can exist only in the specified region. The junction points thus grafted
can generally redistribute non-uniformly inside of the domain. That is, an equilibrium distribution of the
graft points is restricted within the specified region. In the input data for SUSHI, one can graft a junction
point by specifying the index of the junction point and the coordinates of mesh points to which the junction
is grafted. Details will be described in Chapter 5.

Figure 2.11: Model of grafted chains

2.9.7 External field

In SUSHI, the effect of short range interactions between a solid wall and a polymer segment can be specified
by using interaction parameter χKS between a K-type segment and a wall (S). This extra interaction is
added to the self consistent field VK(r) only on the nearest neighbor mesh point to the wall surface as

VK(r) = W ′
K(r)− µ(r) (2.99)

W ′
K(r) = WK(r) + χKSϕ(r

′)/Y(r′), (2.100)

where r′ means the position at the nearest neighbor mesh point to the wall surface and Y(r) is the yacobian
of the cell at the mesh point.

2.9.8 Techniques for realizing statistical ensembles and calculating segment
densities

SUSHI offers the following two kinds of statistical ensembles for which the path integral calculation is
performed.

1) Canonical ensemble where the temperature and the total numbers of molecules, chains and solvents in
the system are kept constant.

2) Grand canonical ensemble where the temperature is kept constant and the system is assumed to contact
with a reservoir of the particles with constant chemical potential.

The difference between these two kinds of statistical ensembles is reflected in the normalization conditions
for the calculation of the segment density distributions using the path integrals. How to calculate the
normalization constants is described in eqs. (2.10) and (2.11) or in eqs. (2.19) and (2.20). Here, we re-
describe the formula for the segment density distribution (eq. (2.18)) and the formula for the normalization
factor. Here we have introduced the specific volume rK of the K-type segment. (The segment specific volume
appears only in the normalization constant for the case of the grand canonical ensemble) The formula for
the segment density distribution is given by

ϕ(p)
r (r) = C(p)

∑
i

∫
dr0

∫
drNq0(r0)QK(0, r0; i, r)QK(i, r;N, rN )qN (rN ). (2.101)
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The normalization factor in the canonical ensemble case is given by

C(p) =
M (p)∫

dr0
∫
drNq0(r0)QK(0, r0;N, rN )qN (rN )

, (2.102)

while for the grand canonical ensemble C(p) is as follows

C(p) =
ϕ
(bulk)
p∑

r′′ rK(p)

r′′
N

(p)
r′′

exp
[∑

r′

r
K

(p)

r′
N

(p)
r′ W

(bulk)

K
(p)

r′

]
. (2.103)

In SUSHI, one can specify the statistical ensemble (the canonical ensemble or the grand canonical en-
semble) that should be applied for each chain type. For example, when a solid wall onto which a polymer
brush is grafted is dipped in a solvent that contacts with a reservoir of particles, one has to use appropriate
ensembles depending on the condition imposed on the chains and the solvent, respectively. The statistical
ensemble for the grafted polymers should be the canonical ensemble while that for the solvent should be the
grand canonical ensemble.

2.9.9 Static calculation

Static calculation is a procedure for finding a set of self consistent solutions for {VK(r)} and {ϕK(r)} that
satisfy eqs. (2.1), (2.14), (2.15), (2.17), the local incompressible condition eq. (2.38), and the constraint force
given by eq. (2.39) simultaneously. These solutions are numerically obtained in SUSHI using the following
iteration scheme.

First, the path integral is calculated using eq. (2.96) and a suitable initial distribution for VK(r). Then, the
segment density distribution is calculated using eq. (2.101). The normalization constant CK for the canonical
ensemble and that for the grand canonical ensemble are given by eqs. (2.102) and (2.103), respectively. Next,
using the ϕK(r) thus obtained, the two fields WK(r) and µK(r) in eq. (2.37) are updated using the following
iterative scheme. (the initial value for WK(r) is set to 0)

WK(r) −→ WK(r) + constW ×
(∑

K′

χKK′ϕK′(r)−WK(r)
)

(2.104)

µK(r) −→

 µA(r)− constV ×
(
1−

∑
K′ ϕK′(r)

)
for K = A

µK(r)− constV ×
(
µK(r)− µA(r)

)
for K ̸= A

(2.105)

For a multi-component system with segment species K = A,B,C, · · ·, the first formula in eq. (2.105) is
applied to the first segment species A, and the second formula is for the other segment species B,C, · · ·. The
two parameters which appear in these formulae, constW and constV, are appropriately chosen constants
between 0.0 and 1.0, and should be specified in the input parameter list for SUSHI. (When the iteration
scheme is diverging or is slowly converging, decreasing these parameters may improve the convergence.)
By using the self consistent field VK(r) obtained from the updated µK(r) and WK(r) through the relation
VK(r) = WK(r) − µK(r), the path integral is recalculated. This iteration procedure is repeated until the
maximum of the updated amounts of VK(r) and WK(r) during a single iteration step becomes less than a
certain error level and the incompressible condition

∑
K ϕK(r) = 1 is fulfilled within the same error level.

This error level is also specified in the input parameter list for SUSHI.

2.9.10 Dynamic calculation

As was described in Section 2.8, solving the time evolution equation for the segment density, eq. (2.49)

∂

∂t
ϕK(r, t) = ∇ · [LK(r, t)∇{µK(r, t) + λ(r, t)}] + ξK(r, t) (2.106)

and the self consistent equation with the restrictions on {ϕK(r)} simultaneously, the diffusion dynamics of
the segment density fields is simulated taking the conformational entropy of the chains into account. The
initial value of the segment distributions {ϕK(r)} at each mesh point is assumed to be a Gaussian random
variable (Its standard deviation should be given as an input parameter), and the mobility coefficient LK(r, t)
can be assumed as follows.
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1) Assuming a constant value of unity for all the segment species. This choice is suitable for melts that
is composed of polymers with almost the same polymerization indices and is free from any dilute
components.

2) Assuming LK(r, t) to be dependent on ϕ(r, t).

Giving the constant parameter L0 for each segment species, the mobility coefficients are assumed to
have the form:

Rouse Dynamics condition

LK(r, t) = L0ϕK(r, t) (2.107)

Reptation Dynamics condition

LK(r, t) =
L0

N (total)
ϕK(r, t) (2.108)

Here, N (total) is the total number of segments in the chain to which the target segments belong.
The validity of the formula for the Reptation Dynamics condition is guaranteed for at least linear
homopolymer melts. In this case with segment density dependent mobility coefficients, the noise term
ξK(r, t) in eq. (2.106) is neglected.

At each step of the time evolution, the self consistent equation is solved under the condition that the
segment density distribution calculated from the path integral should equal to {ϕK(r)} obtained by the
integration of the evolution equation. Then the next time step evolution is performed using {µK(r)} obtained
by the following procedure.

In order to complete the above scheme, one has to evaluate the chemical potential µK(r) that corresponds
to a given segment density distribution ϕK(r) (hereafter it is denoted as ϕtarget

K (r).). This procedure is “an
equilibration under the constraint on the segment density”, and is solved by an iterative method. First, we
initialize WK(r) and µK(r) with 0. Then, we use the following iteration schemes until WK(r) and µK(r)
converge.

WK(r) −→ WK(r) + constW ×
(
W target

K (r)−WK(r)
)

(2.109)

and

µK(r) −→ µK(r) + constV ×
(
ϕtarget
K (r)− ϕK(r)

)
, (2.110)

where W target
K is obtained by substituting ϕtarget

K (r) into eq. (2.2). The ϕK(r) in eq. (2.110) is obtained
using eq. (2.101) and the path integral QK(s, r) calculated using eq. (2.96) and the self consistent fieled
VK(r) = WK(r)−µK(r) in the previous iteration step. This iteration procedure is repeated until VK(r) and
WK(r) converge within a certain error level. This gives the chemical potential µK(r) under the condition
that the segment density is constrained to ϕtarget

K (r). The criterion for the convergence of the above iteration
scheme for the “equilibration under the constraint on the segment density” is slightly different from that for
the “static equilibrium” calculation. In the present case, the iteration is finished when the maximum value
of the amounts of updates for WK(r) and ϕK(r) during one iteration step becomes less than the error level.
Then, µK(r) can be evaluated within the same error level. The error level should be specified in the input
parameter list for SUSHI. A use of the relative error in ϕK(r) can also be specified in the judgement of the
convergence.

2.9.11 Free energy

When the static calculation is converged or when each time step in the dynamic calculation is performed,
the free energy can be evaluated using the formula,

F
[
{ϕK}, {VK}

]
= −kBT

∑
p

Mp lnZp +W
[
{ϕK}

]
−
∑
K

∫
drVK(r)ϕK(r)

+kBT
∑
p

Mp lnMp . (2.111)
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When the segment density in the bulk reservoir is given in the calculation using the grand canonical ensemble,
the excess free energy can be evaluated using the following formula.

Fexess = F − F (bulk) −
∑
p

µp(Mp −M (bulk)
p ), (2.112)

where F (bulk) is the free energy for a uniform system with the same composition as the bulk system, M
(bulk)
p

and µp are the total numbers and the chemical potential of the p-type chain, respectively.

2.9.12 Efficient calculation method for polydisperse systems

SUSHI can simulate a polydisperse system by modeling it as a mixture of polymers with slightly different
polymerization indices and with appropriately chosen volume fractions that correspond to the molecular
weight distribution of the target polydisperse system. In SUSHI, however, the required memory and the
CPU time are both increased as the total number of polymer components is increased. This will cause
a serious problem when we try to simulate the polydisperse system using the above-mentioned modeling.
However, for the static calculations on a system whose polydisperse components are only homopolymers, one
can use a single path integral for all the homopolymers of the same kind but with different chain lengths.
This allows us to avoid the above-mentioned difficulty. In the input UDF file for SUSHI, one can direct
SUSHI to share the path integral of the longest chain among the group of polydisperse chains of the same
kind. By using this option, SUSHI can simulate polydisperse homopolymer systems with practically infinite
number of components, except for the difficulty in preparing the input data of the chain length and the
volume fraction for each component. (In the future, we plan to offer a tool for preparing the input UDF file
for the polydisperse systems using a few parameters such as Mw, Mn, etc.) The same technique can also be
used for the static calculation of a mixture of A-B type diblock copolymers with different values of the block
ratio. In this case, the path integrals starting from the free ends can be shared. For more details, refer to
Chapter 5.

Figure 2.12: Schematic explanation of the model of a polydisperse polymer system used in SUSHI

2.9.13 Domain specification

Simply using the static calculation of SUSHI, it is usually difficult to obtain the true equilibrium state that
corresponds to the global minimum of the free energy. Instead, the calculation is often trapped by one of
the metastable states. This is due to the fact that the free energy has a huge number of local metastable
minima. Therefore, a special technique is required to obtain the true equilibrium state with the desired
domain morphology. Let us assume that we try to reproduce the well-known phase diagram of a diblock
copolymer. In order to obtain the desired domain morphology as the final result of the static SCF calculation,
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one should adjust the initial distribution of the self consistent field. Such a setup is also available in SUSHI.
Readers should refer Chapter 5 for the details.

2.9.14 Mask operation to constrain junctions within regions

To simulate self-assembled structures of dilute polymeric components in a mixture, such as the micellar
formation in a dilute block copolymer solution, one has to prevent the polymers from getting out of the
micelle and from dissolving into the solvent. In SUSHI, this is realized by constraining the positions of
specified junctions (or free ends) within a specified region. Readers should refer Chapter 5 for the details.

2.9.15 Dynamic mean field simulation on chemical reaction processes

It is possible to perform dynamical mean field simulations on several simple chemical reactions by adding
a model reaction term to the right-hand-side of eq. (2.49). The types of reactions that can be simulated in
SUSHI will be described in the following subsections. Readers should refer Chapter 5 for the details of how
to prepare the input file for SUSHI.

Fast reactions

In case that the reaction rates are much faster than the diffusion process of the polymers, such as the radical
polymerization reactions, it is reasonable to assume that the monomers instantaneously change into polymers
with a certain degree of polymerization. Such a process is described by the following model equations:

∂ϕ(S)(r, t)

∂t
=

∂ϕ(S)(r, t)

∂t

∣∣∣
diffusion

− kϕ(S)(r, t) (2.113)

∂ϕ(P )(r, t)

∂t
=

∂ϕ(P )(r, t)

∂t

∣∣∣
diffusion

+ kϕ(S)(r, t). (2.114)

The first term on the right-hand side is the contribution from the diffusion, which is the same as the right-
hand side of eq. (2.49). The second term on the right-hand side is the reaction term, where k is a model
reaction constant for the polymerization reaction, and ϕ(S)(r, t) and ϕ(P )(r, t) are the volume fractions of
monomers and the polymers, respectively.

Reactions with active monomers or with active sites of polymers

If the reaction rate is of the same order as the diffusion rate of the polymers, one can consider the second
order reaction process induced by reactive sites of the polymers to produce different types of polymers. One
such example is the production process of an A-B diblock copolymer chain from a pair of an A-homopolymer
and a B-homopolymer with reactive site on one of the chain ends. (See the figure below.)

Figure 2.13: Schematic figure of the production of a diblock copolymer chain by a reaction at the reactive
sites on the chain ends

Here, we consider only the canonical ensemble. The spatial distributions of these reactive sites are denoted

as φ
(A)
reactive(r, t) and φ

(B)
reactive(r, t). The second order reaction of these reactive sites can be described as

∂φ
(A)
reactive(r, t)

∂t
= −kφ

(A)
reactive(r, t)φ

(B)
reactive(r, t) (2.115)



2.9. METHOD OF CALCULATION 31

∂φ
(B)
reactive(r, t)

∂t
= −kφ

(A)
reactive(r, t)φ

(B)
reactive(r, t) , (2.116)

where k is the reaction constant. Let us denote the volume fractions of homopolymers consumed in this

reaction per unit time as ϕ
(A)
reactive|k and ϕ

(B)
reactive|k respectively, whose explicit expression will be described

later. These quantities mean the volume fractions of the homopolymers that are connected to the reacted site.
Such amounts of the volume fractions should be subtracted from the distributions of the A-homopolymers
and the B-homopolymers. At the same time, the same amount should be added to the distributions of the
A-subchains and the B-subchains of the block copolymer, respectively. Then, the model evolution equations
are written as follows.

∂ϕ
(A)
reactant(r, t)

∂t
=

∂ϕ
(A)
reactant(r, t)

∂t

∣∣∣
diffusion

− ϕ
(A)
reactive(r, t)|k (2.117)

∂ϕ
(B)
reactant(r, t)

∂t
=

∂ϕ
(B)
reactant(r, t)

∂t

∣∣∣
diffusion

− ϕ
(B)
reactive(r, t)|k (2.118)

∂ϕ
(A)
product(r, t)

∂t
=

∂ϕ
(A)
product(r, t)

∂t

∣∣∣
diffusion

+ ϕ
(A)
reactive(r, t)|k (2.119)

∂ϕ
(B)
product(r, t)

∂t
=

∂ϕ
(B)
product(r, t)

∂t

∣∣∣
diffusion

+ ϕ
(B)
reactive(r, t)|k , (2.120)

where ϕ
(A)
reactant(r, t) and ϕ

(B)
reactant(r, t) are the distributions of the A- and B-homopolymers (reactants),

ϕ
(A)
product(r, t) and ϕ

(B)
product(r, t) are the distributions of the A- and B-subchains of the block copolymers

(products). The first term on the right-hand side is the contribution from the diffusion similar to that
introduced in the proceeding paragraph. Although this example is simple, we can consider other reaction
processes that involve polymers with more complex structures. In such a case, one has to solve a set of time
evolution equations for each of the subchains of all polymers.

In the actual SCF calculations, as was described in fig. 2.2 in Section 2.2, all the free ends of the chains
and all the connected points between subchains are treated as “junctions”. These junctions can be considered
as the reactive sites. Once the convergence of the SCF iteration is achieved, the spatial distributions of the
reactive sites are obtained as follows:

φ
(A)
reactive(r, t) = C(A)

r

∏
r

Q̃K(N (A)
r , r) (2.121)

φ
(B)
reactive(r, t) = C(B)

r

∏
r

Q̃K(N (B)
r , r) , (2.122)

where
∏

r means product of all the final values of the path integrals coming into the reactive site. Since

the canonical ensemble is considered, the normalization constants C
(A)
r and C

(B)
r given by eq. (2.19) are

independent of the index of the sub-chain r. Let us consider the total numbers of A- and B-homopolymers

consumed in the reaction per unit time and denote them as M
(A)
reactive and M

(B)
reactive. These values are

obtained by multiplying the number of polymers before the reaction by the reactive fraction of the reactive
sites as

M
(A)
reactive = M (A)

∫
drkφ

(A)
reactive(r, t)φ

(B)
reactive(r, t)∫

drφ
(A)
reactive(r, t)

(2.123)

M
(B)
reactive = M (B)

∫
drkφ

(A)
reactive(r, t)φ

(B)
reactive(r, t)∫

drφ
(B)
reactive(r, t)

, (2.124)

where M (A) and M (B) are the numbers of polymers in the system before the reaction. Finally, by us-

ing eqs. (2.101) and (2.102) and the converged self consistent field, ϕ
(A)
reactive(r, t)|k and ϕ

(B)
reactive(r, t)|k are

obtained as follows.

ϕ
(A)
reactive(r, t)|k = C

(A)
reactive

∑
i

∫
dr0

∫
drNkφ

(B)
reactive(r0, t)q0(r0)QA(0, r0; i, r)QA(i, r;N, rN )qN (rN )

(2.125)
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C
(A)
reactive =

M (A)
reactive∫

dr0
∫
drNq0(r0)QA(0, r0;N, rN )qN (rN )

(2.126)

ϕ
(B)
reactive(r, t)|k = C

(B)
reactive

∑
i

∫
dr0

∫
drNkφ

(A)
reactive(r0, t)q0(r0)QB(0, r0; i, r)QB(i, r;N, rN )qN (rN )

(2.127)

C
(B)
reactive =

M (B)
reactive∫

dr0
∫
drNq0(r0)QB(0, r0;N, rN )qN (rN )

, (2.128)

where q0(r0) and qN (rN ) are the statistical weights of the reactive end (i = 0) and the other non-reactive
end (i = N). In the present example, as the reactants are homopolymers, the value of both of q0(r0) and
qN (rN ) are unity because they are free ends. These values take non-trivial values (̸= 1) only when the
reactant polymer is composed of multiple subchains.

Grafting reaction

By using the procedure described in the previous section, it is possible to simulate a graft reaction where
free chains are grafted to solid walls. Let us assume that A-homopolymer is grafted at the reactive end to a
solid wall from a polymer solution or from a melt. This graft reaction can be regarded as a kind of chemical
reaction where A-homopolymer changes to grafted G-homopolymer. We denote the densities of the reactive

sites of A and G polymers at the wall position as φ
(A)
reactive(rw, t) and φ

(G)
reactive(rw, t), where rw denotes the

position vector of a point on the wall. The reaction equations for the reactive sites are as follows:

∂φ
(A)
reactive(rw, t)

∂t
= −kφ

(A)
reactive(rw, t) (2.129)

∂φ
(G)
reactive(rw, t)

∂t
= kφ

(A)
reactive(rw, t) , (2.130)

where k is the reaction constant. The model equations for this graft reaction are expressed as

∂ϕ(A)(r, t)

∂t
=

∂ϕ(A)(r, t)

∂t

∣∣∣
diffusion

− ϕ
(A)
reactive(r, t)|k (2.131)

∂ϕ(G)(r, t)

∂t
=

∂ϕ(G)(r, t)

∂t

∣∣∣
diffusion

+ ϕ
(A)
reactive(r, t)|k , (2.132)

where ϕ(A)(r, t) and ϕ(B)(r, t) are the volume fractions of A- and G-homopolymers, and ϕ
(A)
reactive(r, t)|k is

the volume fraction of the A-homopolymer consumed in the reaction per unit time which can be calculated
by the similar manner described in the previous section. The volume fraction of the reactive site is calculated
as

φ
(A)
reactive(rw, t) = C(A)

r

∏
r

Q̃K(N (A)
r , rw) , (2.133)

where C
(A)
r is defined in eq. (2.19). Then, the number of A-homopolymers consumed in the reaction per

unit time is given by

M
(A)
reactive = M (A)

∫
drkδ(r− rw)φ

(A)
reactive(rw, t)∫

drφ
(A)
reactive(rw, t)

. (2.134)

The volume fraction of A-homopolymer consumed in the reaction per unit time is calculated by

ϕ
(A)
reactive(r, t)|k = C

(A)
reactive

∑
i

∫
dr0

∫
drNkδ(r− rw)q0(r0)QA(0, r0; i, r)QA(i, r;N, rN )qN (rN ) , (2.135)

where C
(A)
reactive is give by eq. (2.126), and q0(r0) and qN (rN ) are statistical weights of both ends of the chain,

which are both unity for the present homopolymer case.
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2.9.16 Strong polyelectrolyte

Strong polyelectrolyte is a polymer solution in which almost all the ionizable atomic groups are ionized.
Therefore, the charges on the chain can be treated as constant. Then, the strong polyelectrolyte can be sim-
ulated by assigning permanent electric charge to each segment and by calculating the electrostatic potential
of the system. The electrostatic potential is treated as an external field acting on the segments and is added
to the self-consistent field. We denote the dielectric constant of the system as ϵ0 and the specific dielectric
constant of K-type segment as ϵK then assume the local dielectric constant as

ϵ(r) = ϵ0
∑
K

ϵKϕK(r). (2.136)

We also denote the electric charge of the K-type segments per unit volume as ρK and the distribution of
the total charge in the system is written as

ρ(r) =
∑
K

ρKϕK(r). (2.137)

The electrostatic potential U(r) is obtained by solving the following Poisson equation.

∇ϵ(r)∇U(r) = −ρ(r). (2.138)

The electrostatic potential energy We is calculated by

We =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

4πϵ|r− r′|
=

1

2

∫
drU(r)ρ(r). (2.139)

The external potential per a K-type segment due to the electrostatic interaction is given by U(r)ρK . The
effect of the electric charge is taken into the SCF calculation simply by adding the potential U(r)ρK to the
self-consistent field defined by eqs. (2.1).

2.9.17 SCF Monte Carlo method

One of the limitations of the SCF method is the difficulty in simulating dilute polymer solutions. This is
because the fluctuations in the density distribution of the polymers in dilute solutions are so large that the
mean field approximation used in the SCF theory cannot be justified. As a result, the polymer density
calculated by the standard SCF method spreads uniformly over the whole system. To treat an isolated chain
in a dilute solution, some tricks should be introduced. One such method is the mask operation mentioned
introduced in Section 2.9.14. Here, we propose a Monte Carlo calculation of an isolated chain. We evaluate
the free energy of the chain by the SCF calculation fixing the positions of some specified junctions using the
mask operation. Then, the positions of these specified junctions are moved using the Monte Carlo procedure.
This SCF Monte Carlo algorithm is as follows.

1) Select the junctions to be masked and set their initial positions.
Set the counter for the Monte Carlo step i = 0.

2) Perform the static equilibrium calculation of the SCF.
Evaluate the free energy of the system Ai.

3) Select one of the junctions and move it to one of
its nearest neighbor lattice points randomly..

4) Perform the static equilibrium calculation of the SCF.
Evaluate the free energy of the system Ai+1.

5) Calculate the difference in the free energy dA by
dA = Ai+1 −Ai.

6) If dA < 0., reserve the updated configuration i+ 1.
Otherwise, calculate the quantity p = exp(−dA/kBT ).
Then, generate a random number rand that distributes
uniformly between 0. and 1. and
If p > rand, reserve the updated configuration i+ 1, and otherwise restore the old configuration i.

7) Return to 3) and repeat.
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2.9.18 System size optimization

To optimize the lenght of the edge of the system is important to determin the final structure of micro
phase separation. We introduce the system size optimization method to minimize the free energy density
by changing the lenght of the edge of the system. We denote the free energy of system as F ,the volume of
system as V and the method is given by the equation

∂(F/V )

∂Xi
= 0 (2.140)

where Xi (i = x, y, z) is the length of the edge of the system. The differential term of the right hand side
can be solved numerically, so the equation can be solved as a numerical minimiztion problem.

In dynamic calculation, we can minimize the free energy density to couple the time dependent equation
of segment (2.49) and the time dependent equation of the system size given by

∂Xi

∂t
= −Qi

∂(F/V )

∂Xi
(2.141)

where Qi (i = x, y, z) is a positive constant. This method is effective to get the global minimum structure
of micro phase separation. Although this method does not conserve the system volume. To escape a big
volume change, the introduction of elastic energy to the free energy is one solution, the equation of free
enegy density F/V is extended as

Fc

V
=

F
V

+
1

2κ

(V − V0)
2

V 2
0

(2.142)

where κ is the compressibility of system and V0 is the initial voluem of system.



2.9. METHOD OF CALCULATION 35

2.9.19 Conclusion

In this chapter, we described how to perform numerical calculations based on the theoretical framework given
in the previous chapter. As a summary, we clarify the mutual relations between the quantities appearing in
the theory.

First, we summarize the self consistent field technique. The calculation scheme is shown in fig. 2.14.
The basic task in the self consistent field theory is to obtain the segment density distribution, the external
force (self consistent field) VK(r) acting on the segment density field, and the statistical weight (QK(s, r)),
in a self consistent manner within the constraints imposed on the system. To realize this task, one first
calculates the path integral QK(s, r) at position r using eq. (2.7) with the self consistent filed VK(r). Then,
the segment density ϕK(r) is calculated using QK(s, r) through eq. (2.9). Finally the self consistent field
VK(r) is obtained using ϕK(r) and eqs. (2.104) and (2.105). In the actual numerical calculation, using an
appropriate initial values for VK(r), the above scheme is solved iteratively. This procedure is repeated until
the change in ϕK(r) during the single iteration step becomes smaller than a threshold. When the change
becomes small enough, the self consistent set of quantities is obtained.

Start

Set Ｖ External Field

Ensemble

Calculate via Eq.(2.7)Ｑ

Calculate using via Eq.(2.9)φ Ｑnew

No Yes

Finish

Sectiojn 2.9

| | is small?      Yes or Noφ -φnew      prev

Update using via Eqs. (2.102)&(2.103)Ｖ φ

Set archtecure, mesh,

boundary condition

Transition probability,

Effective bond length,

Polydisperbsitby

Figure 2.14: Flow chart of SCF calculation

By solving the self consistent set of equations, one can study various polymer systems. Appropriately
choosing the polymerization processes or the catalysts, one can synthesize polymers with various branch
structures or loop structures. To obtain path integrals for these complex polymers, one has to choose suitable
techniques taking the chain structures into account. In Section 2.9.1, we have already discussed how to model
various chain architectures in the actual computation. The spatial discretization methods, i.e. the spatial
meshes and the boundary conditions, were discussed in Sections 2.9.3 and 2.9.4. An extended computational
method of the QK(s, r) that has an applicability to polymer chains with complicated internal structures, for
example, the tapered polymers, etc. were also given. In this method, we introduced internal states for each
subchain of the polymer chain. To calculate the path integral for such subchains with internal states, we
introduced a transition probability between the internal states (in Section 2.3 ). We also introduced another
model parameter, the effective bond length, to calculate the path integrals. Two statistical ensembles, i.e.
the canonical ensemble and the grand canonical ensemble, were used to specify the equilibrium condition of
the system used in the calculation of the path integrals and the density fields. (See Sections 2.2 and 2.9.8.)
Other important properties of polymers, such as the grafting, the adsorption and the polydispersity, are also
discussed in Sections 2.9.6, 2.9.7 and 2.9.12, respectively.
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The dynamic mean field method is a modified version of the self consistent field theory, where the
dynamical change of the density fields are allowed. In this scheme, the density fields are first given. Then,
VK(r) and QK(s, r) are determined using the density fields. In this dynamic case, we have to add another
iteration scheme for the time evolution to the flow chart for the static SCF calculation shown in fig. 2.14.
As a result, the flow chart for the dynamic mean field simulation is given in fig. 2.15.
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Set V,φt

Calculate via Eq.(2.7)Ｑ

Calculate using via Eq.(2.9)φ Ｑnew

| | is small?    Yes or Noφ －φnew t

Update via Eqs.(2.107)&(2.108)Ｖ
Yes

No

Finish

Total time step

Calculate using via Eq.(2.104)φ φt+dt t

Figure 2.15: Flow chart of the dynamic mean field method

The peculiar steps of the dynamic calculation will be those described by eqs. (2.109) and (2.110), i.e. the
updating VK(r) and other quantities.



Chapter 3

Starting SUSHI

3.1 Notes

SUSHI can be started by typing a command from the console. The supported operating systems are MS
Windows and Linux. Although SUSHI has no implementation of GUI, one can use SUSHI as if it is running
on a GUI by using the UDF format files on GOURMET.

The current version of SUSHI can read/write files with two different formats, i.e. the UDF format and
the SEED format. Although the UDF format appears to be rather redundant, it has a well-defined structure
and therefore prevents us from making mistakes when preparing the input files. Please refer to UDF manual
about the details of the UDF format. On the other hand, the SEED format has a simple structure. Thus, it
is easy for the user to prepare the SEED files although he/she has to type the keywords by himself/herself.
The file of SEED format should obey the UNIX-type format (each line ends with LF).

In Chapter 5, one can find how to start SUSHI.

In order to prepare an input file for SUSHI, the easiest way will be to make a copy of a sample file and
to modify it. The UDF format files can easily be edited on GOURMET. Editing with a text editor is also
possible.

3.2 Examples of 1-dimensional calculation

Using the sample files contained under the directory SUSHI/sample, let us see how to prepare the input files
for the SCF calculation. We start with the example of the static equilibrium calculation for one-dimensional
systems.

3.2.1 Interfaces

As a simple example, let us consider an interface of an A/B polymer blend in one dimension. As shown
in the following figure, the system is a phase separating A/B polymer blend. Both ends of the system are
assumed to be reflective walls, and an interface is placed at the center.

37
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Figure 3.1: A schematic picture of an interface in an A/B polymer blend

Let us start GOURMET and open the input file named interface uin.udf and select the “Tree” button
in the “View” box. Open the SUSHIInput folder in the left-side window to see its contents. You can see
many folder icons. Each folder icon indicates a data structure. Hereafter, we call such a folder icon as “sub-
folder”. The first sub-folder is ”calculation method”. Open this sub-folder and you can see the selectable
item “type” whose value is now specified as STATICS as is shown in the right-side window. The second
item of the SUSHIInput is “start condition”, which is specified as the select type with the value “START”.
Next, open the ”solver parameter” sub-folder. The type in this sub-folder is set as SCF.

Figure 3.2: GOURMET initial window

The SUSHIInput folder has so many sub-folders. If the SUSHI would not start until we specify all the
parameters contained in these sub-folders, nobody would dare to use it! Don’t worry. In order to start
SUSHI, you have to specify only a few parameters explicitly.

The necessary items to start calculations are

1) Controlling parameters for the SCF calculation

2) Spatial mesh

3) Components of the system and their compositions

4) χ-parameters for the interactions between segments

in order to obtain the interfacial structure quickly, you are advised to specify

5) External conditions, by which the regions of the A and B domains are specified.
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Only these input data are required to start the simulation.
Hereafter, for the sake of the GOURMET users, we will discuss the detail of the UDF input file. If you

know the concept of “structure” in the program language C, you will be able to understand the following
descriptions easily. In the following, the structure of the variables and the corresponding actual values of
the variables will be described simultaneously.

Let us see how the variables are specified in the UDF input file using the “interface uin.udf” file as an
example. Please open this UDF file with an editor or with a word processor. You can not use simple editors
that can read/write only DOS format files. A high-class editor that can read/write UNIX format should
be used instead. At the beginning of the file, there is the “definition part” where the data structures are
declared. Various information on the data are described here for the sake of the users. Next part is the
“data part”, where the actual data are written.

\begin{data}

Please search for the keyword “begin{data}” using the search function of the editor/word processor. Below
this keyword, you will find the actual data.

First step

As was explained at the beginning of this section, you have to specify two data. In this UDF file, these data
are specified as follows,

// Data

\begin{data}

SUSHIInput:{ // SUSHIInput/

calculation_method { //CalculationMethod

type "STATICS"

.....

}

start_condition "START"

.....

where the static equilibrium calculation is chosen, and the restarting option is disabled. This data structure
is defined as follows.

// Data definition

class CalculationMethod:{ // The data structure of calculation method.

// The data type "select" means that user can select the string data from {...}.

type:select { "STATICS", "DYNAMICS", "MONTECARLO" }

DYNAMICS:DynamicsParameter

MONTECARLO:MonteCarloParameter

// The DynamicsParameter and the MonteCarloParameter are data structures

// defined in other classes.

}

SUSHIInput:{

// Calculation control data #############################

calculation_method:CalculationMethod

start_condition:select

// The flag for starting condition

// START : normal start

// CONTINUE : continue with reading the mesh at the final recoerd

// RESTART : restart without reading the mesh at the final recoerd

// RESTART_READMESH : restart with reading the mesh at the final recoerd

.....

}
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Control parameters for the SCF calculation

Here, the solver parameters for SCF calculation are explained. The input data in the sample UDF file are
as follows.

// Data

solver_parameter { //SolverParameter

type "SCF"

SCF { //SCFParameter011031

delta_s 1

constV 0.05

constW 0.1

error 0.0001

random_seed 0

standard_deviation 0.00015

judge_method "ABSOLUTE"

convergence_test_interval_step 0

max_SCF_step 20000

scf_output_interval_step 0

SCF_method "INCORE"

pathintegral_scheme "EXPLICIT"

}

....

}

Although so many parameters are listed, only the following parameters are actually used in this case.

delta_s:double // The mesh width for the chain length used in the

// calculation of the path integral.

// This parameter is positive and the same value

// is used in the calculations of the path

// integral for both directions along the chain.

constV:double // The constant parameter used in the updating of

// the chemical potential in the SCF iteration

// scheme.

constW:double // The constant parameter used in the updating of

// the interaction between segments in the SCF

// iteration scheme.

error:double // The threshold value used in the judgement of

// the convergence of the iterations.

standard_deviation:double // The standard deviation of the Gaussian random

// numbers used as the initial values of the

// segment density fields.

max_SCF_step:int // The maximum number of iterations allowed for

// the SCF calculation.

The syntax of these structured data is as follows.

// Data definition

class SolverParameter:{ // The ‘‘solver" means a specialized simulator.

type:select { "ADF", "FH", "SCF" }
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SCF:SCFParameter // The SCF (Self Consistent Field) method.

ADF:ADFParameter // The ADF (Approximate Density Functional) method.

// (Under construction)

FH:FHParameter // The Cahn-Hilliard type dynamics method.

// (Under construction)

}

class SCFParameter:{

delta_s:double // The mesh width for the chain length used in the

// calculation of the path integral.

// This parameter is positive and the same value

// is used in the calculations of the path

// integral for both directions along the chain.

constV:double // The constant parameter used in the updating of

// the chemical potential in the SCF iteration

// scheme.

constW:double // The constant parameter used in the updating of

// the interaction between segments in the CF

// iteration scheme.

error:double // The threshold value used in the judgement of

// the convergence of the iterations.

random_seed:int // A seed for the random number generator.

standard_deviation:double // The standard deviation of the Gaussian random

// numbers used as the initial values of the

// segment density fields.

method_of_convergence_test:select { "ABSOLUTE", "RELATIVE" }

// The method to judge the convergence of the

// iterations. This parameter is used only in the

// dynamic SCF calculations.

convergence_test_interval_step:int // Interval step of the above test.

// Default 0 that is recognized 1. i.e. every step.

max_SCF_step:int // The maximum number of iterations allowed for

// the SCF calculation.

scf_output_interval_step:int // During the SCF iterations, the data are written

// into the file/screen at every other

// "output_interval_step" iteration steps.

SCF_method:select { "INCORE", "DIRECT" }

// How to handle the memory area for the large

// data of the path integrals.

pathintegral_scheme:select { "EXPLICIT", "IMPLICIT" }

// The type of the scheme to integrate the

// evolution equation for the path integral.

}

When you use the regular mesh and assume that both the mesh width and the effective bond length b
are unity and the χN value is not so large, it is appropriate to use the value 1 for delta s.

The two constant parameters constV and constW are magic numbers, which strongly affect the speed of
the convergence of the SCF iterations. You have to adjust these parameters depending on the conditions of
the system you are simulating. One of the most difficult operations in using SUSHI would be how to select
appropriate values for these parameters. However, after using SUSHI several times, you will be already an
expert of SUSHI and can select suitable values for these parameters (Wonderful!). If you are not yet familiar
with SUSHI, you are kindly advised to remember that constV = 0.05 and constW = 0.1 will usually be the
maximum values in the static equilibrium calculations. Increasing the χ parameter values (i.e. increasing
the repulsive interaction between segments) will lead to a slower convergence of the SCF iterations, and
sometimes the SCF iterations will never converge. In such a case, make both contV and constW smaller. In
the example, the ratio between these parameters is taken to be 5:10. However, you do not need to keep this
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ratio. You are free to change these two parameters independently so that the iteration scheme will converge.
If you choose too small values for these parameters, the total number of SCF iterations will be enormously
increased. If the convergence is too slow, it may be a good choice to slightly increase the values of these
parameters.

There are certain cases where the SCF iterations will not converge whatever you choose values for the
parameters. In such a case, how many SCF iteration steps should we wait? Empirically, you should abandon
the calculation if you cannot see a sign of convergence after 20,000 SCF iterations. In the provided sample
files, we present many examples of input parameters with which convergence of the SCF iteration scheme
has been confirmed. These input files can be used as references for your simulation runs.

The parameter “error” is used as the threshold value for the judgement of the convergence of the volume
fractions during the SCF iterations. For test calculations, error = 0.0001 will be enough. The parameter
“standard deviation” specifies the standard deviation of the Gaussian random noise given as the initial values
of the self consistent fields for the static equilibrium calculation. We recommend you to choose this as about
1.5 times as the value of “error”.

Do not forget to specify the parameter “max SCF step” that limits the maximum number of the SCF
iterations.

Mesh

Let us see how to specify the spatial mesh. The syntax of the UDF data “SUSHIInput.mesh” is as follows.

// Data

mesh { // Mesh

name "test"

type "REGULAR"

axes [

id0 { // MeshAxis

values [ 0 32 32 ]

}

]

index_rule [ 0 1 2 ]

}

type_of_free_propagator_of_regular_mesh "2NN-NP"

The detailed definitions of this structured data are as follows.

// Data definition

class MeshAxis:{

values[]:double

// In case of the regular, spherical, or cylindrical mesh,

// this array contains the minimum and the maximum values

// of the range along the axis, and the total number of

// divided cells along the axis, respectively.

// In case of the rectangular mesh, an array of the coordinates

// of the mesh points are stored.

}

class Mesh:{

name:KEY // The data type "KEY" is a character string, which is used to search the

// target data structure.

type:select { "REGULAR", "RECTANGULAR", "CYLINDRICAL", "SPHERICAL" }

axes[]:MeshAxis

// Array of the mesh axes.

// Its dimension is the total number of coordinate axes of the system.

index_rule[]:int

// This specifies how the array elements (i, j, k) are arranged on the memory.
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// The first argument i runs first for example (0,0,0),(1,0,0)...(X-1,Y-1,Z-1).

// For SUSHI, this is fixed as [0, 1, 2] except cylindrical mesh and

// is fixed as [2, 1, 0] for cylindrical mesh.

// Although this parameter does not affect the functions of SUSHI,

// it is used when the mesh data is passed to another simulator and

// is passed to the viewer on GOURMET.

}

SUSHIInput:{

....

mesh:Mesh

type_of_free_propagator_of_regular_mesh:select { "1NN-P", "2NN-NP", "2NN-P", "3NN-P" }

// The type of the discretized Laplacian operator.

// This is for the regular mesh only.

....

}

In the sample file, the name of the mesh is specified as “test”, and it is declared as a “regular mesh”. In the
“MeshAxis” parameter, only a single data “id0” is specified. Since the dimension of “MeshAxis” corresponds
to the space dimension in the regular mesh case, we recognize that this system is one dimensional. Three
values are stored in this parameter. These values mean the minimum and the maximum values of the range
along the axis, and the number of mesh celles in it. In the example, the X-axis starts from 0 and finishes
at 32, and is divided into 32 cells. If you want to simulate a multidimensional system, you have only to
add extra elements to the array “MeshAxis”. Please refer to the GOURMET manual for how to add extra
data. For SUSHI, the parameter “index rule” is fixed as [0, 1, 2]. Although SUSHI can run without this
parameter, absence of this parameter may cause unpredictable behavior when the data is passed to another
simulator. Please do not forget to specify this parameter as [0, 1, 2].

In the GOURMET window, you can see the following.
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Figure 3.3: Mesh data window

A mesh should be supplemented with the boundary conditions. The data structure of UDF “SUSHIIn-
put.boundary condition” are as follows.

// Data

boundary_condition { // BoundaryCondition

conditions [

id0 { // AxisBoundaryCondition

axis_conditions [ "NEUMANN" "NEUMANN" ]

}

]

.....

}

// Data definition

class AxisBoundaryCondition:{ // The boundary conditions at the both ends of the axis

// are specified.

axis_conditions[]:string

// PERIODIC :Periodic boundary conditions

// In this case, specifying only axis_condition[0] is enough.

// DIRICHLET or WALL :Absorbing wall,

// i.e. the Dirichlet boundary condition with the boundary value 0.

// NEUMANN :Reflective wall,

// i.e. the Neumann boundary conditions with vanishing gradient of the field.

}

class BoundaryCondition:{

conditions[]:AxisBoundaryCondition // An array of the boundary conditions for each

// axis.
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....

}

SUSHIInput:{

.....

boundary_condition:BoundaryCondition

// Boundary conditions.

// Refer to Section 2.7.4.

.....

}

In the sample UDF file, the both ends of the axis of the mesh are specified as reflective boundaries. If you
want to specify them as solid walls, set WALL or DIRICHLET to axis conditions. Now, the specification of
the mesh has been completed.

Molecule

Let us specify the molecules contained in the system. A polymer is composed of monomers. In SUSHI,
”monomer” means a group of several chemical repeating units of the polymer, and is identified with the
segment of a Gaussian chain. First, let us see the input UDF data “SUSHIInput.monomers”.

// Data

monomers [

id0 { // Monomer

species_name "A"

specific_volume 1

effective_bond_length 1

}

id1 { // Monomer

species_name "B"

specific_volume 1

effective_bond_length 1

}

]

This data structure is simple. The parameters you have to specify are the names of the monomers, the
specific volumes, and the effective bond lengths. In the sample file, the names of the monomers are specified
as A and B, and the specific volumes and the effective bond lengths are all set to unity. Usually, you should
specify only the parameter “species name” leaving the other parameters as unity. The definition of the data
structures of the “Monomer” and the “Solvent” are as follows.

// Data definition

class Monomer:{

species_name:string // Name of the monomer.

specific_volume:double // Specific volume of the monomer.

effective_bond_length:double // Effective bond length corresponding to a single

// monomer.

}

class Solvent:{

name:string // Name of the solvent.

specific_volume:double // Specific volume of the solvent.

}

The data structure of the “Solvent” is simpler than that of the “Monomer”. It possesses only the name and
the specific volume. How are actual polymer chains constructed using these monomers? The following is the
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definition of polymers.

// Data definition

class Block:{ // Sub-chain.

monomer_name:string

// The name of the monomer which constitutes this sub-chain.

// This monomer name must be defined as a Monomer in advance

number_of_monomer:double

// The total number of monomers contained in this sub-chain.

}

class JunctionPair:{ // A pair of the ID’s of the junction points at the both ends of

// this sub-chain.

first:int

second:int

}

class Polymer:{

type:select {"HOMO","BLOCK","COMB","STAR","GENERAL" }

// The keyword specifying the branching structure of the chain,

// i.e. how to connect the subchains.

// HOMO : A homo polymer.

// BLOCK : A linear multiblock copolymer made of a sequence of the sub-chains

// with the same order as they are stored in this array.

// STAR : A star block copolymer made of sub-chains which are connected

// at a single junction point.

// COOMB : A comb-type block copolymer.

// The order of the sub-chains stored in the array is as follows.

// main chain - side chain - main chain - side chain -.....

// For example, an array of the sub-chains A1, B1, A2, B2, and A3

// indicates the following structure.

// A1--+--A2--+--A3

// B1 B2

// GENERAL : The way how the sub-chains are connected to each other

// is specified by the ID’s of the two junction points at the

// both ends of each sub-chain.

blocks[]:Block // Array of sub-chains.

junction_pairs[]:JunctionPair // Array of the pair of the ID’s of the junction points

// at the both ends of the sub-chain.

// This parameter is available only when the type of the polymer is GENERAL.

// The values of the ID must start from 0.

// For example, when the number of elements of Block is 1 and a pair of

// ID’s is [0, 0], it means that this polymer is a ring polymer.

}

A polymer is defined as a set of sub-chains that are made of monomers and junctions. Although the data
structure of the polymer is simple, it can describe any types of chain topologies. The following figure shows
an image of the input data for a polymer chain.
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Figure 3.4: An image of the input data for a polymer chain

In this figure, the sub-chains are made of monomers of the same kind. There are junctions at the both
ends of each sub-chain. We number all the sub-chains (B0, B1, · · ·, B4) and all the junctions (J0, J1, · · ·,
J5). The numbers with character B mean sub-chains and those with J mean junctions. Please remember
that the numbers should start from 0 and should be sequential. These procedures complete the definition
of the topological structures of polymers. The UDF data structure “Block” describes a sub-chain and has
“name” and “length”. A complete array of the pairs of the junction ID’s at both ends of each sub-chains
is required. This array is stored in UDF data “JunctionPair”. The order of the numbering on the sub-
chains and junctions is arbitrary. If the information on the chain topology is correctly given, SUSHI can
automatically search for the path that is used in the calculation of the path integrals. If there is a duplication
or a lack in the definition of the ID numbers, SUSHI aborts with an error message.

Finally, the UDF data structure “SUSHIInput.components” is defined as an array of polymers and
solvents as follows.

// Data definition

class Components:{

polymers[]:Polymer // Array of polymers.

solvents[]:Solvent // Array of solvents.

}

SUSHIInput:{

.....

// Polymer and solvent ##############################

monomers[]:Monomer // Array of a monomer.

// Array of the characteristic parameters of monomers.

monomer_SCF_character_table[]:MonomerSCFChar

// A set of components (polymers and solvents) that can be used in the simulations.

components:Components

.....

}

In the sample file, this data is specified as follows.

// Data

components { // Components

polymers [

id0 { // Polymer

type "HOMO"

blocks [

id0 { // Block

monomer_name "A"
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number_of_monomer 20

}

]

junction_pairs [

]

}

.....

solvents [

]

}

You may wonder why no data is contained in “junction pairs”. This is because the structure of the polymer
is already specified by “type”. For several simple polymer structures, you can specify only with “type”
and “Block”. For the details, please refer to the comments in the data definition part of the sample file.
In this example, since “type” is specified as “homo polymer”, only a single sub-chain composed of 20 A-
type monomers is specified in the array of subchains, i.e. “blocks”. Except for the homo polymers, two or
more sub-chains with different kinds of monomers with different lengths are specified in this array. If the
polymer type is specified as “GENERAL”, you have to specify the topology of the chain by yourself using
“junction pairs”. In the present sample file, there is no solvent.

Volume fraction

After specifying the molecules, you have to specify the volume fractions of each molecule. The data structure
is as follows.

// Data definition

class VolumeFraction:{ // Volume fraction.

id:int // The element index of the component. The number starts from 0.

volume_fraction:double

// If the ensemble is CANONICAL, this parameter specifies the total volume

// fraction in the system.

// If the ensemble is GRANDCANONICAL, this parameter specifies the equilibrium

// volume fraction in the bulk phase.

ensemble:string // Statistical ensemble of the system.

// CANONICAL : Canonical ensemble.

// GRANDCANONICAL : Grand canonical ensemble.

// Dynamic calculation is not available for this case.

bulk_volume_fraction:double // The volume fraction in the bulk phase.

// This parameter is used when the volume fractions in the simulation box and

// those in the reservoir should be distinguished.

// If you do not use this feature, set -1 to this parameter.

}

class VolumeFractions:{

polymer_volume_fractions[]:VolumeFraction // Array of the volume fractions of the

// polymers.

solvent_volume_fractions[]:VolumeFraction // Array of the volume fractions of the

// solvents.

}

SUSHIInput:{

.....

volume_fractions:VolumeFractions

.....

}

The input data structure of SUSHI is designed in such a way that the users can use SUSHI just like an
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experimental apparatus. Users of SUSHI can prepare the input file as if they pick up several reagents from
a set of polymers and solvents in a shelf, and mix them in a flask. Various simulations can be performed
in this way. Therefore, all the polymers and the solvents defined in “SUSHIInput.components” are not
necessarily used in the simulation. Please think that “SUSHIInput.components” is a shelf in which polymers
and solvents are stored in separate bottles. The users specify the components used in their simulations by
specifying the kinds of the components (polymers or solvents), the reagent ID’s, and the volume fractions.
”id:int // The element index of the components” corresponds to the ID of the reagent. This ID number is
equivalent to the element index of the molecule defined in “SUSHIInput.components”. For example, if you
need the polymer stored in the 1st element of the array “SUSHIInput.components”, please specify 0. The
order of the elements in the input data can be in an arbitrary order of the array of C language ( the index
must be started from 0 ). A reverse order or a discrete order can be accepted. However, multiple definitions
of the same id is not allowed. The element indices of the “SUSHIInput.components” are also used in many
other input data structures. Please do not confuse them with the element indices defined in volume fractions
below. In the sample file, UDF data “SUSHIInput.volume fractions” is defined as follows.

// Data

volume_fractions { // VolumeFractions

polymer_volume_fractions [

id0 { // VolumeFraction

Id 0

volume_fraction 0.5

ensemble ""

bulk_volume_fraction -1

}

id1 { // VolumeFraction

Id 1

volume_fraction 0.5

ensemble ""

bulk_volume_fraction -1

}

]

solvent_volume_fractions [

]

}

The volume fractions of A and B polymers are 0.5, respectively. The statistical ensemble is not specified. In
such a case, canonical ensemble is set as a default value. The bulk volume fraction is not specified because the
value of “bulk volume fraction” is -1. The “bulk volume fraction” is available only for the grand canonical
ensemble. If the grand canonical ensemble is selected and the “bulk volume fraction” is not specified, the
value of the “volume fraction” is used as the value of the “bulk volume fraction”. For a system containing
free polymers and grafted polymers, both volume fraction and bulk volume fraction should be specified for
the free polymers while only volume fraction should be specified for the grafted polymers. In such a case,
the values of volume fraction and bulk volume fraction are in general different. Note that the convergence of
the SCF iterations is dependent on the choice of these parameters. Also note that the dynamic calculations
are not available for systems with grand canonical ensemble.

χ parameter

Next, χ parameter is specified. It is easy to specify this parameter as is shown below.

// Data definition

class ChiParameter:{

name_i:string // The name of the species of i-th monomer.

name_j:string // The name of the species of j-th monomer.

parameter:double // The value of chi parameter.
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// Chi_ij is automatically set using the symmetric relation

// Chi_ij = Chi_ji.

// If the value is not defined, it is assumed to be 0.

}

SUSHIInput:{

.....

chi_parameters[]:ChiParameter // Array of Chi parameter values.

.....

}

// Data

chi_parameters [

id0 { // ChiParameter

name_i "A"

name_j "B"

parameter 0.2

}

]

In the sample file, as is shown above, χAB are set as 0.2. Since the chain length was previously specified as
20, the phase separation in this system is characterized by χN = 4.

External conditions

So far, almost all the input items have been specified to set up the system. Finally, we introduce a trick to
achieve the fast convergence of the SCF iterations for the equilibrium phase separation structures. The input
UDF data structure “SUSHIInput.external conditions.static conditions.domain specification conditions[]” is
prepared for this purpose. This is used to set initial values of the self consistent fields in order to generate
domains in desired regions. The data structure is as follows.

// Data definition

class AxisRegion:{ // Specify an interval on an axis.

axis_name:string // Name of the axis: X, Y, Z, R or H.

r_min:double // Minimum value of the interval.

r_max:double // Maximum value of the interval.

// When Maximum = Minimum, it corresponds to a mask on a point.

}

class DomainSpecificationCondition:{

name:string // The name of the segment species.

domain_regions[]:AxisRegion // The array of the intervals on the axes.

}

class StaticConditions:{

....

domain_specification_conditions[]:DomainSpecificationCondition

// An array of the conditions for setting the initial values of the

// self-consistent fields.

....

}

class ExternalConditions:{

....

static_conditions:StaticConditions

....

}

SUSHIInput:{

.....

external_conditions:ExternalConditions .....

.....
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}

An example of the Input data is as follows.

// Data

domain_specification_conditions [

id0 { // DomainSpecificationCondition

name "A"

domain_regions [

id0 { // AxisRegion

axis_name "X"

r_min 0

r_max 16

}

]

}

]

These input data are meant to produce an ”A” domain in the region x ∈ [0, 16].

We finished the explanation of the input data file, and explain how to use it on GOURMET.

Execution of the calculation

Let us start SUSHI on GOURMET or on a console.

The name of the output file is now assumed to be “interface uot.udf”. Enter the following command to
start SUSHI.

> sushi -Iinterface_uin.udf

After the simulation is finished, open the output file “interface uot.udf” using GOURMET. The initial
window is for the input data. Let us display the simulation results. As shown in the following figure, please
choose “Record” and then choose “Step1”.

Figure 3.5: Move to the result

Move your mouse cursor to the SUSHIOutput subholder of the left side table and push the right button
of the mouse. You can choose plot 1D field button to plot the result using Gnuplot as shown in the next
figure.
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Figure 3.6: Display the simulation result

Using the sample UDF file, an interface of an A/B polymer blend system is simulated. The SUSHI
is suitable for calculating such interfaces. By modifying the input UDF data, you can perform various
simulations. In the following, some examples will be given.

3.2.2 Phase separation

Let us modify the boundary condition “SUSHIInput.boundary condition” in the input UDF file “inter-
face uin.udf”.

// Data

boundary_condition { // BoundaryCondition

conditions [

id0 { // AxisBoundaryCondition

axis_conditions [ "PERIODIC" ]

}

]

}

We have changed the boundary conditions from reflective boundary conditions to periodic boundary condi-
tions. This modified input UDF file is stored in “blend 4D dy uin.udf”. The simulation result produced with
this input UDF file is a phase-separated state where two interfaces are formed due to the periodic boundary
conditions. The result is shown in the next figure.
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Figure 3.7: An interface of an A/B polymer blend with periodic boundary conditions, χN = 4.

3.2.3 Lamellar structure

Next, let us calculate a lamellar structure of a block copolymer melt. The data of the variable “SUSHI-
Input.components.polymers” are modified to produce an input UDF file “blend uin.udf”, where an A ho-
mopolymer and a B homopolymer are connected to form a diblock copolymer.

Since the system is composed of a single type of molecule, the value of the volume fraction in ”SUSHI-
Input.volume fractions.polymer volume fractions[]” should be changed to unity for the species id0. As the
order-disorder point of the block copolymer melt is different from that of the polymer blend, you have to
increase the value of χN , for example χ = 0.4 (χN = 16). The domain specification specified in
“SUSHIInput.external conditions.static conditions.domain specification conditions[]” should be canceled.

// Data

.....

polymers [

id0 { // Polymer

type "BLOCK"

blocks [

id0 { // Block

monomer_name "A"

number_of_monomer 20

}

id1 { // Block

monomer_name "B"

number_of_monomer 20

}

]

junction_pairs [

]

}

The modified input UDF file is “block uin.udf”. The simulation result for this input UDF file is as follows.
Obviously, a lamellar structure is obtained. As the system size is not optimized to the lamellar spacing, the
obtained lamellar structure may not be the globally stable equilibrium state with the minimum free energy.
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Figure 3.8: Lamellar structure of a block copolymer melt with χN = 16.

3.2.4 Effect of solid wall

Next, let us simulate a polymer solution near a solid wall. This can be performed by slightly modifying
the contents of “interface uin.udf”. First, the boundary conditions (NEUMANN, NEUMANN) should be
changed to (WALL or DIRICHLET, NEUMANN), the former corresponding to the solid wall. To simulate
the polymer solution, set the chain lengths of A and B as 100 and 1, where the polymer B corresponds to
the solvent. Instead of specifying the solvent as a polymer with length 1, you can also specify it as a solvent
directly. Now we choose the value of χAB as 0.5 so that the solution corresponds to a θ-solvent. In order
to simulate a semi-dilute solution, the volume fractions of A and B are set to 0.001 and 0.999, respectively.
The most important modification of the input UDF data is the change of the statistical ensemble and the
volume fraction. We should use the grand canonical ensemble instead of the canonical ensemble, and have
to specify the “bulk volume fraction” if necessary. The input UDF data thus obtained are as follows.

// Data

volume_fractions { // VolumeFractions

polymer_volume_fractions [

id0 { // Volume fraction

Id 0

volume_fraction 0.001

ensemble "GRANDCANONICAL"

bulk_volume_fraction -1

}

id1 { // VolumeFraction

Id 1

volume_fraction 0.999

ensemble "GRANDCANONICAL"

bulk_volume_fraction -1

}

.....

}

The statistical ensemble is specified as GRANDCANONICAL. As we do not specify the “bulk volume fraction”,
the values of the “volume fraction” at the reflective boundary are automatically used as the values of the
“bulk volume fraction”. Then the simulation result will be an grad canonical equilibrium state in contact
with the bulk state. The modified input UDF data are stored in the file “depletion uin.udf”. The simulation
result is as follows.
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Figure 3.9: Depletion near a solid wall

The chains are excluded from the region close to the solid wall, and a depletion zone is formed. This is
due to the entropic effect of the polymer conformation that does not like to sit in the vicinity of the solid
wall.

3.2.5 Adsorption

If there is an attractive interaction between a solid wall and polymers, what will happen? Let us perform
a simulation of such a system. The input UDF data can easily be modified so that the interaction between
the wall and the polymer is introduced.
The parameter “SUSHIInput.external conditions.surface chi parameters[]” is specified as follows.

// Data definition

class SurfaceChiParameter:{

boundary_name:string // The name of the boundary wall that produces the interaction.

target_name:string // The name of the target segment species.

parameter:double // The value of the chi parameter.

}

class ExternalConditions:{

surface_chi_parameters[]:SurfaceChiParameter

....

}

SUSHIInput:{

.....

external_conditions:ExternalConditions .....

.....

}

// Data

external_conditions { // ExternalConditions

surface_chi_parameters [

id0 { // SurfaceChiParameter

boundary_name "XMin"

target_name "A"

parameter -2

}

]

....
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}

The interaction parameter between YZ surface at X= 0 and the A-type segment is set as −2. The modified
input UDF data are stored in “adsorption uin.udf”. The simulation result is shown in the following figure.
While the polymers formed a depletion layer in the previous example, such a depletion layer disappears in
the present example due to the adsorption of the polymers to the solid wall.

Figure 3.10: Adsorption of polymers to a solid wall

3.2.6 Grafted chains

If the chains are grafted rather than are adsorbed to a solid wall, what will happen? Let us modify the input
UDF file “depletion uin.udf” so that the one end of the A polymer is grafted to the wall. Additional UDF
data for the grafting condition are “SUSHIInput.external conditions.graft conditions[]”.

// Data definition

class GraftCondition:{

polymer_ID:int // ID of the grafted polymer.

junction_ID:int // ID of the grafted free end.

boundary_name:string // The name of the boundary onto which the polymer is grafted.

obstacle_ID:int

}

class ExternalConditions:{

....

graft_conditions[]:GraftCondition

....

}

SUSHIInput:{

.....

external_conditions:ExternalConditions .....

.....

}

// Data

graft_conditions [

id0 { // GraftCondition

polymer_ID 0

junction_ID 0

boundary_name "XMin"



3.2. EXAMPLES OF 1-DIMENSIONAL CALCULATION 57

}

]

In this case, the free end with ID 0 of the polymer with ID 0 is grafted to the YZ surface at X = 0. Simul-
taneously, the UDF data “SUSHIInput.volume fractions.polymer volume fractions[]” should be modified as
follows.

// Data

volume_fractions { // VolumeFractions

polymer_volume_fractions [

id0 { // VolumeFraction

Id 0

volume_fraction 0.001

ensemble "CANONICAL"

bulk_volume_fraction -1

}

id1 { // VolumeFraction

Id 1

volume_fraction 1.

ensemble "GRANDCANONICAL"

bulk_volume_fraction -1

}

.....

}

The statistical ensemble for the polymer A should be CANONICAL, because the grafting polymer cannot
escape from the system and therefore the exchange between the system and the bulk phase is inhibited.
The volume fraction of the polymer B is changed to 1.0 from 0.999. This means that the bulk phase is
composed of only B polymers, and all the A polymers are grafted to the wall. The modified data are stored
in “graft uin.udf”. When you perform the simulation run, the SUSHI will give you a warning telling you
that the sum of the volume fractions is not equal to 1.0. You can neglect this warning. The simulation result
is shown in the next figure.

Figure 3.11: Graft

Due to the grafting condition, the segments of the polymer are distributed near the wall with a depletion
layer in the vicinity of the wall surface.
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3.3 Example of two dimensional simulations

Next we explain how to perform two-dimensional simulations.

3.3.1 Phase separation dynamics of an A/B polymer blend system

Let us retry the simulation of the A/B polymer blend with χN = 4 in a system with the periodic boundary
conditions, which was discussed at the beginning of Section 3.2.1. An extension to a two-dimensional system
is easy. To realize this, you have only to add an extra “Axis” to “SUSHIInput.mesh.axes[]”. The input UDF
data stored in “blend2D 4 dy uin.udf” is for a simulation of an A/B polymer blend system with 32 × 34
meshes. (The shape of the system is intentionally chosen as non-square shape so that we can check whether
the two-dimensional system is appropriately treated.) In order to accelerate the simulation runs, we choose a
shorter polymer length of 10 and larger χ parameter value of 0.4. However, the system is essentially the same
as that described by “blend uin.udf”. Only exception is that the type of “SUSHIInput.calculation method”
is set to DYNAMICS in order to perform a dynamic simulation. In this case, we can choose a rather
large value 1.0 for the parameter “constW”. This is because the segment densities ϕ’s are fixed during
the SCF iterations at every time step. When you specify the dynamic simulation, the UDF parameter
“SUSHIInput.calculation method.DYNAMICS” becomes effective. The actual format and the data for this
parameter are as follows.

// Data definition

class DynamicsParameter:{

delta_t:double // The time mesh width.

variable_delta_t:VariableDelt // Parameters for variable time mesh.

max_dynamics_step:int // The total numbers of the time steps.

output_interval_step:int // Output step interval.

archives_interval_step:int // Output step interval to the archives file.

log_interval_step:int // Output step interval to the standard output file.

dynamics_scheme:select { "EXPLICIT", "EXPLICIT2", "IMPLICIT" } // EXPLICIT is the default value.

// The scheme for the integration of the equation of motion.

// EXPLICIT The explicit scheme. Usually, this scheme is enough. Euler scheme.

// EXPLICIT2 The 2nd explicit scheme. 2step Runge-Kutta scheme.

// IMPLICIT The implicit scheme.

compressibility:double // Compressibility for SCF

}

class CalculationMethod:{

type:select { "STATICS", "DYNAMICS", "MONTECARLO" }

DYNAMICS:DynamicsParameter // Refer to Section 2.7.10.

MONTECARLO:MonteCarloParameter

}

SUSHIInput:{

calculation_method:CalculationMethod

.....

}

// Data

SUSHIInput:{ // SUSHIInput

....

calculation_method { //CalculationMethod

type "DYNAMICS"

DYNAMICS { //DynamicsParameter

delta_t 0.01

max_dynamics_step 500000

output_interval_step 5000

archives_interval_step 5000

log_interval_step 1

dynamics_scheme ""
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compressibility 0

}

.....

}

....

}

The important parameters in the dynamic simulations are the time mesh width, the total numbers of the
time steps, and the output step interval. In the above example, we did not specify the “dynamics scheme”.
In such a case, the explicit scheme is used as a default, which is sufficient for almost all the cases. Time
mesh width is the most important parameter. If this parameter is chosen to be too large, the simulation
will soon diverge. If it is too small, the time evolution becomes accordingly slow. Although the value of the
time mesh width is in general depends on the spatial mesh width, the time mesh width of 0.001 is usually
a good selection for the spatial mesh width 1. In dynamic simulations, one can specify the mobilities of
the polymer segments and the solvents by “polymer mobilities” and “solvent mobilities” in the UDF data
“SUSHIInput.external conditions.dynamic conditions”. When a very low-concentration component exists
in the system, these mobilities should appropriately be specified. For the details, readers should refer
Sections 2.6 and 2.7.10. In the following example, we do not specify these parameters. If the value of the
compressibility is larger than 0, the compressible dynamics is enable.

// Data definition

class SegmentMobility:{ // Mobility of a segment.

segment_name:string // The name of the segment/solvent whose mobility is specified.

mobility:double // The value of the mobility.

}

class LocalMobility:{ // The position dependent mobility.

component_ID:int // ID of the component.

type:select { "ROUSE", "REPTATION" }

}

class DynamicConditions:{

segment_mobilities[]:SegmentMobility

types_of_polymer_mobility[]:LocalMobility

types_of_solvent_mobility[]:LocalMobility

....

}

class ExternalConditions:{

....

dynamic_conditions:DynamicConditions

}

SUSHIInput:{

.....

external_conditions:ExternalConditions .....

.....

}

Now, open the simulation result stored in “blend dy 4 uot.udf” using GOURMET. Move your mouse cursor
to the SUSHIOutput subholder of the left side table and push the right button of the mouse. You can choose
”show field...” button to plot the result using GOURMET viewer. Clicking the “animation button” in the
lower left, you can obtain an animation of the time evolution. As is shown in the following figure, the time
evolution of the phase separation of an A/B polymer blend will be shown.
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Figure 3.12: Dynamics of an A/B polymer blend

3.4 Example of three dimensional simulations

Finally, we show an example of three dimensional simulations. As you may guess, the extension to a three
dimensional system can be done by adding one more mesh axis.

3.4.1 Cylindrical structure

As an example of the three dimensional simulations, let us simulate a domain morphology of a micro phase
separation. It is known that a block copolymer with the block ratio 0.25 and with χN = 20 shows cylindrical
structure. The mean field simulation by using SCF can reproduce such a cylindrical morphology. However,
the system can easily be trapped in a metastable state that corresponds to a local minimum of the free
energy functional. Thus, a perfect domain morphology without defects is not obtained by simply performing
a simulation from a uniform state as an initial condition. The most efficient method to realize the target
perfect morphology is to use the UDF data used in the example of the beginning of the section for the
static calculation, i.e. “SUSHIInput.external conditions.static conditions.domain specification conditions[]”.
Using this method, we can simulate the cylindrical structure as you can confirm using “cylinder 3D uot.udf”.
If you look at the input file “cylinder 3D uin.udf”, you can easily understand what we have specified in this
input UDF file. As is shown in the following figure, the simulation result can be visualized with use of
“show.py” on the “Viewer” of GOURMET. We can clearly observe a set of well aligned cylindrical domains.
Since the optimization of the periodicity of the cylindrical domains is not performed, the hexagonal cylinder
structure shown in the figure may not be the equilibrium state that has the minimum free energy. However,
we expect that you can understand how to create a desired domain morphology. If you use the “restart”
function of SUSHI, the optimization of the domain periodicity can also be performed.
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Figure 3.13: Cylindrical structure of a block copolymer melt

3.5 Final remarks

Although all the simulations shown in this chapter are performed on regular meshes, SUSHI can also perform
simulations on one dimensional spherical coordinates, two dimensional cylindrical coordinates, and so on.
The input data are not so different from those for the regular mesh. Moreover, many other functions are
also implemented in SUSHI. You can simulate an infinite variety of systems by combining the functions of
SUSHI. If you have any questions, you are encouraged to send a query to octa.jp BBS for help. We hope
that SUSHI can be a useful tool for your research.





Chapter 4

Sample problems

4.1 Calculation of interfacial tension for an A/B polymer blend

4.1.1 Outline

In this section, we show results of a study on the polydispersity effects on the interfacial tension of an A/B
homo polymer blend. Interfacial tension is defined as the excess free energy accumulated at the interface. It
is generally calculated as the difference between the total free energy of the target system with an interface
and the sum of the free energy values of individual uniform equilibrium systems that composes the two bulk
phases of the target system. By using SUSHI, the excess free energy can automatically be obtained from a
grand canonical SCF calculation if the segment density of each component in the equilibrium bulk phase is
known. Thus, the segment density in the bulk equilibrium phase must be obtained beforehand using coarse-
grained theories such as the Flory - Huggins mean field theory. This constraint limits the applicability of
the grand canonical SCF method to the multi-component blend systems. In this study, instead of the grand
canonical SCF calculation, we use the canonical SCF calculation to evaluate the interfacial tension, and we
will confirm the applicability of the method.

4.1.2 System and parameters

The effects of polydispersity on the polymer interfaces are investigated for A/B binary homopolymer mixtures
where both polymers have molecular weight distributions. The equilibrium structure of such a polymer blend
is obtained by the 1-dimensional static SCF calculation under the Neumann boundary condition. Now, let
the index K = A,B specify the segment species. We assume that each polymer component (K = A,B) is
subdivided into several kinds of chains specified by another index i each of which has different chain length.
Then, in this calculation, the parameters that determine the state of the system are the segment interaction
parameter χAB , the volume fraction ϕ0

Ki and the total chain length NKi of the i-type chain of the K-type
polymer. In addition, the equilibrium structure can efficiently be calculated by setting up the initial value
of the self-consistent field using external conditions. Readers should refer to Section 2.9.13 of the SUSHI
manual. Since the segment density profile of each component and the free energy of the equilibrium state
are output at the end of the calculation by SUSHI, the excess free energy of the system can be evaluated
with the following procedures.

4.1.3 Calculation procedure

Let us denote the segment density of the Ki type chains in the α-type bulk phase as ϕα
Ki, where α specifies

each of the coexisting equilibrium phases. Using the output data of these ϕα
Ki and the equilibrium free

energy F , one can calculate the free energy of the bulk phase f bulk and the equilibrium chemical potential
of each component µKi. Then, the excess free energy Fexcess is calculated as follows.
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∑
i

ϕα
i

Ni
ln

ϕα
i

Ni
+

1

2

∑
ij

χijϕ
α
i ϕ

α
j (4.1)

µi = 1 + ln
ϕα
i

Ni
+Ni

∑
j

(
χijϕ

α
j −

ϕα
j

Nj

)
− 1

2
Ni

∑
jk

χjkϕ
α
j ϕ

α
k (4.2)

63



64 CHAPTER 4. SAMPLE PROBLEMS

Fexcess = LF − Lf bulk − L
∑
i

µi

(
ϕ0
i − ϕα

i

)
Ni

. (4.3)

Here, we redefined the indices i, j, and k in these equations so that they specify all types of the polymer chains
in the blend system (i.e. i component of K polymer, eg. A1, A2, · · ·, B1, B-2, and · · ·), and the parameter
L expresses the system size in the SCF calculation. The above calculation procedure can automatically
be performed by a Python script. On the other hand, using the interfacial problems as a target, we show
three examples of the extensions of SUSHI described in the appendices. Source programs for these extended
simulators are stored under the “InterfaceSimulator” directory. The names of these simulators are

• FluidSimulator(fluid)

• MicelleSimulator(micelle)

• SurfaceSimulator(surface).

A set of calculation procedures for the interfacial tension is packaged in the input UDF file named
“fluid.udf” for the FluidSimulator. Please refer to the appendix D

4.1.4 Effect of polydispersity

Broseta[22], Anastasiadis[23] and their coworkers evaluated the free energy of an immisible homo polymer
blend based on the Flory-Huggins model combined with random phase approximation (RPA), and by exper-
iments. They expressed the polydispersity effects on the interfacial tension in terms of the number-averaged
molecular weight of each polymer component. Using SUSHI, we calculated the effects of polydispersity on
the polymer interfaces of a simple A/B binary homopolymer mixture where both polymers have the same
bimodal molecular weight distribution. For such a system, the value of the excess free energy Fexcess is
obtained by the above method, from which we investigated its dependence on the number average molecular
weight by changing the chain length and the volume fraction. We found that each system shows almost
the same behavior, which resembles to that of the molecular weight dependence of a mono disperse polymer
blend system. Moreover, as is expected, we confirmed that it asymptotically approaches the theoretical value
of the interfacial tension obtained by Helfand and Tagami[24] in the limit of infinite molecular weight. These
calculation results are not in contradiction to the theoretical prediction and the experiment. Therefore,
our proposed calculation scheme is considered to be a more flexible method than the one using the grand
canonical ensemble. On the other hand, the excess density profiles of both the short chain and the long
chain components show that the short chains are accumulated near the interface and depletion of a long
chain takes place. Therefore, the SCF analysis on the structure of the interfaces in polydisperse polymer
blends is quite useful in improving the physical properties of the interfaces (interfacial tension, thickness,
adhesion, etc.). Although it is a target of the future research, an extension of the current static calculation
to dynamic processes using the dynamic mean field calculation will also be efficient and useful.

Figure 4.1: Molecular weight dependence of the excess free energy (χAB = 0.25)
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Figure 4.2: Excess segment density profiles of short and long chains (χAB = 0.25)

4.2 Calculation of micellar distribution of an A-B diblock copoly-
mer

4.2.1 Outline

When an A-B block copolymer is dissolved into a selective solvent, molecular aggregates called micelles are
formed. Usually, polydispersed micelles are formed when the concentration of the polymer exceeds a certain
critical micelle concentration(cmc).

Here, we will describe how to calculate the size distribution of the micelles in a diblock copolymer solution
at a given concentration. In order to simplify the problem, we assume that the system is composed of an
AB diblock copolymer and a solvent C, and also assume that the micelles are spherical. We can simulate a
certain amount of the AB block copolymer dissolved into the solvent C by using the canonical ensemble where
the volume fraction of each component is kept constant. When the concentration of the block copolymer
is considerably high, such a calculation method can reproduce a regular structure called a liotropic liquid
crystal. However, the method is not applicable to a micellar solution whose concentration is close to cmc.
This is because the micelles can not be spontaneously formed due to a large free energy barrier in forming a
micelle with the critical size. Therefore, in order to simulate a micellar solution, the following two procedures
are needed.

1. First, we have to calculate the structure of an isolated micelle with all possible sizes by SUSHI and
determine the value of the excess free energy for each of these micelles.

2. The free energy of a micellar solution is defined as a function of the distribution of the micellar size,
and the free energy is minimized with respect to such a distribution of the micellar size under the
condition that the concentration of the whole polymers is fixed.

Details of these procedures are given below.

4.2.2 Calculation of an isolated micelle

When treating an isolated micelle, we need to keep the aggregation number of the micelle constant. For such
a purpose, we calculate the block copolymer using the canonical ensemble and the solvent using the grand
canonical ensemble, respectively, with the bulk concentration of the solvent to be 1.0. Furthermore, in order
to obtain a stable micelle, the ends of the subchains that dislike the solvent are restricted in a certain region
at the center of the micelle. Such a calculation can be done using the MASK function currently implemented
in SUSHI. If the region to which the chain ends are restricted is too small, the free energy of the system will
be excessively large because the numbers of the possible conformations of the chains are strongly limited. In
order to estimate the suitable size of the micelle, several trial and error simulations are needed. The example
of the static SCF calculation for an isolated micelle with the aggregation number p = 30 is shown for a
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system composed of a block copolymer A40B10 and a solvent C. The χ parameters are set as χAB = 1.0,
χBC = 0, and χAC = 1.2, respectively. The structure of the calculated micelle is shown in fig. 4.3.

Let us denote the excess free energy of a micelle divided by its aggregation number p as f(p). This f(p)
is calculated using the above-mentioned procedure for each aggregation number p, and the result is shown
in fig. 4.4. We observe that f(p) takes its minimum value at p = 29. This value p = 29 gives an estimate
of the optimal micellar size. Strictly speaking, one has to minimize the free energy of the whole micellar
solution taking the translational entropy of micelles into account. The following paragraph describes such a
procedure.
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Figure 4.3: Segment density profiles of a micelle with the aggregation number 30.

4.2.3 Calculation of the micellar size distribution

The free energy of a micellar solution is given by the following equation.

F ({ϕp}) /kBT =
∑
p

ϕp

(
1

Np
lnϕp + f(p)

)
. (4.4)

Here, ϕp expresses the distribution of the volume fraction of the micelles with the aggregation number p,
i.e. the micellar size distribution in the micellar solution. To obtain the optimum distribution, we have to
minimize Eq. (4.4) under the constraint that the total polymer volume fraction ϕ =

∑
p ϕp is fixed. For

example, using f(p) shown in fig. 4.4, we can obtain the micellar size distribution as shown in fig. 4.5 for
ϕ = 0.005 and 0.04. Even if the volume fraction of the total copolymer is increased by a factor of 10 or
more, the volume fraction of the isolated copolymer chains is almost unchanged. Such a concentration of
the isolated copolymers is equivalent to the critical micelle concentration. Therefore, we conclude that the
characteristic behavior of micellar formation is well reproduced by this method.

Using a Python script, we can perform the calculation of the distribution {ϕp}. In the script, a Lagrange
multiplier µ is introduced and the distribution is optimized by minimizing F ({ϕp})−µ(

∑
p ϕp−ϕ) for given

µ. In principle, µ is a unique function of ϕ. In the present Python script, however, we simply calculate ϕ as
well as the micellar size distribution for a given value of µ. Therefore, in order to obtain the micellar size
distribution at a given volume fraction ϕ, one needs to adjust manually the value of µ running the script
repeatedly.
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Figure 4.4: Free energy per a copolymer chain in a micelle with the aggregation number p.
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Figure 4.5: Distribution of the aggregation number of micelles in a micellar solution
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4.3 Sample UDF list

Here, the contents of the sample UDF files are explained.

ab ring uin.udf / uot.udf

1D static calculation of a ring A/B block copolymer.

adsorption uin.udf / uot.udf

Adsorption of a polymer to a solid wall explained in Chapter 3.

blend uin.udf / uot.udf

Interface of an A/B polymer blend explained in Chapter 3.

blend2D 4 ADF dy uin.udf / uot.udf

Simulation result of a 2D dynamic mean-field calculation of the Approximate Density Functional type
model on the phase separation of an A/B polymer blend. This method is under development.

blend2D 4 FH dy uin.udf / uot.udf

Simulation result of a 2D dynamic mean-field calculation of the Flory-Huggins type model on the phase
separation of an A/B polymer blend explained in Appendix C.

blend2D 4 HYBRID uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend by using the
hybrid theory.

blend2D 4 RPA uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend by using the
GRPA.

blend2D 4 RPA HYDRO uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend by using the
GRPA and hydrodynamics.

blend2D 4 dy1 uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend explained in
Chapter 3.

blend2D 4 dy1 comp uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend with compress-
ibility.

blend2D 4 dyr1 uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend by using the
ϕ-dependent mobilities.

blend2D 4 dyr1 const uin.udf / uot.udf

Restart of blend2D 4 dyr1 uot.udf

blend2D 4 dyr1 rest uin.udf / uot.udf

Continue of blend2D 4 dyr1 uot.udf

blend2D 4 dy1r shear uin.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend with shear.

block uin.udf / uot.udf

1D static calculation of the lamella structure of a block copolymer melt explained in Chapter 3.

block2D 7 dy1 uin.udf / uot.udf

2D dynamic calculation of the phase separation of a block-copolymer melt.

block2D 7 lamella uin.udf / uot.udf

2D static calculation of the lamella structure of a block copolymer melt.

block2D 8 dy1 lo uin.udf / uot.udf

2D dynamic calculation of the phase separation of a block-copolymer melt with system size optimiza-
tion.

block2D 8 dy1 lo comp uin.udf / uot.udf
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2D dynamic calculation of the phase separation of a block-copolymer melt with system size optimization
and compressibility of system.

block2D 8 dy1 lo comp2 uin.udf / uot.udf

2D dynamic calculation of the phase separation of a block-copolymer melt with system size optimization
and compressibility in SCF.

block2D 8 dy1 lo comp comp uin.udf / uot.udf

2D dynamic calculation of the phase separation of a block-copolymer melt with system size optimiza-
tion, compressibility of system, and compressibility in SCF.

block2D 8 lo uin.udf / uot.udf

2D static calculation of the phase separation of a block-copolymer melt with system size optimization.

block el uin.udf / uot.udf

1D static calculation of the lamella structure of a block copolymer melt, ends of which are strong
polyelectrolyte.

block el3 uin.udf / uot.udf

1D static calculation of the lamella structure of a block copolymer melt, ends of which are strong
polyelectrolyte with dielectric constants of segment.

comb2D 16 uin.udf / uot.udf

2D static calculation of the equilibrium structure of a comb copolymer melt.

comb3D 16 uin.udf / uot.udf

3D static calculation of the equilibrium structure of a comb copolymer melt.

cylinder3D a uin.udf / uot.udf

3D static calculation of the cylinder structure of a block copolymer melt by the domain specification
method. Explained in Chapter 3.

depletion uin.udf / uot.udf

Depletion of a polymer near a solid wall explained in Chapter 3.

graft uin.udf / uot.udf

A polymer grafting to a wall explained in Chapter 3.

graft dy step0 uin.udf / uot.udf, graft dy uin.udf / uot.udf

A sample input UDF for the dynamics of a graft reaction. Restart calculation is performed according
to the input UDF file graft dy step0 uot.udf.

interface uin.udf / uot.udf

Interface of an A/B polymer blend explained in Chapter 3.

micelle uin.udf / uot.udf

1D static calculation of a micelle.

montecarlo uin.udf / uot.udf

2D Monte Carlo calculation of a comb copolymer in a solution.

nonpolyd uin.udf / uot.udf, polyd uin.udf / uot.udf

1D static calculation for polydisperse polymers near a solid wall. In the “nonpolyd” case, the symmetry
in the path integral is not taken into account in the calculation. One can use these two UDF files to
compare the efficiency of the calculation using the symmetry in the path integrals.

quench uin.udf / upm.udf / uot.udf

Simulation result of a 2D calculation of the phase separation of an A/B polymer blend with time
dependent χ parameter. The χ parameters are recorded in the parameter file.

solventSol eq uin.udf / uot.udf

2D static calculation of the equilibrium state of a mixture of a solvent and a polymer.

star2D 8 uin.udf / uot.udf

2D static calculation of the equilibrium state of a star-type copolymer melt. The Python script
show3color.py can display the density distributions of the three components with different colors.

star3D 8 uin.udf / uot.udf
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3D static calculation of the equilibrium state of a star-type copolymer melt. The Python script
show3color.py can display density distributions of the three components with different colors.

taper2D 12 uin.udf / uot.udf

2D static calculation of the equilibrium state of a tapered polymer melt.

taper3D 12 uin.udf / uot.udf

3D static calculation of the equilibrium state of a tapered polymer melt.

testRg uin.udf / uot.udf

An example of the calculation of Rg. 1D static calculation of Rg of a chain whose one end is fixed at
a point in a solvent.

testRg2 uin.udf / uot.udf

An example of the calculation of Rg. 1D static calculation of Rg of a full chain whose one end is fixed
at a point in a solvent.

triblock2D 7 uin.udf / uot.udf

2D static calculation of the equilibrium structure of a triblock copolymer melt. The Python script
show3color.py can display the density distributions of the three components with different colors.

EZ1a uin.udf / uot.udf

2D dynamic calculation under a weak external electric field. Treatment of the weak effect of external
electric field.

EZ2a uin.udf / uot.udf

2D dynamic calculation under an external electric field. General treatment of the effect of external
electric field.

EZ3a uin.udf / uot.udf

2D static calculation under an external electric field. General treatment of the effect of external electric
field.

particle1 uin.udf / uot.udf

2D static calculation with a particle.

particle2 uin.udf / uot.udf

2D static calculation with particles.

particle2B uin.udf / uot.udf

3D static calculation:diblock copolymer in a sphere

cylinder block uin.udf / uot.udf

Diblock copolymer in cylindrical mesh.



Chapter 5

Operation guide of SUSHI

5.1 SUSHI

SUSHI can be started by typing a command from the console. The supported operating systems are MS
Windows and Linux. Although SUSHI has no implementation of GUI, one can use SUSHI as if it is running
on a GUI by using the UDF format files on GOURMET.

5.2 File System of SUSHI

The directory structure of SUSHI is as follows.

OCTA/PF_ENGINE/SUSHI10.54/

Susi--+--def_udf--+--SUSHIInput.udf : definition of input UDF format

| +--SUSHIOutput.udf : definition of output UDF format

| +--SUSHIParameter.udf : definition of parameter UDF format

|

+--include : include files

|

+--sample---+--Input : sample inputs ( sec. 5.5-7 )

| +--Input_V2 : sample inputs version 2 ( sec. 5.12 )

| +--Output : sample outputs ( sec. 5.8-10 )

| +--Seed_Input : sample inputs by SEED ( sec. 5.14-15 )

|

+--src : source files

“SUSHIInput.udf” contains definitions of the input UDF format, and is used when an input UDF file is
created. On the other hand, “SUSHIOutput.udf” is usually not necessary. You can use it to know the data
structure of the output UDF file.

The executable load modules are stored in the following directories.

OCTA/PF_ENGINE/SUSHI10.54/

Susi/bin----+--cygwin--------+--sushi.exe : load module for Cygwin

|

+--k-------------+--sushi : load module for K-computer(compile option)

|

+--linux---------+--sushi : load module for 32 bit Linux

|

+--linux_64------+--sushi : load module for 64 bit Linux

|

+--aix-----------+--sushi : load module for AIX(compile option)

|

+--win32---------+--sushi.exe : load module for 32 bit windows

|

+--x64-----------+--sushi.exe : load module for 64 but windows

71
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5.3 Starting method

The current version of SUSHI can read/write files with two different formats, i.e. the UDF format and the
SEED (Simple and Easy Editable Data) format. The UDF format files can be read or edited using the
GUI of GOURMET. The UDF files have well-defined structures and therefore prevent the user from making
mistakes when preparing the input files. Please refer to UDF manual about the details of the UDF format.
On the other hand, the SEED format has a simple structure. Thus, it is easy for the user to prepare the
SEED files although he/she has to type the keywords by himself/herself. The file of SEED format should
obey the UNIX-type format (each line ends with LF).

Parllel version names are used as follows sushiPTL: Pthread Library using shared memory version.
sushiGPU: NVIDIA GPU version. sushiMPI: MPI version.

Starting SUSHI from the console

To start SUSHI from the console, the following command should be used.

> sushi -I full_input_file_name

-O full_output_file_name

-R full_restart_file_name -rrecord_number_for_restart [-w]

-L scf_log_file_name_of_dynamics

-M message_file_name

-C calculation_profile_file_name

-A archives_of_latest_record_file_name

-S summary_of_calculation_file_name

-P control_parameter_file_name

-Z special_COGNAC_input_file_name

-n number_of_core_for_pthread_calculation

-b number_of_threads_per_block_for_CUDA

-d parameter_for_GPU_device

Here the arguments -I, -O, -R, -L, -M, -C, -A, -S, -P, -Z are parameters specifying the names of input/output
and supplementary files. The meanings of these arguments of SUSHI are as follows

Input -I full_input_file_name (including the file name extension)

In case this is a UDF format file, the file name extension

must be ".udf", and the data structure should match the

data structure defined in "SUSHIInput.udf" file.

SUSHI automatically regards a file as an input file, if the

file name ends with "_uin.udf". Therefore, the filename of an

input UDF file is in general "input_file_name_uin.udf".

In case the input file is a SEED format file, the file name

extension must be ".sin", and therefore the general file name

of a SEED input file becomes "input_file_name.sin".

Output -O full_output_file_name (including the file name extension)

The simulation data are written in this file with the data

format defined in "SUSHIOutput.udf". When this parameter

is not specified, SUSHI automatically creates an output file

with the name "input_file_name_uot.udf", where "input_file_name"

is the same as that of the input file name specified above.

Restart -R full_restart_file_name (including the file name extension)

This parameter specifies an output file name of a previous job

whose data are used for the initial condition of the present job.

The data structure of this restart file must obey those defined

in "SUSHIOutput.udf" file. When this parameter is not specified,

SUSHI assumes "input_file_name_uot.udf" as the restart file name

and appends new record to the end of this file.
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-r record_number_for_restart

This parameter specifies which data in "full_restart_file_name" file

are used as the initial condition for the present restart job.

The "record_number_of_restart" parameter corresponds to the

\begin{record}{"Step number"} written at the top of each output record

in the "full_restart_file_name" file.

In case of a dynamic calculation, the final state of the system is

written in the "archive file" whose default name is

"input_file_name_uar.udf". This archive file can conveniently be

used as the restart file, with which the restarting process becomes

faster.

If you do not use this option, SUSHI restarts from the final record.

-w

Restart without the parsing procedure of the restart file.

This option is valid only for the files generated by SUSHI.

This option saves memory, accelerates to read and will be efficient

when restarting using a large file.

As GOURMET modifies the output file of SUSHI and stores the result

to a file in a text format, it is necessary to parse the text

file when reading the file. We recommend to use this option.

Log of SCF -L scf_log_file_name_of_dynamics

The status of the convergence scheme at every step of the SCF

iterations is written in this file. This file is overwritten at every

time step of the dynamic simulation.

Sometimes this file becomes considerably large. In such a case, the

output to this file can be suppressed by specifying the name

"/dev/null" (for the UNIX type OS) or "nul" (for Windows type OS).

If this parameter is not specified, SUSHI creates a file named

"input_file_name_usl.udf" automatically.

( It has a extension udf but is not a UDF format file. )

Log -C calculation_profile_file_name

The status of the time evolution of a dynamic simulation is written

in this file. The status of the SCF convergence is written in this

file in the case of static calculation.

The interval between the consecutive file output events can be

specified by the SCF_parameter.output_interval_step or

the dynamics_parameter.output_interval_step in the input file.

When this Log file name is not specified, the standard output is used.

Archives -A archives_of_latest_record_file_name

At every n time steps, the state of the system is written in this

archives file.

The time step interval n can be specified by the

dynamics_parameter.archives_output_interval_step in the input file.

When this archives file name is not specified, SUSHI creates a

file named "input_file_name_uar.udf" automatically.

Message -M message_file_name

A control message ( RESUME, RUN, STOP, etc. ) is read from this file.

Summary -S summary_of_calculation_file_name

SUSHI writes this file as a summary for GOURMET.

The max error profile for the judgement of the SCF convergence is

written to this file in the static equilibrium calculation.

The free energy profile is written to this file in the calculation

of dynamics. The number of record is limited to 100.

When this file name is not specified, SUSHI writes no summary.

Please refer to the GOURMET manual.

maximum number -m maximum_number_of_summary_data

of summary data This parameter specifies the maximum number of summary data which
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means the size of horizontal axis of summary graph such as fig. 5.2.

The default value of the maximum number is 100.

number of CPU -n number_of_CPU

SUSHI uses multi threads of which the numner of threads is the same of

the number_of_CPU.

The compelation with "MULTICPUT=on" is needed for this option.

Attention, since the efficiency of parallel processing is low yet,

the parallel calculation is available for large systems.

number of -b number_of_threads_per_block_for_CUDA

threads per block Number of threads per block for CUDA（default 256)

parameter for -d parameter_for_GPU_device

[order of device id to use].[coefficient for memory]

Example:"012.9" mesans that use device 0, 1, and 2 in the order of

device id, and use maximum memory unitil "device memory"*0.9

in eachi device.

All selected memories are used in the last device.

The memory of the final device is used over the "device memory"*0.9

with warning until the job is aborted.

8: When MPI version, use all devices(default only use id 0)

17: Show all devices name and terminate.

Parameter -P control_parameter_file_name

SUSHI reads control parameters from this file.

When this file name is not specified, No control parameter can be read.

Refer to Section 5.12

Kill -K kill_file_name

If you use this option, SUSHI will be killed by recognizing the

existence of the kill_file on the directory running SUSHI.

InputUDF -i

If this parameter is specified, SUSHI writes the definition of the

UDF input data structures defined in "SUSHIInput.udf" file to the

standard output and SUSHI terminates.

OutputUDF -o

If this parameter is specified, SUSHI writes the definition of the

UDF output data structures defined in "SUSHIOutput.udf" file to the

standard output and SUSHI terminates.

SEEDinput -s

If this parameter is specified, SUSHI sorts the data in the input

SEED file "input_file_name.sin" in the alphabetic order with respect

to the keywords. The sorted data are written in the standard output

and SUSHI terminates.

Staging -t mode

Staging means the gather and scatter operations of global and local files.

This is used mainly for MPI parllel calculation because very large

global data can not keep on the rank0 process memory thus a global (data)

file must be separated to local (data) files.

You can invoke several options with mode as follows.

----------------------------------------------------------------------

mode

0 Only output log file, for test work.

1 General staging, not use global file.

2 A global file is scattered to local files.

3 Local files are gatherd to a global file.

----------------------------------------------------------------------

Where local files are written with number of rank as

000000,000001,000002......

You can use other options, please refer the description with -h option.
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Attention:Text input file is useful for large scale calculation, thus

SEED format should be used for the calculation with staging.

SEEDconverter -u

If this parameter is specified, SUSHI reads the input SEED file

"input_file_name.sin", converts it into a UDF format and store the

UDF data into a UDF file "input_file_name_uin.udf" and terminates.

version -v

Show the version of SUSHI and terminates.

help -h

Show the usage of SUSHI and terminates.

Zooming -Z special_COGNAC_input_file_name

The special file for COGNAC, which is the "relax_in.udf" or "restart_in.uid"

in def_udf for zooming.

When the relax_in.udf is used, the coordination of beads for COGNAC are generated

by COGNAC.

When the restart_in.udf is used, the coordination of beads for COGNAC are generated

by SUSHI.

New file relax_input_file_in.udf or relax_restart_file_in.udf for COGNAC

will generated.

If a file with the SEED format is specified as the input file of SUSHI, SUSHI creates corresponding input
file with the UDF format named

“input file name uin.udf” ( SUSHIInput.udf format ),
“input file name uinv2.udf” ( SUSHIInputV2.udf format ), and
“input file name upr.udf” ( SUSHIParameter.udf format ) automatically.

Execution using MPI

Run sushiMPI as
> mpiexec/mpirun -n number_of_processes sushiMPI -I.....

where selection of MPI command, mpiexec or mpirun, is depended on the MPI library you use when com-
pelation.

The number of processes must match the product of number of division of all axes for MPI. All axes
must be devided to use MPI. Please refer the input method of Mesh UDF.
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Starting SUSHI from GOURMET

In GOURMET, we use the terminology ”Engine” for the simulators. The same terminology is also used in
UDF for the same purpose. Thus, in the following, the word “engine” always means a simulator.

• Start GOURMET and select “Tool/Engine Run”. Then, you can see the ”Engine Run” window as
follows.

• In the “Run name:” box, specify the desired run name.

• In the “Engine:” box, specify the name of the suitable version of SUSHI for your operating system.

• In the “Input UDF:” and “Output UDF:” boxes, specify the names of the input UDF file and the
output UDF file, respectively.

• Start the engine by clicking the “Run” button.

• After finishing your job, close the ”Engine Run” window by clicking the “OK” button.

Figure 5.1: Engine run window

The UDF names that must be specified are Input( default ) UDF and Output UDF. If you specify Summary
UDF, you can check the change of the maximum error in the case of the static equilibrium calculation or
the change of the free energy in the case of the dynamic calculation. If you specify Params UDF, you can
control the execution of SUSHI. The next figure is the “Engine Control” window which is opened when
“Run” button is clicked.
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Figure 5.2: Engine control window

An example of the change of the maximum error is shown in the figure for the case of a static equilibrium
calculation. You can change the size of horizontal axis of the graph by using -m option. When you click
“Pasue” button, the execution of SUSHI pauses. While pausing, you can change the Parameter UDF file
that stores the control parameters to open new GOUMET window by clicking the “Param UDF” button.
After changing the Parameter UDF file, you can resume SUSHI by clicking “Resume” button. The definition
of Parameter UDF is described in sec. 5.12. Clicking “Stop” button stops the execution of SUSHI by sending
a messag to it. Clicking “Kill” button kills the running process of SUSHI.

For the details, readers should refer to the “GOURMET Operation Manual”.

5.4 Terminating SUSHI

There are two ways to terminate SUSHI. One way is to use the control window on GOURMET mentioned
above. The other is to put a file with arbitrary contents but with the name ”input file name.stp” on the
same directory that the SUSHI is running. In the case of the static equilibrium calculation, the job will be
terminated when an SCF iteration step is finished. In the case of the dynamic calculation, SUSHI terminates
when one time step of the dynamics is executed. Before terminating, SUSHI writes the current status of the
system to the output file.

5.5 Input UDF header

The header part of an input UDF file expresses the type of the engine, and has the following form.

\begin{header}

\begin{def}

EngineType:string;
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EngineVersion:string;

IOType:string;

ProjectName:string;

\end{def}

\begin{data}

EngineType:"SCFEngine"; // Engine type (reserved keyword)

EngineVersion:"141205"; // Engine version (reserved keyword)

IOType:"IN"; // Input-and-output type (always "IN" for input UDF files)

ProjectName:"WG2"; // Project name (reserved keyword)

\end{data}

\end{header}

In the current version of SUSHI, the following keywords should always be used.

EngineType: "SUSHI";

EngineVersion: ” 160104”;

IOType: "IN";

5.6 Input UDF definition

The data structures in the input UDF files for SUSHI take the following form, where the sentences starting
with // are comments. Although default values are defined for several parameters, we recommend the users
to specify all the parameters explicitly so that the conditions of the simulation system become clear. After
reading this section, please refer to Appendix A which explains the SUSHIInputV2.udf format. The format
is the upper version of the SUSHIInput.udf.

SUSHIInput:{

// Parameters for controlling the calculations ###############################

calculation_method:CalculationMethod // The parameter for calculation method.

start_condition:select { "START", "CONTINUE", "RESTART", "RESTART_READMESH" }

// The flag for starting condition

// START : normal start

// CONTINUE : continue with reading the mesh at the final recoerd

// RESTART : restart without reading the mesh at the final recoerd

// RESTART_READMESH : restart with reading the mesh at the final recoerd

solver_parameter:SolverParameter // The parameter for solver.

// Mesh and boundary condition ###############################################

mesh:Mesh

type_of_free_propagator_of_regular_mesh:select

{ "1NN-P","2NN-NP","2NN-P","3NN-P" }

// The type of the discretized Laplacian operator.

// This is for the regular mesh only.

boundary_condition:BoundaryCondition

// Refer to Section 2.9.3.

// Polymer and solvent #######################################################

monomers[]:Monomer

// Array of a monomer.

monomer_SCF_character_table[]:MonomerSCFChar

// Array of the characteristic properties of a monomer.

// This parameter is required only when the monomer has the internal

// states, for example, a tapered structure etc.

// Refer to Section 2.9.3.

components:Components

// A set of components (polymers and solvents) that can be used in the
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// simulations.

// ( Caution )

// ID’s of the polymers and the solvents used in the following are

// the index numbers of components.polymers[] and components.solvents[].

volume_fractions: VolumeFractions

// The volume fractions of the components in the system.

// ( Caution )

// Only the components listed in volume_fractions.polymer_volume_fractions[]

// and volume_fractions.solvent_volume_fractions[] are used in the simulations.

chi_parameters[]:ChiParameter

// Array of Chi parameter.

// Physical quantities that should be output. ################################

properties:Properties

// Specify the physical quantities that should be output.

// External conditions #######################################################

external_conditions:ExternalConditions

// External conditions to the system.

}

5.6.1 Main classes in the SUSHIInput

SUSHIInput.calculation method

class CalculationMethod:{

type:select { "STATICS", "DYNAMICS", "MONTECARLO" }

DYNAMICS:DynamicsParameter

MONTECARLO:MonteCarloParameter

}

SUSHIInput.calculation method.DYNAMICS

class DynamicsParameter:{ // These parameters are valid when the type is DYNAMICS.

delta_t:double // The time mesh width.

variable_delta_t:{// class VariableDelt　 Parameters for time mesh method

max_delta_t:double // The maximum delta_t

variable_coef:double // The coefficient for delta_t

// Procedure; //---------------------

// Start a dynamics

// (1) Calculate segment densities

// If all segment densities > 0

// delta_t = variable_coef * delta_t

// If delta_t > max_delta_t then

// delta_t = max_delta_t

// goto (2)

// else

// delta_t = delta_t / variable_coef

// goto (1)

// (2) goto next time step

}

max_dynamics_step:int // The total numbers of the time steps.

output_interval_step:int // Output step interval.

archives_interval_step:int // The output step interval to archives file.

// The default value is the same as output_interval_step.

log_interval_step:int // The output step interval for log.
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// The default value is 1.

dynamics_scheme:select { "EXPLICIT" , "EXPLICIT2" , "IMPLICIT" }

// The default value is EXPLICIT.

// The scheme for the integration of the equation of motion.

// EXPLICIT // The explicit scheme. Usually, this scheme is used. Euler scheme.

// EXPLICIT2// The2step Runge-Kutta scheme.

// IMPLICIT // The implicit scheme.

compressibility:double // Compressibility.

// Complete imcompressible condition is available by 0.

}

SUSHIInput.calculation method.MONTECARLO

It is need to input the parameters to SUSHIInput.external conditoins.monte carlo conditions for the Monte
Carlo simulation. Refer to 2.9.17 and 5.7.10.

class MonteCarloParameter:{ // These parameters are valid when the type is MONTECARLO.

max_monte_carlo_step:int // The total numbers of the Monte Carlo steps.

output_interval_step:int // Output step interval.

archives_interval_step:int // The output step interval to archives file.

// The default value is the same as output_interval_step.

log_interval_step:int // The output step interval for log.

// The default value is 1.

}

SUSHIInput.solver parameter

class SolverParameter:{ // The ‘‘solver" means a special-purpose simulator/simulation method.

type:select { "ADF", "FH", "RPA", "SCF" }

SCF:SCFParameter // The SCF (Self Consistent Field) method.

RPA:RPAParameter // RPA (Ginzburg-Landau using Random Phase Approximation)

ADF:ADFParameter // The ADF (Approximate Density Functional) method.

// (Under construction)

FH:FHParameter // The Cahn-Hilliard type dynamics method.

// The sample program, Refer to Appendix.

}

SUSHIInput.solver parameter.SCF

class SCFParameter:{

delta_s:double // The mesh width for the chain length used in the

// calculation of the path integral.

// This parameter is positive and the same value is used

// in the calculations of the path integral for both

// directions along the chain.

constV:double // The constant parameter used in the updating of

// the chemical potential in the SCF iteration scheme.

constW:double // The constant parameter used in the updating of

// the interaction between segments in the SCF

// iteration scheme.

error:double // The threshold value used in the judgement of the

// convergence of the iterations.

random_seed:int // Seed for the random number generator.
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standard_deviation:double // The standard deviation of the Gaussian random numbers

// used as the initial values of the segment density

// fields.

judge_method:select { "ABSOLUTE", "RELATIVE" }

// The method to judge the convergence of the iterations.

// This parameter is used only in the dynamic SCF

// calculations.

// ABSOLUTE : When the absolute value of the change in the density field "phi"

// becomes less than "error", the iteration scheme is terminated.

// RELATIVE : When the relative value of the change in the density field "phi"

// becomes less than "error", the iteration scheme is terminated.

// The RELATIVE method is usually severer than the ABSOLUTE method.

convergence_test_interval_step:int // Interval of above test. 0 means every step(i.e. = 1).

max_SCF_step:int // The maximum number of iterations allowed for the

// SCF calculation.

output_interval_step:int // During the SCF iterations, the data are written

// into the file/screen at every other

// "output_interval_step" iteration steps.

SCF_method:select { "INCORE", "DIRECT" }

// How to handle the memory area for the large data of the path integral.

// INCORE : All the data of the path integrals are kept on the memory.

// In this case, the calculation is faster but the system requires more

// memories.

// DIRECT : The data of the path integrals are recalculated when they are required.

// In this case, the calculation is slower but the system requires

// less memories.

pathintegral_scheme:string // The type of the scheme with which the evolution

// equation for the path integrals is solved.

// explicit : The explicit scheme. With a proper choice of "delta_s", this method

// can usually be used.

// implicit : The implicit scheme. When the integration of the path integral

// equations diverges, this method may improve the convergence of

// the integration.

}

SUSHIInput.solver parameter.RPA

Parameters for GRPA, refer to Section 2.6.

class RPAParameter:{

random_seed:int // Seed for the random number generator.

standard_deviation:double // The standard deviation of the Gaussian random numbers

// used as the initial values of the segment density

// fields.

// Attention;　 GRPA is available only for dynamics calculations.

// For the stable calculations

// The mobility type should be selected as ROUSE or REPTATION,

// Refer to Section 5.7.9.

// Time mesh method is recommended,

// i.e., variable_delta_t should be used.

}
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SUSHIInput.mesh

class Mesh:{

name:KEY

type:select { "REGULAR", "RECTANGULAR", "CYLINDRICAL", "SPHERICAL" }

axes[]:MeshAxis // Array of mesh axes.

// Array of mesh axes.

// Its dimension is the total number of coordinate axes of the system.

index_rule[]:int

// This specifies how the array elements (i, j, k) are arranged on the memory.

// The first argument i runs first for example (0,0,0),(1,0,0)..(X-1,Y-1,Z-1).

// For SUSHI, this is fixed as [0, 1, 2] except cylindrical mesh and

// is fixed as [2, 1, 0] for cylindrical mesh.

// Although this parameter does not affect the functions of SUSHI,

// it is used when the mesh data is passed to another simulator and

// is passed to the viewer on GOURMET.

}

SUSHIInput.boundary condition

class VolumeFractionsOnBoundaries:{

polymer_volume_fractions[]:VolumeFractionOnBoundary

solvent_volume_fractions[]:VolumeFractionOnBoundary

}

class BoundaryCondition:{

conditions[]:AxisBoundaryCondition // An array of the boundary conditions for each

// axis.

volume_fractions_on_boundaries:VolumeFractionsOnBoundaries

}

SUSHIInput.components

class Components:{

polymers[]:Polymer // Array of polymers.

solvents[]:Solvent // Array of solvents.

}

SUSHIInput.properties

class Properties:{

segment_volume_fraction_conditions[]:SegmentVolumeFractionCondition

// Array of the volume fractions of each segment species.

radius_of_gyration_conditions[]:SubchainUnit

// Array of radius of gyration (Rg) conditions.

// This parameter specifies the subchain for which the gyration radius is

// calculated.

scattering_function:ScatteringFunctionInput

　　　　// flag for scattering function calculation

}
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SUSHIInput.external conditions

class ExternalConditions:{

surface_chi_parameters[]:SurfaceChiParameter

// Array of the chi-parameters for the interaction between the wall

// and the segments.

graft_conditions[]:GraftCondition

// Array of the grafting conditions. Graft the free ends on the sold surface.

mask_conditions[]:MaskCondition

// Array of the mask conditions. Constrain the region where the free end

// can exist.

static_conditions:StaticConditions

// The effective conditions for static equilibrium calculations.

dynamic_conditions:DynamicConditions

// The effective conditions for dynamic equilibrium calculations.

monte_carlo_conditions:MonteCarloConditions

// The parameters for Monte Carlo calculation.

electrostatic_conditions:ElectrostaticConditions

// The parameters for strong polyelectrolyte.

obstacles:Obstacles

// The parameters for obstacles.

}

class StaticConditions:{

polydispersity_conditions[]:PolydispersityCondition

// Array of the conditions on the polydisperse homopolymer systems for which

// the path integral for the longest chain is shared with the others.

// This option saves the computational cost of the static calculation

// for polydisperse linear homopolymer systems.

// Refer sec. 2.9.12.

symmetry_conditions[]:SymmetryCondition

// Array of the definitions of the commonly used path integrals.

// This option saves the computational cost of the static calculation

// for polydisperse system which includes polymers with similar structures.

// Refer sec. 2.7.12.

domain_specification_conditions[]:DomainSpecificationCondition

// Array of the conditions for setting the initial values of the

// self-consistent field.

constraint_conditions[]:ConstraintCondition

// Array of the constraints used in the SCF calculations.

system_size_optimization:SystemSizeOptimaization

// Parameters for system size optimization.

}

class DynamicConditions:{

segment_mobilities[]:SegmentMobility

// Array of the mobilities of each segment species.

// Refer sec. 2.8 and 2.9.10.

polymer_mobilities[]:LocalMobility

// Array of the mobilities that depend on the volume fraction of the polymer.

solvent_mobilities[]:LocalMobility

// Array of the mobilities that depend on the volume fraction of the solvent.

reaction_conditions_of_rapid_reactions[]:ReactionConditionOfRapidReaction

// Array of the conditions for the reactions with fast reaction rates.

// Refer to Fast reactions of sec. 2.7.15.

reaction_conditions_of_active_sites[]:ReactionConditionOfActiveSites

// Array of the conditions for the reactions with changes in the molecular
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// structures. Refer to Reactions with active monomers or with active sites

// of polymers of sec. 2.7.15.

reaction_conditions_of_grafts[]:ReactionConditionOfGraft

// Array of the conditions for the grafting reactions.

// Refer to Grafting reactions of sec. 2.9.15.

shear:Shear

// Data structure of shear

noise:Noise

// Data structure of thermal noise

system_size_dynamics:SystemSizeDynamics

// Data structure of dynamical system size optimization

hydrodynamics_parameters:HydrodynamicsParameters

// Data structure of hydrodynamics

hybrid:Hybrid

// Data structure of hybrid method

5.7 Details of the definitions of the input UDF

5.7.1 Mesh

Refer to Section 2.9.3.

Mesh axis

SUSHIInput.mesh.axes[]

MeshAxis:{

values[]:double

// In case of the regular, spherical, or cylindrical mesh,

// this array contains the minimum value and the maximum value

// of the range along the axis,

// and the total number of divided cells along the axis, respectively.

// Example: 0. 32. 64

// In case of the regular and MPI calculation,

// add the total number of divided cells for MPI along the edge.

// Example: 0. 32. 64 2(for MPI)

// In case of the rectangular mesh,

// the array of the coordinates of the mesh points are stored.

}

Boundary conditions for each mesh axis

SUSHIInput.boundary condition.conditions[]
Refer to Section 2.9.4.

AxisBoundaryCondition:{ // The boundary conditions at the both ends of the axis are

// specified.

axis_conditions[]:string

// PERIODIC :Periodic boundary conditions

// (In this case, specifying only axis\condition[0] is enough.).

// DIRICHLET or WALL :Absorbing wall,
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// i.e. the Dirichlet boundary condition with vanishing boundary

// for path integral.

// NEUMANN :Reflective wall,

// i.e. the Neumann boundary conditions with vanishing gradient.

}

Restrictions on the volume fractions at boundary

SUSHIInput.boundary condition.polymer volume fractions[]
SUSHIInput.boundary condition.solvent volume fractions[]
Using this parameter, a dynamic calculation with quasi-grand canonical ensemble can be performed. In

such a calculation, first an initial state for a dynamic simulation with the canonical ensemble is prepared. In
the system, the boundary which is facing to the bulk reservoir should be treated as the Neumann bounary
(reflective boundary), where the volume fraction of each component is constrained to the bulk value. At
every time step of the dynamic simulation, SUSHI corrects the values of the volume fractions in the system
so that their boundary values are fixed to the bulk values. How to specify the values of the volume fractions
inside the system and in the bulk reservoir will be shown later. Readers should refer to Section 5.7.4 for the
detail.

class VolumeFractionOnBoundary:{

ID:int // ID of the component for which the volume fraction

// is specified on the boundary.

boundary_name:select

{"XMin","XMax","YMin","YMax","ZMin","ZMax","RMin","RMax","HMin","HMax"}

// Name of the boundary on which the volume fraction

// is fixed.

// Xmin : YZ-plane with the minimum value of the X-axis.

// XMax : YZ-plane with the maximum value of the X-axis.

// YMin : ZX-plane with the minimum value of the Y-axis.

// YMax : ZX-plane with the maximum value of the Y-axis.

// ZMin : XY-plane with the minimum value of the Z-axis.

// ZMax : XY-plane with the maximum value of the Z-axis.

// RMin : The boundary surface with the minimum value of the R-axis.

// RMax : The boundary surface with the maximum value of the R-axis.

volume_fraction:double // Values of the volume fractions on the boundary.

5.7.2 Definition of monomer

Readers should refer to Section 2.9.1 for the detail.

Monomer

SUSHIInput.monomers[]

Monomer:{

species_name:string // Name of the monomer.

// If the monomer has its internal states, for example, the tapered block

// copolymer, this name specifies the sequence in the monomer such as "taperAB".

specific_volume:double // Specific volume of the monomer.

// This parameter is used when the path integral and the volume fraction of

// the monomer are calculated. If the monomer has its internal states, this

// parameter is re-calculated using the specific volumes of each state, and will

// be overwritten.
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effective_bond_length:double // Effective bond length corresponding to a single

// monomer.

// This parameter is used for the calculation of the coefficient of the Laplacian

// term in the evolution equation for the path integrals.

// Refer to the formula Eq. ( 2.29).

}

Internal states of a sub-chain

SUSHIInput.monomer SCF character table[]
If the monomer has its internal states, their characteristic properties are specified here.

MonomerSCFChar:{

name:string // Name.

// A monomer with this name has to be defined in advance.

// For example, a monomer that is composed of a tapered block of A and B monomers

// may be named "taperedAB".

states[]:State // Array of the internal states.

// Array of the elements of the transition state probability matrix for the internal

// states.

array_of_transition_state_probabilities[]:TransitionStateProbabilities

}

State (Internal state of a subchain)

SUSHIInput.monomer SCF character table[].states[]

State:{

name:string // Name of the state.

// For example, in the case of a tapered polymer composed of "A" and "B" monomers,

// "A" or "B" should be specified. Either "A" or "B" has to be defined as

// a Monomer in advance.

probability:double // The probability of finding this state in the subchain.

}

Transition state probability between internal states

SUSHIInput.monomer SCF character table[].array of transition state probabilities[]

TransitionStateProbabilities:{

probabilities[]:double // Array of the elements of the transition state probability

// matrix between the internal states of the subchain.

// The transition state probability Tij is defined as the probability of finding

// a monomer with state j next to a monomer with state i separated by the distance

// equal to the mesh width along the chain.

// In the current version of SUSHI, only the polymers with fixed concentration

// distribution of segment kind along the chain can be calculated. Therefore, the

// element Tij is determined only by the probability of finding the internal state

// j at the specified position.

// The position is specified by the distance from the junction with samller ID.
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// The value of the distance corresponds to the product of the index of this

// data structure element in the array_of_transition_state_probabilities[] and

// the mesh width along the chain( delta_s in SUSHIInput.solver_parameter.SCF ).

// The total number of array elements should coincide with

// "( subchain length / delta_s )+ 1".

}

5.7.3 Definitions of the polymer and solvent

The data structures ”Polymer” and ”Monomer” define a list of the components that can be used in the
calculations. Among these components, only those that are listed in the ”volume fraction” parameter are
actually used in the simulation. Readers should refer to Section 2.9.1.

Polymer

SUSHIInput.components.polymers[]
A polymer is defined as a set of connected subchains. A subchain is defined by its kind (species) and its

length (number of monomers in the subchain). The topology of a polymer is specified by giving the ID’s of
the subchains and the ID’s of the junctions on both ends of the subchain. For a few simple topologies, there
is an easy way to specify them.

Polymer:{

type:select {"HOMO","BLOCK","COMB","STAR","GENERAL" }

// The keyword specifying the branching structure of the chain,

// i.e. how to connect the subchains.

// HOMO : a homo polymer.

// BLOCK : a linear multiblock copolymer made of a sequence of the subchains

// with the same order as they are stored in this array.

// STAR : star block copolymer made of subchains which are connected at a single

// junction point.

// COMB : comb-type block copolymer.

// The order of the subchains stored in the array is as follows.

// main chain - side chain - main chain - side chain -.....

// For example, an array of the subchains A1, B1, A2, B2, and A3

// indicates the following structure.

// A1--+--A2--+--A3

// B1 B2

// GENERAL : The way how the subchains are connected each other

// is specified by the ID’s of the two junction points at the

// both ends of each subchain.

blocks[]:Block // Array of subchains.

junction_pairs[]:JunctionPair // Array of the pair of the ID’s of the junction points

// at the both ends of the subchain.

// This parameter is available only when the type of the polymer is GENERAL.

// The values of the ID must start from 0.

// For example, when the number of elements of Block is 1 and a pair of ID’s

// is [0, 0], it means that this polymer is a ring polymer.

}

Block:{ // Subchain.

monomer_name:string

// The name of the monomer which constitutes this subchain.

// This monomer name must be defined as a Monomer in advance

number_of_monomer:double

// The total number of monomers contained in this subchain.

}
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JunctionPair:{ // A pair of the ID’s of the junction points at the both ends of

// this subchain.

first:int

second:int

}

Solvent

SUSHIInput.components.solvents[]

Solvent:{

name:string // Name of the solvent.

specific_volume:double // Specific volume of the solvent.

}

5.7.4 Volume fraction

Among the Polymer’s and Solvent’s defined in the previous sub-section, only those whose volume fractions
are specified are used in the simulation. For different types of statistical ensembles, the meanings of the
volume fractions are also different. Refer to Section 2.9.8.

Volume fractions of the components

SUSHIInput.volume fractions

VolumeFractions:{

polymer_volume_fractions[]:VolumeFraction // Array of the volume fractions of

// the polymers.

solvent_volume_fractions[]:VolumeFraction // Array of the volume fractions of

// the solvents.

}

VolumeFraction:{ // Volume fraction.

id:int // The element index of the component. The number starts from 0.

volume_fraction:double

// If the ensemble is CANONICAL, this parameter specifies the total volume

// fraction in the system.

// If the ensemble is GRANDCANONICAL, this parameter specifies the equilibrium

// volume fraction in the bulk phase.

ensemble:select { "CANONICAL", "GRANDCANONICAL" }

// Statistical ensemble of the system.

// CANONICAL : Canonical ensemble.

// Static calculation and Dynamic calculation are available for this case.

// GRANDCANONICAL : Grand canonical ensemble.

// Static calculation is available for this case.

// Dynamic calculation is NOT available for this case.

bulk_volume_fraction:double // The volume fraction in the bulk phase.

// This parameter is used when the volume fractions in the simulation box and

// those in the reservoir should be specified separately.

// If you do not use this feature, set -1 to this parameter.

}

As was explained in the section Restricted conditions of volume fraction on a boundary of 5.7.1,
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in the quasi grand canonical ensemble case, the values of the volume fractions in the system and in the
bulk reservoir can be specified separately. In this quasi grand canonical case, the value of the parameter
“ensemble” should be CANONICAL.

5.7.5 Interaction parameters between segments (χ parameters)

SUSHIInput.chi parameters[]
Refer to Chapter 7.

ChiParameter:{

name_i:string // The name of the species of i-th monomer.

name_j:string // The name of the species of j-th monomer.

parameter:double // The value of Chi_ij.

// Chi_ji is automatically set using the symmetric relation

// Chi_ji = Chi_ij.

// If the value is not defined, it is assumed to be 0.

}

5.7.6 Physical properties

SUSHIInput.properties
The user can obtain several physical quantities which are specified using the ID’s of the polymers,

solvents, subchains, and junctions, which correspond to their element indices in the arrays defined in the
SUSHIInput.components. Here, as the rule in C language, the element index begins from 0.

class Properties:{

segment_volume_fraction_conditions[]:SegmentVolumeFractionCondition

radius_of_gyration_conditions[]:SubchainUnit

　　 scattering_function:ScatteringFunctionInput

}

Volume fractions of segments

SUSHIInput.properties.segment volume fraction conditions[]
The volume fraction of a specified part of a subchain is calculated. This function is unavailable for

polymers with a loop.

class SegmentVolumeFractionCondition:{

polymer_ID:int // ID of the polymer.

subchain_ID:int // ID of the subchain.

begin_length:double // Position of a boundary of the section on the subchain for which

// the volume fraction is calculated.

// This length is the distance between the boundary and the

// junction with a smaller ID among the two junctions at the ends

// of the subchain.

// In order to define the ID’s of the two junctions at both ends,

// the polymer should be defined as the GENERAL type.

// The length is measured in unit of "delat_s" in the

// "SCF_parameter". This value should not exceed the length of

// the subchain.

end_length:double // Position of the other boundary of the section.

// This length is the distance between the boundary and the
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// junction with a smaller ID among the two junctions at the

// ends of the subchain.

// When the length of the section is not an integer multiple of

// "delta_s", it is redefined as

// delta_s * int(section_length / delta_s).

}

Radius of gyration (Rg)

SUSHIInput.properties.radius of gyration conditions[]
This parameter specifies the subchains whose radii of gyration are calculated and output.

classsubchainUnit:{

polymer_ID:int // ID of the polymer.

subchain_ID:int // ID of the subchain. -1:calculate Rg of full structure.

}

Scattering function

SUSHIInput.properties.scattering function
Flag for output scattering functions

class ScatteringFunctionInput:{

calculate:select { "ON", "OFF", "RESTART" }

　　　　　　　　　　　　//　 ON　: calculate scattering functions

　　　　　　　　　　　　//　 OFF : no calculate scattering functions

　　　　　　　　　　　　//　 RESTART : calculate scattering functions of existing records　　
　　　　　　　　　　

//　 without date of the existing records

intensity:select { "ON", "OFF" }

　　　　　　　　　　　　//　 ON　: calculate multi-dimensional scattering function

　　　　　　　　　　　　//　 OFF : no calculate multi-dimensional but 1D scattering function

coef_for_mesh:double // The coefficient for mesh width of 1D scattering function.

// The mesh witdh = this value times 2 pi /(the longest length of edge).

}

5.7.7 External conditions

SUSHIInput.external conditions
The user can set several external conditions which are specified using the ID’s of the polymers, solvents,

subchains, and junctions, which correspond to their element indices in the arrays defined in the SUSHIIn-
put.components. Here, as the rule in C language, the element index begins from 0.

class ExternalConditions:{

surface_chi_parameters[]:SurfaceChiParameter

graft_conditions[]:GraftCondition

mask_conditions[]:MaskCondition

static_conditions:StaticConditions

dynamic_conditions:DynamicConditions

monte_carlo_conditions:MonteCarloConditions

electric_conditions:ElectricConditions
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obstacles:Obstacles

}

Interaction parameters between the wall and the segments (χs)

SUSHIInput.external conditions.surface chi parameters[]
Refer to Section 2.9.7.

SurfaceChiParameter:{

boundary_name:select

{"XMin","XMax","YMin","YMax","ZMin","ZMax","RMin","RMax","HMin","HMax"}

// Definition of the surface with which the segments interact.

// Xmin : YZ-plane with the minimum value of the X-axis.

// XMax : YZ-plane with the maximum value of the X-axis.

// YMin : ZX-plane with the minimum value of the Y-axis.

// YMax : ZX-plane with the maximum value of the Y-axis.

// ZMin : XY-plane with the minimum value of the Z-axis.

// ZMax : XY-plane with the maximum value of the Z-axis.

// RMin : The boundary surface with the minimum value of the R-axis.

// RMax : The boundary surface with the maximum value of the R-axis.

// Partcle : surface of particle

// Fiber : surface of fiber

target_name:string // The name of the target segment.

parameter:double // the value of the chi-parameter.

id:int // ID of each lind of obstacles（available when choosing obstacles).

}

Graft conditions

SUSHIInput.external conditions.graft conditions[]
A grafted chain can be realized by imposing a constraint on the initial value of the path integral at the

free end(s). Refer to Section 2.9.7.

GraftCondition:{

boundary_name:string // The name of the wall onto which the chain is grafted.

// This is the same as those in

// "SurfaceChiParameter.boundary_name".

polymer_ID:int // ID of the polymer to be grafted.

junction_ID:int // ID of the free end of the polymer to be grafted.

id:int // ID of each lind of obstacles（available when choosing obstacles).

}

Mask conditions

SUSHIInput.external conditions.mask conditions[]
This parameter specifies the region within which the position of a free end is confined. This function can

be used in simulating micelles etc. Refer to Section 2.9.14.

MaskCondition:{

polymer_ID:int // ID of the polymer whose end should be confined.

junction_ID:int // ID of the junction that should be confined.
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mask_regions[]:AxisRegion // Array of the regions on the axes in which the end

// is confined.

}

AxisRegion:{ // Specify an interval on an axis.

axis_name:select { "X", "Y", "Z", "R", "H" }

// Name of the axis: X, Y, Z, R or H.

r_min:double // Minimum value of the interval.

r_max:double // Maximum value of the interval.

// When Maximum = Minimum, it corresponds to constraining the

// chain end at a point.

}

5.7.8 Effective external conditions in static equilibrium calculation

Specification of the longest polymer for the static equilibrium calculation on polydisperse
linear homopolymer systems

SUSHIInput.external conditions.static conditions.polydispersity conditions[]
This parameter is valid only for the static equilibrium calculations on systems composed of polydisperse

linear homopolymers with a single-state monomers. Specifying this parameter will reduce the memory and
computational time. Refer to Section 2.9.12.

PolydispersityCondition:{

longestHomoPolymerId:int // ID of the longest linear homopolymer.

targetHomoPolymerId:int // ID of the polymer whose path integral should be calculated

// by using that of the longest polymer specified above.

}

Specification of the similar path integrals for the static equilibrium calculation

SUSHIInput.external conditions.static conditions.symmetry conditions[]
Refer to Section 2.9.12. This parameter specifies the subchains whose path integrals can be shared each

other. This parameter is valid only for the static equilibrium calculations. The computational time of the
path integrals will be reduced using this function. For example, in the calculation of two diblock copolymer
chains A10B10 and A20B20, the path integral starting from the free end of the A subchain of the longer
chain A20B20 is the same as that of the shorter chain A10B10, and can be shared. On the other hand, since
the initial values of the path integral starting from the junction points are different for A10B10 and A20B20,
these cannot be shared.

SymmetryCondition:{

parent_path:Path // The path of the subchain whose path integral is shared with

// the other subchains.

child_path:Path // The path of the subchain whose path integral is substituted

// by the above-defined parent path integral.

}

Path:{ // The path for the path integral.

polymer_ID:int // ID of the polymer.

subchain_ID:int // ID of the subchain.

begin_junction_ID:int // ID of the junction from which the calculation of the path

// integral starts.

end_junction_ID:int // ID of the junction at which the calculation of the path

// integral ends.

}
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Domain specification

SUSHIInput.external conditions.static conditions.domain specification conditions[]
In order to produce a desired morphology, an appropriate initial condition for the self consistent field can

be prepared using this parameter. This parameter is valid for the static equilibrium calculations. Refer to
Section 2.9.13.

DomainSpecificationCondition:{

name:string // The name of the segment species.

domain_regions[]:AxisRegion // The array of the intervals on the axes.

// This is the same as those used in the mask conditions.

}

Constraint conditions in the SCF calculation

SUSHIInput.external conditions.static conditions.constraint conditions[]
This parameter specifies the constraint conditions imposed on the system when the SCF iteration is

performed.

class SCFUnitIDSet:{ // The set of ID’s of the part of the chain/solvent .

type:int // The type of the target part of the chain/solvent.

// 0 :polymer

// 1 :solvent

IDSet[]:int // The set of ID’s.

// A set of ID’s of the component, subchain, and internal state of the target part.

// In the case of a solvent, ID’s after the subchain ID are not used.

// In the monomer with a single state, the state ID is not used.

}

class ConstraintCondition:{

target_ID:SCFUnitIDSet // The set of ID’s of the part of the chain/solvent on

// which the constraint is imposed.

constraint_coondition:int // The physical quantity on which the constraint is imposed.

// 1 :The volume fraction. This is the only one that is implemented in the

// current version of SUSHI.

}

System size optimization

SUSHIInput.external conditions.static conditions.system size optimization
Optimize the system size to minimize the free energy density. This method is available in SCF calculation.

class OptimizingAxes:{

x:int // 1:optimize 0:not optimize

y:int // 1:optimize 0:not optimize

z:int // 1:optimize 0:not optimize

// If you optimize x and y axes keeping the ratio, input as

// 1 1 0.

// If you optimize x and y axes independently, input as

// 1 0 0

// 0 1 0.

}

class SystemSizeOptimaization:{

max_iteration_of_optimization:int // Maximun step number of SCF
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cubic_system:int // If this value is 1, the system is recognized as cubic system.

optimizing_axes[]:OptimizingAxes // Flags for optimization

delta_dL:double // Relative delta L for the derivative of F.

allowed_error:double // Relative allowed error in the optimization of L.

}

If the SCF calculation is converged or exceeded the max iteration of optimization, the system size is opti-
mized and the next SCF step is started. The optimization is converged when the absolute value of ( variation
of the length of edge / the length of edge ) is less than 1e−4.

5.7.9 Effective external conditions in dynamimc calculation

Mobility for each segment species

SUSHIInput.external conditions.dynamic conditions.segment mobilities[]
The users can specify the values of the mobility for each kind of monomer or solvent separately. If this

parameter is not specified, the mobility is assumed to be 1.0. This parameter corresponds to the constant
L0 in Eqs.(2.64) and (2.65). Refer to Section 2.9.10.

class SegmentMobility:{ // Mobility of a segment.

segment_name:string // The name of the segment/solvent whose mobility is specified.

mobility:double // The value of the mobility.

}

Position-dependent mobilities

SUSHIInput.external conditions.dynamic conditions.polymer mobilities[]
SUSHIInput.external conditions.dynamic conditions.solvent mobilities[]
The mobility of a polymer in a dilute solution in general depends on the local concentration of the

polymer and the species of the surrounding matrix. In the dilute limit, the mobility can be written as L0ϕ,
where the parameter L0 accounts for the dependence on the properties of the chain and those of the matrix
solvent. Refer to Section 2.9.10.

ROUSE case: When the chain length is much longer than that of the matrix solvent and the polymer
concentration is small enough (dilute limit). the mobility L is given by L = L0ϕ.

REPTATION case: When the chain length is long and is almost equal to that of the matrix molecules,
the chains are strongly entangled. In such a case, the mobility is given by L = (L0/N)ϕ, where N is the
length of the target chain. This REPTATION case is not valid for a solvent.

class LocalMobility:{ // The position dependent mobility.

component_ID:int // ID of the component.

type:string // Type of the model for the mobility

// CONSTANT

// ROUSE

// REPTATION

}

Fast chemical reactions

SUSHIInput.external conditions.dynamic conditions.reaction conditions of rapid reactions[]
If the characteristic time scale of the chemical reaction is faster than the time mesh size used in the

dynamic calculation, it is reasonable to assume that a certain amount of the reactants turns into the same
amount of the product instantaneously. One such example is a radical polymerization of monomers that
produces a polymer with a fixed polymerization index. The type of the chemical reactions that can be
treated in the current version of SUSHI is A+B+C + · · · → D, i.e. several reactants react to yield a single
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product. Refer to Section 2.9.15.

class ReactionConditionOfRapidReaction:{

reactant_IDs[]:ReactantIDSet // Set of the ID’s of the reactants.

product_ID:int // The ID of the product. Only a single component can

// be specified as the product.

volume_fractions_of_reactants_in_product[]:double

// Array of the volume fractions of reactants in

// a product corresponding to the ‘‘reactant_IDs".

// The sum of the values for all the reactants should

// be equal to unity. For example, the reaction from

// reactants of polymer A and B in the same length to

// a product of block copolymer AB, the data are 0.5

// and 0.5.

reaction_constant:double // Reaction rate constant.

}

Reactions with structural change of the molecules

SUSHIInput.external conditions.dynamic conditions.reaction conditions of active sites[]
In this case, the reaction is defined as an event that a set of junctions of polymers, free ends of polymers,

or monomers react to form a polymer with a different molecular structure. The numbers of the reactants
are limited to two, and the product is limited to only one. Therefore, the reaction should be second order.
Refer to Section 2.9.15.

class ReactionConditionOfActiveSites:{

reactant_IDs[]:ReactantIDSet // Set of the ID’s of the reactants. The numbers of

// reactants are limited to two.

polymer_ID_of_product:int // The ID of the product polymer. Number of product is

// limited to one.

map_of_subchains[]subchainMap // Map of ID’s of subchains between reactants and product.

reaction_constant:double // Reaction constant.

}

Grafting reactions

SUSHIInput.external conditions.dynamic conditions.reaction conditions of grafts[]
Refer to Section 2.9.15.

class ReactionConditionOfGraft:{

graft_condition:GraftCondition // The graft conditions on the reactant polymer.

// This is the same as that defined in graft

// conditions previously.

polymer_ID_of_product:int // The ID of the reactant polymer.

// The number of reactant is limited to only one

// species.

map_of_subchains[]subchainMap // Map of ID’s of subchain between reactants and

// product.

reaction_constant:double // Reaction rate constant.

}
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Definitions of the common data for the reactions

SUSIInput.external conditions.dynamic conditions

reaction conditions of rapid reactions[].reactant IDs[]

reaction conditions of active sites[].reactant IDs[]

reaction conditions of active sites[].map of subchains[]

reaction conditions of grafts[].map of subchains[]

class ReactantIDSet:{ // Set of the ID’s of the reactants.

type:int // The type of the reactant:

// 0 : polymer.

// 1 : solvent.

IDSet[]:int // Set of the ID’(s).

// The array of the set of ID’(s).

// In case of the fast reaction, the datum is only the ID of the reactant in

// the component.

// Refer to Section 2.9.10 ( Fast reaction ).

// In case of the reactions involving structural changes of the molecules,

// the data are the ID of the reactant in the component and the ID of the

// junction to react.

// Refer to Section 2.9.10 ( Fast Reactions with active monomers

// or with activesites of polymers ). If the reactant is a solvent, the ID of

// the junction is not needed.

}

class SubchainMap:{ // A map of corresponding ID’s of the subchains between the

// reactant and the product.

reactant_ID:int // ID of the reactant.

// The ID is the element index of the array ‘‘reactant_IDs[]".

// This is NOT the index of the array of the component.

// As we assume that the reactions with structural change of the molecules

// are second order, this parameter is either 0 or 1.

// The following ID’s of the subchains define the correspondence between the

// the subchain in the reactant and that in the product.

subchain_ID_of_reactant:int // The ID of the subchain in the reactant.

subchain_ID_of_product:int // The ID of the subchain in the product.

}

Sheared dynamics

SUSHIInput.external conditions.dynamic conditions.shear

Input the shear rare and period. Refer to Section. When the period is zero, one direction shear is added.
2.8.1.

class Shear:{

shear_rate:double

period:double

}
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Thermal fluctuation

SUSHIInput.external conditions.dynamic conditions.noise
Input the standard deviation of thermal noise of segment density. The thermal noise satisfies the

fluctuation-dissipation relation eq. (2.41).

class Noise:{

random_seed:int // Seed for the random number generator.

// If 0 is set, the value is randomly changed referring time.

// If a positive value is set, the value is fixed and is not changed

// thus the positive value is used when only debugging.

standard_deviation_of_thermal_noise:double

}

Dynamical system size optimization

SUSHIInput.external conditions.dynamic conditions.system size dynamics
Optimize the system size in dynamics. Refer to Section 2.9.18.

class SystemSizeDynamics:{

parameter_of_system_size_dynamics:double // The Q in eq. (2.103).

compressibility:double // Compressibility in eq. (2.103).

interval_of_system_size_dynamics:int // Interval step of invoking eq. (2.103).

optimizing_axes[]:OptimizingAxes // Flags for optimization

// Refer class SystemSizeOptimaization

delta_dL:double // Relative delta L for the derivative of F.

allowed_error:double // Relative allowed error in the optimization of L.

}

Hydrodynamic Effects

SUSHIInput.external conditions.dynamic conditions.hydrodynamics parameters
Introduce hydrodynamic effects, refer to Section 2.8.5.

class Viscosity:{ // Parameter for viscosity

name:string // Segment name

viscosity:double // Viscosity

}

class HydrodynamicsParameters:{ // 流体力学的パラメータ
density:double // Density

viscosities[]:Viscosity // Array of viscosity

neglect_convection_term:int // If neglect the convection term (1st term) in eq. (2.66)

// input 1

dynamics_scheme:select { "EXPLICIT" , "EXPLICIT2" , "IMPLICIT" }

// Calculation scheme

// EXPLICIT // The explicit scheme. default. Euler scheme.

// EXPLICIT2// The2step Runge-Kutta scheme.

// IMPLICIT

poisson_solver_parameter:PoissonSolverParameter

// Parameter for Poisson Solver for Pressure,

// The detail is written in the section of polyelectrolyte.

noise:Noise

// Parameter to add a thermal fluctuation to Navier-Stokes equation.

// The data structure is in the same as those used in the thermal fluctuation.

}



98 CHAPTER 5. OPERATION GUIDE OF SUSHI

Hybrid method

SUSHIInput.external conditions.dynamic conditions.hybrid

Parameters for hybrid method, refer to Section 2.8.4.

class Hybrid:{

SCF_step:int //　 Number of SCF iteration : standard = 1

RPA_step:int //　 Number of GRPA iteration

free_energy_by:select { "RPA", "SCF" }

//　 Clculation method of the free energy

// RPA GRPA

// SCF SCF theory

// Attention

// Please refer the section of the SUSHIInput.solver\_parameter.RPA

}

5.7.10 Conditions for SCF Monte Carlo calculation

SUSHIInput.external conditions.monte carlo conditions

class MonteCarloConditionOfJunction: {

// The position of junction updated in the Monte Carlo procedures.

junction_ID:int // ID of the junction.

position:Vector3D // Position of the junction.

}

class MonteCarloConditionOfPolymer:{

polymer_ID:int // ID of the polymer.

monte_carlo_conditions_of_junction[]:MonteCarloConditionOfJunction

}

class MonteCarloConditions:{

monte_carlo_conditions_of_polymer[]:MonteCarloConditionOfPolymer

}

5.7.11 Electrostatic condition (Strong polyelectrolyte)

SUSHIInput.external conditions.electric conditions

This option is valid when the positive value is set to
SUSHIInput.external conditions.electrostatic conditions.electrostatic condition.dielectric constant of system.

class ElectrostaticConditions: {

// Electrostatic conditions for polyelectrolyte.

electrostatic_condition:ElectrostaticCondition

poisson_solver_parameter:PoissonSolverParameter

}

class ElectrostaticCondition: {

dielectric_constant_of_system:double // The dielectric constant of the system.

electrostatic_parameters_of_segment[]:ElectrostaticParametersOfSegment

electrolyte[]:Electrolyte

external_electric_field:Vector3D

// Refer to 2.8.6.
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// The value of the vector of the external electric field.

parameter_of_external_electric_field_for_dynamics

:ParameterOfExternalElectricFieldForDynamics

}

class ElectrostaticParametersOfSegment: {

name:string // The name of the segment.

charge:double // The charge of the segment per unit volume.

dielectric_constant:double // The dielectric constant of the segment

}

class ParameterOfExternalElectricFieldForDynamics:{

direction:select { "X", "Y", "Z" }

alpha:double

// Refer to 2.8.6.

// Do not use external_electric_field at the same time.

}

class PoissonSolverParameter: {

// The parameters for ICCG method.

omega:double // The acceleration parameter.

allowed_error:double // The allowed error for the electric field.

max_iteration:int

}

Poisson equation is defined as
∇2U(r) = −ρ(r)/ϵ (5.1)

where U is the electrostatic potential, ρ is the distribution of the total electric charge of the system, and ϵ is
the dielectric constant. In SUSHI, the ∇2 and the scalar field is treated as a matrix and a vector. Here, the
matrix of ∇2, U(r), and ρ(r)/ϵ are written as A, u, and q respectively and the Poisson equation is regarded
as a linear algebraic equations given by

Au = −q. (5.2)

To solve the equation, The SOR method had been used in SUSHI and the iterative equation is

u(k+1) = u(k) − ωD(Au(k) + q) (5.3)

where ω is the acceleration parameter and the D is the matrix that the diagonal elements are 1/ai,i and
other elements are 0. The parameter “omega” used in the class PoissonSolverParameter means the ω.

The current version SUSHI uses ICCG method to solve the linear algebraic equations, and the ω is not
used.

5.7.12 Obstacles

SUSHIInput.external conditions.obstacles
Obstacles can be existed in systems, however nowadays the obstacles are restricted as particles or fibers.

The region of an obstacle can set in inner side or outer side of the shell of each particle.

class Particle: {

// Parameters for a particle as an obstacle.

position_of_center:Vector3D // Center position of the particle.

radius_of_particle:double // Radius of the particle.

region_of_obstacle:select { "IN", "OUT" } // Obstacle existing region,

// Inner region or Outer region of the particle.

}

class Fiber: {

// Parameters for a fiber as an obstacle.

position_of_end0:Vector3D // End position of the particle.

position_of_end1:Vector3D // End position of the particle.
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radius_of_fiber:double // Radius of the fiber and end caps.

end_cap:select { "YES", "NO" } // Cap ends YES or NO (default YES)

region_of_obstacle:select { "IN", "OUT" } // Obstacle existing region,

// Inner region or Outer region of the fiber.

}

class Hexahedron: {

// Hexahedron is defined by 2 spatial origins with 3 directional vectors.

position_of_origin0:Vector3D // origin1

direction_a0:Vector3D // vector1 from origin1

direction_b0:Vector3D // vector2 from origin1

direction_c0:Vector3D // vector3 from origin1

position_of_origin1:Vector3D origin2

direction_a1:Vector3D // vector1 from origin2

direction_b1:Vector3D // vector2 from origin2

direction_c1:Vector3D // vector3 from origin2

coefs_of_surface_chi[]:double // the coefficient for chi_s.

region_of_obstacle:select { "IN", "OUT" } // Obstacle existing region,

// Inner region or Outer region of the hexahedron.

}

class ShapeByGrids: { // VER. 140808

input_filepath:string // the file path name of a polygon data.

region_of_obstacle:select { "IN", "OUT" } // Obstacle existing region,

// Inner region or Outer region of the shape.

}

class Obstacles:{

// Data set of obstacles

ndiv_for_volume_calculation:int

// Number of division of per mesh to get the boundary of obstacles.

// About 1000 is recommended.

particles[]:Particle // array of particles.

fibers[]:Fiber // array of fibers.

hexahedrons[]:Hexahedron // array of hexahedrons.

shape_by_grids[]:ShapeByGrids // array of shapes.

}

5.7.13 Zooming

SUSHIInput.zoom
This class is designed for transfers of the calucluation results of SUSHI to other engines. SUSHI10.54

only supports the zooming to Kremer-Grest coarse-grained MD model for COGNAC.

class COGNACZoomingParameter: {

b_per_sigma:double // the number of baeds of Kremer-Grest model per 1 segment.

// Theoretical value = 1.6878 but it should be modified with

// the value of d_s. i.e. b/sigma should be b/(n*d_s) where

// n is any integer.

density:double // The density of Kremer-Grest model, default value = 0.85.

by:select { "RUN", "RESTART" }

// RUN: automatically calculate segment’s density fields with normal run.

// RESTART: only calculate segment’s density fields with restart run.

}

class Zoom:{ // COMMON

type:select { "COGNAC" } // choose "COGNAC" for zooming.

COGNAC:COGNACZoomingParameter

}
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This method uses the relax in.udf file for COGNAC. Please refer 5.3 section and the reference [32].

5.8 Definition of the common UDF

At the top of the output UDF file created by SUSHI, “SUSHIInput” defined in the previous sections and
the following common data are written. The main contents of the common data are the result of the
pre-processing of “SUSHIInput”.

5.8.1 Coordinates of mesh

class Vector3D: { // 3-dimensional position vector.

x:double

y:double

z:double

}

MeshData: { // Array of the coordinates of the mesh points.

position[]:Vector3D

}

5.8.2 Result of the analyses on the compositions

The results of the analyses on the compositions of the system is given.

class VolumeFractionData: {

name:string // The name of the specified group of the monomers.

volume_fraction:double // The volume fraction of the specified group of the monomers.

}

class SCFUnitData: { // The minimum unit to divide the component for the SCF calculation.

// A polymer can be divided into the subchains and a subchain can be divided into the

// kinds of the monomer. For example, the subchain of the sequence "tapered AB" has

// two kinds of the monomer, which are "A" and "B". Of course the kind of the

// subchain of homopolymer A is only "A". We call the kind of the monomer as "state".

// The SCF unit is defined as the monomers in a polymer, a subchain and a state,

// therefore it has three indices to identify, which are the ID of

// the polymer, the ID of the subchain, and the ID of the state. The ID of the state

// should be started from 0 and is valid in the subchain. The SCF unit is applied to

// a solvent. SUSHI can not treat a multi state solvent, therefore a solvent is

// identified by only the ID of the solvent.

name:string // The name of the state.

volume_fraction:double // The volume fraction of the state.

ID_set[]:int // Set of ID’s.

// The structure is different depending on the type of the SCFUnit as follows.

// In case of a subchain with the states, ID of the polymer, ID of the subchain,

// and ID of the state.

// In case of a subchain with a single state, ID of the polymer, and ID of the

// subchain.

// In case of a solvent, ID of the solvent.

}

class JunctionData: { // The list of ID’s of junctions.

ID_set[]:int // The ID’s of the polymer and the junction.

// ID of the polymer and ID of the junction.

}



102 CHAPTER 5. OPERATION GUIDE OF SUSHI

Composition: { // Results of the Analyses of the Compositions.

species[]:VolumeFractionData // The total volume fraction of the specified group of

// the monomers. This is the array of the sum of volume fraction of the groups.

// For example, the monomer "taperedAB" is treated as single species and the

// monomer "A" is treated as single species too.

states[]:VolumeFractionData // The volume fractions of sum of the states.

// The state means each of the internal states of a monomer.

// For example, the "taperedAB" monomer has two states A and B.

// If the system has no polymer with internal state, the species[] and the states[] // are the same.

SCF_units[]:SCFUnitData // Volume fractions of the SCFUnits.

junctions[]:JunctionData // The list of all junctions.

}

5.9 Definitions of the output UDF

An output UDF file is composed of a definition part at the beginning, and a sequence of separated records.
The beginning and the ending of a record are described as follows.

\begin{record}{"record number"}

\begin{data}

$\sim$ data of the record.

\end{data}

\end{recoed}

The “record number” is written at the beginning of each record. This “record number” is the same as that
used in GOURMET. Note that this “record number” is different from the following “step number” in the
dynamic calculation. At the beginning of each record, there are following three data.

Steps:int // Time step in the dynamic calculation.

// In the static calculation, it is set to be 0.

Time:double // Real time in the dynamic calculation.

// In the static calculation, it is set to be 0.

Nscf:int // The number of iterations performed until the SCF converged.

In all calculations, the initial state is first written with the record number 0, the step of dynamics 0, time
0, and the number of iterations for SCF 0. In the static equilibrium calculations, the final state after the
convergence of the SCF is written with the record number 1, the step of dynamics 0, and time 0. In the
dynamic calculation, the record at each time step is appended at the end of the file as the time step proceeds.
The following describes the detail of the main part of the data. Readers should refer to Section 5.10 for the
detailed definitions of the output UDF file.

SUSHIOutput: {

// Volume fractions in the final state of the simulation #####################

volume_fractions:VolumeFractions // This parameter is the same as that defined in

// the common UDF output.

// phi and V #################################################################

flag_of_dynamics:int // The flag that specifies the type of the calculation.

// 0 : Static equilibrium calculation.

// 1 : Dynamic calculation.

phi:ScalarField // Array of the scalar field phi for each species.

V :ScalarField // Array of the scalar field V for each species.

// Free energy #############################################################

free_energy:double // Total free energy of the system.
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// Refer to Section 2.4.

excess_free_energy:double // Excess free energy. This parameter is valid only

// for the grand canonical ensemble system with an

// interface.

// Optional output ###########################################################

optional_output:OptionalOutput

// End situation #############################################################

flag_of_convergence:int

// 0 : initial condition, The result is not a calculation result.

// 1 : normal calculation.

// 2 : exceeded max number of SCF iteration.

// 3 : failed to solve Poisson equation.

// 4 : terminated by KILL file.

// 5 : terminated by the message of "STOP" from message file.

// 6 : terminated by the message of "END" from message file.

// 7 : terminated by unknown error.

}

5.10 Detailed definitions of the output UDF

5.10.1 Scalar fields

SUSHIOutput.phi
SUSHIOutput.V
SUSHIOutput.optional output.segment volume fraction
SUSHIOutput.optional output.electric potential
The self-consistent field V , the segment volume fraction ϕ, and the average segment volume fraction

defined in the input data are written in the following format.

class ScalarArray:{ // /

comp[]:double // Array of the data for each component on a mesh point.

}

class ScalarField:{ // /

name:KEY // Name :This parameter can be used when one searches for

// this element using Python scripts.

// Refer to the UDF manual for details.

num_of_component:int // Total number of species.

value[]:ScalarArray // Value of the ScalarArray.

};

5.10.2 Optional output

SUSHIOutput.optional output
The output data which are optionally inputted to calculate are summarized in the data structure.

class OptionalOutput: {

segment_volume_fraction:ScalarField

// Volume fraction of segment species specified in

// the SUSHIInput.properties.segment_volume_fraction_conditions[].

radius_of_gyration[]:RadiusOfGyration

// Radii of gyration. Refer to the next section.

monte_carlo_condition_of_polymer[]:MonteCarloConditionOfPolymer
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// The positions of junctions specified in

// the SUSHIInput.external_conditions.monte_carlo_conditions.

electric_potential:ScalarField

// Electric potential is output when the

// SUSHIInput.external_conditions.electric_conditions is specified.

}

Radii of gyration

SUSHIOutput.optional output.radius of gyration[]
If the calculation of the gyration radius is specified in the input UDF file, the following data are written

into the output UDF file.

RadiusOfGyration: {

dim:int // The spatial dimension of the system used in the calculation.

// This is equal to the dimension of the mesh.

rg:double // The value of the radius of gyration.

rg_xyz[]:double // The value of the radius of gyration in x, y, and z directions,

// respectively.

// The same numbers of data as the spatial dimension are written.

}

5.11 Log files

Two logs are created by SUSHI. One is the status of the calculations, which is an output to the standard
output of the system. The contents of this log differ depending on whether the calculation is a static
equilibrium or a dynamic calculation. The output file can be specified by the “-C” option in the command
line of SUSHI. The other log is the status of convergence of the SCF iterations. This log is overwritten at
every time step of the dynamic calculation. The default name of this log file is ”input file name.usl”. The
contents of these two log files are explained below. Refer to Section 5.3 for the details of the options.

5.11.1 Standard output log

In both static equilibrium calculations and dynamic calculation, the version of SUSHI and the name of the
engine are first written as the following manner.

SCFEngine Version 4.0 Revision 060620L, Octa Project

file names

input ab_ring.sin

output ab_ring_uot.udf

restart ab_ring_uar.udf

archives ab_ring_uar.udf

log ab_ring.usl

cout ab_ring.ual

stop ab_ring.stp

The meanings of the files listed above are as follows.

input Input file

output Output file

restart Restart file



5.11. LOG FILES 105

archives Archives file

log Log file of SCF iterations in the dynamic calculation

cout Standard output file

stop Emergency stop file

These files are the input file and the several default files used by SUSHI. Some of these files are not actually
used. The restart file is not used if the restart is not specified. In case of a static equilibrium calculation,
the log file of the SCF iterations for the dynamic calculation will not be generated.

Standard output log for static equilibrium calculation

The following data are output.

.....

nSCF 1005 nW 0 err 3.25043835e-05 nV 1 err 1.01382781e-04 nTotPhi 0 err 8.44784069e-05

nSCF 1006 nW 0 err 3.89468651e-05 nV 0 err 9.99588160e-05 nTotPhi 0 err 7.55554209e-05

nSCF 1006 FreeEnergy 1.49953121e-01 ExcessFE -2.50396581e-01

//!!!!!!!! SCF Convergence succeeded. : nSCF = 1006 ////////

cpu time 10 [sec]

The format of the data written at every SCF iteration step is as follows.

nSCF [Number of iterations in the current SCF calculation]

nW [Number of mesh points at which W is not converged] err [Maximum error in W]

nV [Number of mesh points at which V is not converged] err [Maximum error in V]

nPhi [Number of mesh points at which the incompressible condition is not satisfied]

err [Maximum error in the sum of the volume fractions]

If the maximum error becomes smaller than the threshold value specified in the input UDF data, the iteration
will be terminated. Readers should refer to Section 2.9.9 for the details. The number of iteration steps for
the SCF, the free energy, and the excess free energy are output at the end. In case that the SCF iterations
are normally terminated, the following message is written.

//!!!!!!!! SCF Convergence succeeded. : nSCF = 1006 ////////

On the other hand, in case that the SCF iterations are abnormally terminated, the following messgae is
written.

//XXXXXXXX Exceeded maximum step number of SCF. : nSCF = 20000 ////////

The last line is the actual elapsed time.

Standard output log for the dynamic calculation

The following data are output.

.....

nStep 499999 time 499.999 nSCF 2 F -2.14330212e-01 ExcessFE -1.60555993e+01

nStep 500000 time 500 nSCF 3 F -2.14330226e-01 ExcessFE -1.60556145e+01

//!!!!!!!! SCF Convergence succeeded. : nSCF = 3 ////////

cpu time 20614 [sec]
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The format of the data written at every time step of the dynamic calculation is as follows

nStep [Time step of the dynamic calculation] time [Time]

nSCF [Number of iterations of the SCF calculation]

F [Free energy / volume] ExcessFE [Excess free energy]

If the SCF iteration did not converge, the following message will be written, and SUSHI is terminated.

//XXXXXXXX Exceeded maximum step number of SCF. : nSCF = 20000 ////////

The last line is the actual elapsed time.

Log file of SCF iterations in dynamic calculation

The contents of this file are as follows.

nSCF 1 not equilibrated Polymers 2

polymerId 0 nW 0 err 0.00000000e+00 nPhi 4 err 1.42054109e-04

polymerId 1 nW 0 err 0.00000000e+00 nPhi 7 err 1.38242704e-04

.....

The first line is the number of polymer species that have not yet converged, followed by the messages with
the format below repeatedly.

polymerId [ID of the polymer]

nW [Number of mesh points at which W is not converged] err [Maximum error in W]

nPhi [Number of mesh points at which phi is not converged] err [Maximum error in phi]

When the maximum error becomes smaller than a threshold value specified in the input file, the calculation
will be terminated. Refer to Section 2.9.10 for the details.

5.12 Parameter UDF

When the user starts SUSHI with the option “-Pparameter udf file”, the UDF control parameters stored in
the file “parameter udf files” are read. The definitions of the UDF control parameters are as follows.

\begin{header}

\begin{def}

EngineType:string;

EngineVersion:string;

IOType:string;

ProjectName:string;

Comment:string;

\end{def}

\begin{data}

EngineType:"SUSHI"

EngineVersion:"060620"

IOType:"IN"

ProjectName:"WG2"

Comment:"Control Parameter"
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\end{data}

\end{header}

\begin{def}

Time:double

class ChiParameter:{

name_i:string

name_j:string

parameter:double

}

///// START SUSHIParameter.udf /////////////////////////////////////////////////

SCFControlParameter:{

constV :double

constW :double

error :double

judge_method :select { "ABSOLUTE", "RELATIVE" }

scf_output_interval_step :int

max_SCF_step :int

}

DynamicsControlParameter:{

delta_t :double

max_dynamics_step :int

output_interval_step :int

archives_interval_step :int

log_interval_step :int

}

VariableControlParameter:{

chi_parameters[]:ChiParameter

}

///// END SUSHIParameter.udf ///////////////////////////////////////////////////

\end{def}

The meanings of the parameters are the same as those in the SUSHIInput.udf file. To control SUSHI by
the parameters, you have to prepare the file named “parameter udf file” in which the values of the parameters
that should be changed are stored in the above UDF format. SUSHI reads this file and change the values of
the parametrers when the specified time in this parameter UDF file matches the simulation time. In the case
of a static equilibrium calculation, only time = 0 can ce specified in the parameter UDF file. In the case of
a dynamic calculation, you can prepare many records changing the parameters and the time. For example,
a simulation of the quenching process can be simulated by changing the value of χ parameter. This can be
realized by using the parameter UDF file.
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Alphabetical UDF classes

UDF parameter Description

ADFParameter class ADFParameter
alpha double
allowedError double
maxIteration int
alphaForPoissonSolver double
allowedErrorForPoissonSolver double
maxIterationForPoissonSolver int
bondFactor double
bulkModulus double
phiMin double
phiMax double
isIncompressible int ( no effect )

AxisBoundaryCondition class AxisBoundaryCondition
axis conditions[] array of string PERIODIC/DIRICHLET/WALL/NEUMANN

AxisRegion class AxisRegion
axis name [select] X/Y/Z/R/H

Block class Block
monomer name string
number of monomer double

BoundaryCondition class BoundaryCondition
conditions[] array of AxisBoundaryCondition class
volume fractions on boundaries VolumeFractionsOnBoundaries class

CalculationMethod class CalculationMethod
type [select] STATICS/DYNAMICS/MONTECARLO

ChiParameter class ChiParameter
name i string
name j string
parameter double

Components class Components
polymers[] array of Polymer class
solvents[] array of Solvent class

ConstraintCondition class ConstraintCondition
target ID SCFUnitIDSet class
constraint coondition int 1: phi/ 2: V

DomainSpecificationCondition class DomainSpecificationCondition
name string
domain regions[] array of AxisRegion class
initial chemical potential double
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UDF parameter Description

DynamicConditions class DynamicConditions
segment mobilities[] array of SegmentMobility class
types of polymer mobility[] array of LocalMobility class
types of solvent mobility[] array of LocalMobility class
reaction conditions of rapid reactions[] array of ReactionConditionOfRapidReaction class
reaction conditions of active sites[] array of ReactionConditionOfActiveSites class
reaction conditions of grafts[] array of ReactionConditionOfGraft class
shear class Shear
noise class Noise
system size dynamics class SystemSizeDynamics

DynamicsParameter class DynamicsParameter
delta t double
max dynamics step int
output interval step int
archives interval step int
log interval step int
dynamics scheme [select] EXPLICIT/EXPLICIT2/IMPLICIT
compressibility double

Electrolyte class Electrolyte
name string
name of dissociated ion string
name of free ion string
kp double

ElectrostaticCondition class ElectrostaticCondition
dielectric constant of system double
electrostatic parameters of segment[] array of ElectrostaticParametersOfSegment class
electrolyte[] array of Electrolyte class
external electric field Vector3D class
parameter of external electric field for dynamics ParameterOfExternalElectricFieldForDynamics class

ElectrostaticConditions class ElectrostaticConditions
electrostatic condition class ElectrostaticCondition
poisson solver parameter PoissonSolverParameter class

ElectrostaticParametersOfSegment class ElectrostaticParametersOfSegment
name string
charge double
dielectric constant double

ExternalConditions class ExternalConditions
surface chi parameters[] array of SurfaceChiParameter class
graft conditions[] array of GraftCondition class
mask conditions[] array of MaskCondition class
static conditions StaticConditions class
dynamic conditions DynamicConditions class
monte carlo conditions MonteCarloConditions class

FHParameter class FHParameter
kappas[] array of Kappa class
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UDF parameter Description

Fiber class Fiber
position of end0 Vector3D class
position of end1 Vector3D class
radius of fiber double
end cap [select] YES/NO
region of obstacle [select] IN/OUT

GraftCondition class GraftCondition
polymer ID int
junction ID int
boundary name [select] XMin/XMax/YMin/YMax/ZMin/ZMax

RMin/RMax/HMin/HMax/Particle/Fiber
obstacle ID int

Hexahedron class Hexahedron
position of origin0 Vector3D
direction a0 Vector3D
direction b0 Vector3D
direction c0 Vector3D
position of origin1 Vector3D
direction a1 Vector3D
direction b1 Vector3D
direction c1 Vector3D
coefs of surface chi[] double
region of obstacle [select] IN/OUT

HydrodynamicsParameters HydrodynamicsParameters
density double
viscosities[] Viscosity
neglect convection term int
dynamics scheme {select} EXPLICIT/EXPLICIT2/IMPLICIT
poisson solver parameter PoissonSolverParameter class

Hybrid Hybrid
SCF step int
RPA step int
free energy by {select} RPA/SCF

JunctionData class JunctionData
ID set[] array of int

JunctionPair class JunctionPair
first int
second int

Kappa class Kappa
polymer ID int
value double

LocalMobility class LocalMobility
component ID int
type [select] ROUSE/REPTATION
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UDF parameter Description

MaskCondition class MaskCondition
polymer ID int
junction ID int
mask regions[] array of AxisRegion class

Mesh class Mesh
name KEY
type [select] REGULAR/RECTANGULAR

CYLINDRICAL/SPHERICAL

MeshAxis class MeshAxis
values[] array of double

Monomer class Monomer
species name string
specific volume double
effective bond length double

MonomerSCFChar class MonomerSCFChar
name string
states[] array of State class
array of transition state probabilities[] array of TransitionStateProbabilities class

MonteCarloConditionOfJunction class MonteCarloConditionOfJunction
junction ID int
position Vector3D class

MonteCarloConditionOfPolymer class MonteCarloConditionOfPolymer
polymer ID int
monte carlo conditions of junction[] array of MonteCarloConditionOfJunction class

MonteCarloConditions class MonteCarloConditions
monte carlo conditions of polymer[] array of MonteCarloConditionOfPolymer class

MonteCarloParameter class MonteCarloParameter
max monte carlo step int
output interval step int
archives interval step int
log interval step int

Noise class Noise
standard deviation of thermal noise double

Obstacles class Obstacles
ndiv for volume calculation int
particles[] array of Particle class
fibers[] array of Fiber class
hexahedrons[] Hexahedron
shape by grids[] ShapeByGrids

OptionalOutput class OptionalOutput
segment volume fraction ScalarField class
radius of gyration[] array of RadiusOfGyration class
monte carlo condition of polymer[] array of MonteCarloConditionOfPolymer class
electric potential ScalarField class
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UDF parameter Description

Particle class Particle
position of center Vector3D class
radius of particle double
region of obstacle [select] IN/OUT

Path class Path
polymer ID int
subchain ID int
begin junction ID int
end junction ID int
coef for surface depth double
name as solvent string
effective diffusion constant double

ParameterOfExternalElectricFieldForDynamics class ParameterOfExternalElectricFieldForDynamics
direction [select] X/Y/Z
alpha double

PoissonSolverParameter class PoissonSolverParameter
omega double
allowed error double
max iteration int

PolydispersityCondition class PolydispersityCondition
longest homo polymer ID int
target homo polymer ID int

Polymer class Polymer
type [select] HOMO/BLOCK/COMB/STAR/GENERAL

Properties class Properties
segment volume fraction conditions[] array of SegmentVolumeFractionCondition class
radius of gyration conditions[] array of SubchainUnit class
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UDF parameter Description

RadiusOfGyration class RadiusOfGyration
dim int
rg double
rg xyz[] array of double

ReactantIDSet class ReactantIDSet
type int 0 : polymer/ 1 : solvent
IDSet[] array of int: molecular ID, junction ID

ReactionConditionOfActiveSites class ReactionConditionOfActiveSites
reactant IDs[] array of ReactantIDSet class
polymer ID of product int
map of subchains[] array of SubchainMap class
reaction constant double

ReactionConditionOfGraft class ReactionConditionOfGraft
graft condition GraftCondition class
polymer ID of product int
map of subchain IDs[] array of int
reaction constant double

ReactionConditionOfRapidReaction class ReactionConditionOfRapidReaction
reactant IDs[] array of ReactantIDSet class
product ID ReactantIDSet class
volume fractions of reactants in product[] array of double
reaction constant double

RPAParameter RPAParameter
random seed int
standard deviation double
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UDF parameter Description

ScatteringFunctionInput ScatteringFunctionInput
calculate [select] ON/OFF/RESTAR
intensity [select] ON/OFF
coef for mesh double

SCFParameter class SCFParameter
delta s double
constV double
constW double
error double
random seed int
standard deviation double
method of convergence test [select] ABSOLUTE/RELATIVE
convergence test interval step int
max SCF step int
scf output interval step int
SCF method [select] INCORE/DIRECT
pathintegral scheme [select] EXPLICIT/IMPLICIT

SCFUnitData class SCFUnitData
name string
volume fraction double
ID set[] array of int

SCFUnitIDSet class SCFUnitIDSet
type int 0 : polymer/1 : solvent
IDSet[] array of int: molecular ID, subchain ID, state ID

ShapeByGrids class ShapeByGrids
input filepath string
region of obstacle:select [select] IN/OUT

SUSHIInput class SUSHIInput
calculation method CalculationMethod class
restart [select] START/CONTINUE/RESTART/RESTART READMESH
solver parameter SolverParameter class
mesh Mesh class
type of free propagator of regular mesh [select] 1NN-P/2NN-NP/2NN-P/3NN-P

SUSHIOutput class SUSHIOutput
volume fractions VolumeFractions class
flag of dynamics int
phi ScalarField class
V ScalarField class
free energy double
excess free energy double
optional output OptionalOutput class
flag of convergence int

ScalarArray class ScalarArray
comp[] array of double

ScalarField class ScalarField
name KEY
num of component int
value[] array of ScalarArray class

SegmentMobility class SegmentMobility
segment name string
mobility double
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UDF parameter Description

SegmentVolumeFractionCondition class SegmentVolumeFractionCondition
polymer ID int
subchain ID int
begin length double
end length double

Shear class Shear
shear rate double
shear period double

Solvent class Solvent
name string
specific volume double

SolverParameter class SolverParameter
type [select] ADF/FH/SCF

State class State
name string
probability double

StaticConditions class StaticConditions
polydispersity conditions[] array of PolydispersityCondition class
symmetry conditions[] array of SymmetryCondition class
domain specification conditions[] array of DomainSpecificationCondition class
constraint conditions[] array of ConstraintCondition class

SubchainMap class SubchainMap
reactant ID int
subchain ID of reactant int
subchain ID of product int

SubchainUnit class SubchainUnit
polymer ID int
subchain ID int

SurfaceChiParameter class SurfaceChiParameter
boundary name [select] XMin/XMax/YMin/YMax/ZMin/ZMax

RMin/RMax/HMin/HMax
obstacle ID int

SymmetryCondition class SymmetryCondition
parent path Path class
child path Path class

SystemSizeDynamics class SystemSizeDynamics
parameter of system size dynamics double
compressibility double
interval of system size dynamics int

SystemSizeOptimaization class SystemSizeOptimaization
max iteration of optimization int
cubic system int 0:no / 1:yes

TransitionStateProbabilities class TransitionStateProbabilities
probabilities[] array of double
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UDF parameter Description

Vector3D class Vector3D
x double
y double
z double

VolumeFraction class VolumeFraction
Id int
volume fraction double
ensemble [select] CANONICAL/GRANDCANONICAL

VolumeFractionData class VolumeFractionData
name string
volume fraction double

VolumeFractionOnBoundary class VolumeFractionOnBoundary
Id int
boundary name [select] XMin/XMax/YMin/YMax/ZMin/ZMax

RMin/RMax/HMin/HMax

VolumeFractions class VolumeFractions
polymer volume fractions[] array of VolumeFraction class
solvent volume fractions[] array of VolumeFraction class

VolumeFractionsOnBoundaries class VolumeFractionsOnBoundaries
polymer volume fractions[] array of VolumeFractionOnBoundary class
solvent volume fractions[] array of VolumeFractionOnBoundary class
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5.13 Definitions of the SEED format

The SEED(Simple and Easy Editable Data) format is the format for simple data input. This format has
been prepared for the development of the core of SUSHI, and is expected to be still useful for the future
developments. In order to handle the SEED format files, the multimap and the string of STL of C++
language are extensively used. The SEED format is not suitable for a large-scale input data because of the
extensive requirements for the cpu time and the memory. However, SEED format is useful for inputting
small-scale data. The input SEED file is a UNIX text file. The text files with the MS-DOS format in which
a line terminates with CR + LF cannot be accepted. A fundamental data sequence of the SEED file is as
follows.

Key data1 data2 data3 ........

The first item “Key” is the keyword that is used to identify the data. “data1 data2 ...” are the data
written in ASCII characters. The separator is either a blank character or a tab character. A single data
sequence terminates with a “new-line” code. When a data includes two or more lines, the data sequence
following Key have to be enclosed with ”(”,”).” For example,

Key ( data1 data2 data3 .......

data11 data12 data13 ........... )

Separators must be inserted after ”(” and before ”)”, respectively. A data sequence is stored in a multi-map
with the Key. Two or more data sequences can have the same Key. A data element in a data sequence
is specified by the element index. Let us name the multi-map that contains the pair of Key and the data
sequence as “mmapWords”. The basic structure of the SEED format is a structure object that posesses this
“mmapWords”. Furthermore, the multi-map “mmapSeeds” that consists of Key and SEED is added to this
structure object. Such a structure can easily be realized using the classes of C++ as follows.

class Seed {

Seed* pParent;

multimap< string, map< int, string > > mmapWords;

multimap< string, Seed* > mmapSeeds;

};

“pParent” is a pointer to the parent SEED. This pointer makes it possible to read any hierarchical data
structures.

The data structure should be enclosed by ”{”, ”}” as follows.

Key1 data1 data2 data3 ........

Key2 data1 data2 data3 ........

.....

Key3 {

Key1 data1 data2 data3 ........

Key2 data1 data2 data3 ........

.......

Key3 {

..........

}

........

}

Key4 {

........

.......

As the data sequences and the SEED sequences are stored with Keys and multi-maps, the order of the data
does not have a meaning except for the data with the same Key. Thus, a new data sequence or a new data
structure with a different Key can be inserted in any position. For example,

Key1 data1 data2 data3

Key1 data4 data5 data6

Key2 data7 data8 data9
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and

Key1 data1 data2 data3

Key2 data7 data8 data9

Key1 data4 data5 data6

are the same data. There is no fixed format in SEED. As long as there is no inconsistency in the structure,
SUSHI can read the data and can extract required data.

5.14 Input method by SEED format

In the following, the symbols ”.....” mean repeating the same data or the same structure. The first word
before the words enclosed by [] in each line is the key word, and the words enclosed by [] mean the data.
This [meanings of data] part sould be replaced by a real value written in ASCII characters.

The input data for the basic controls are as follows.

SOLVER [Solver]

// The name of the solver, which means a special-purpose simulator/simulation method.

// ADF : Approximate Density Functional method (Under construction).

// SCF : Self Consistent Field method.

RPA_SCF　 [Number of SCF iter.] [Number of RPA iter.]　// Hybrid method

CALCMETHOD [The type of the calculation]

// DYNAMICS : Dynamic calculation.

// STATICS : Static equilibrium calculation.

// MONTECARLO : Monte Carlo calculation.

// For selecting this option, one has to set parameters to

// MONTECARLO { ... } data.

RESTART

// The flag for restarting condition

// CONTINUE : continue with reading the mesh at the final recoerd

// no argument : restart without reading the mesh at the final recoerd

// RESTART : restart without reading the mesh at the final recoerd

// RESTART_READMESH : restart with reading the mesh at the final recoerd

5.14.1 Keys for the SCF calculation

DEL_S [Mesh width along the chain contour used for the path integral

calculations]

CONST_V [Constant for the updating of the chemical potential]

CONST_W [Constant for the updating of the interaction]

ERROR [Threshold used in the judgement of the convergence]

RANDOM_SEED [Seed for random number]

STANDARD_DEVIATION [Standard deviation of the Gaussian random noise for the

initial states of the fields]

JUDGEMETHOD [Method of judging the convergence]

// This parameter is valid only in the dynamic calculations.

// ABSOLUTE : The absolute error in phi is used in judging the convergence.

// RELATIVE : The relative error in phi is used in judging the convergence.

// This judgment is severer than the ABSOLUTE case.

JUDGESTEP [Interval of judging the convergence]

MAX_COUNT [Maximum iterations of the SCF calculation]

SCF_OUTPUTSTEP [Output interval steps in the SCF calculation]

MATRIX_ELEMENT_TYPE [Type of the discretized Laplacian]

// 1NN-P, 2NN-NP, 2NN-P, 3NN-P.

SCFMETHOD [Treatment of the memory for the path integral]

// INCORE : Data are stored on the memories.

// DIRECT : Data are re-calculated when they are required.
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PATHINTEGRAL_SCHEME [Integration scheme of the path integral]

// IMPLICIT

// EXPLICIT : default

5.14.2 Keys for the dynamic calculation

These Keys are valid in the dynamic calculations. Refer to Section 2.9.10.

DEL_T [Time mesh width]

NTIME [Maximum number of time steps]

OUTPUTSTEP [Output interval]

ARCHIVESSTEP [Output interval steps to the archives file]

LOGSTEP [Output interval steps to the log file]

DYNAMICS_SCHEME [Integration scheme of the equation of motion]

// IMPLICIT

// EXPLICIT // The explicit scheme. default. Euler scheme.

// EXPLICIT2// The2step Runge-Kutta scheme.

COMPRESS_DY [Compressibility：Available in SCF calculation.]

5.14.3 Keys for the Monte Carlo calculation

These Keys are valid in the Monte Carlo calculations and in common with the keys of dynamics calculation.
Refer to Section 2.9.17.

NTIME [Maximum number of steps]

OUTPUTSTEP [Output interval]

ARCHIVESSTEP [Output interval steps to the archives file]

LOGSTEP [Output interval steps to the log file]

5.14.4 Mesh

Refer to Section 2.9.3.

Mesh

MESH {

NAME [Name]

TYPE [Type]

// REGULAR

// RECTANGULAR

// SPHERICAL

// CYLINDRICAL

X [Minimum value of X-axis] [Maximum value] [Number of cells] [Number of regions(MPI only)]

Y [Minimum value of Y-axis] [Maximum value] [Number of cells] [Number of regions(MPI only)]

Z [Minimum value of Z-axis] [Maximum value] [Number of cells] [Number of regions(MPI only)]

X [Array of the positions of each mesh points] .....(rectangular mesh case)

Y [Array of the positions of each mesh points] .....(rectangular mesh case)

Z [Array of the positions of each mesh points] .....(rectangular mesh case)

R [Minimum value of R-axis] [Maximum value] [Number of cells]

H [Minimum value of H-axis] [Maximum value] [Number of cells]

}

Boundary conditions

Refer to Section 2.9.4.

BOUNDARYCONDITION {

X [Condition at the minimum end of X-axis] [Condition at maximum end]
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Y [Condition at the minimum end of Y-axis] [Condition at maximum end]

Z [Condition at the minimum end of Z-axis] [Condition at maximum end]

R [Condition at the minimum end of R-axis] [Condition at maximum end]

H [Condition at the minimum end of H-axis] [Condition at maximum end]

// PERIODIC :Periodic boundary conditions.

// In this case, you do not have to specify

// the conditions for both minimum and maximum ends.

// Only a single datum is enough.

// DIRICHLET or WALL :Absorbing wall.

// Dirichlet boundary condition with constant 0.

// NEUMANN :Reflective wall.

// Neumann boundary condition with constant gradient 0.

// The conditions for both ends should be specified except for

// the PERIODIC boundary case.

VOLUME { // The volume fractions at the boundary.

// Refer to the UDF definition.

POLYMER {

FRACTION [ID of polymer] [End of axis] [Volume fraction]

.....

// ID is the element index defined in COMPONENT. It starts from 0.

// The value of the volume fraction is constrained on the

// plane that goes through the end point of the axis and is

// perpendicular to the axis.

// XMin, XMax, YMin, YMax, ZMin, ZMax, RMin, RMax, HMin, Hmax

}

SOLVENT {

FRACTION [ID of solvent] [End of axis] [Volume fraction]

.....

// ID is the element index defined in COMPONENT. It starts from 0.

// The value of the volume fraction is constrained on the

// plane that goes through the end point of the axis and is

// perpendicular to the axis.

// XMin, XMax, YMin, YMax, ZMin, ZMax, RMin, RMax, HMin, Hmax

}

}

};

5.14.5 Specification of the monomers

Refer to Sections 2.2 and 2.3.

Monomer

MONOMER {

CHARACTER [Name] [Specific volume] [Effective bond length]

.....

// Name:

// If the monomer has its internal states such as the tapered block

// copolymer, this parameter specifies the sequence of the monomers

// such as "taperAB".

// Specific volume:

// This parameter is used when the path integral and the volume fraction of

// the monomer are calculated. If the monomer has its internal states, this

// parameter is re-calculated using the specific volumes of individual state,

// and will be overwritten.

// Effective bond length:

// This parameter is used for the calculation of the coefficient of the
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// Laplacian term in the evolution equation for the path integrals.

}

Internal states of subchains

These parameters specify the characteristic properties of the internal states of subchains. If none of the
subchains has the internal state, this parameter can be skipped.

MONOMERSCFCHARTABLE {

MONOMERSCFCHAR {

NAME [Name]

// A monomer with this name has to be defined in advance.

// For example, a monomer that is composed of a tapered block of A and

// B monomers may be named "taperedAB".

STATE { // Array of the elements of the transition state probability matrix

// for the internal states.

DATA [Name] [Probability of finding this monomer in the subchain]

.....

}

TRANSITIONSTATEMATRIX {

NMATRIX [Number of transition state probabilities]

PROBABILITY [Transition state probability] .......

// Array of the elements of the transition state probability matrix between

// the internal states of the subchain. The transition state probability

// Tij is defined as the probability of finding a monomer with state j

// next to a monomer with state i separated by the distance equal to the

// mesh width along the chain. In the current version of SUSHI, only the

// polymers with fixed concentration distribution of segment kind along

// the chain can be calculated. Therefore, the element Tij is determined

// only by the probability of finding the internal state j at the

// specified position. The position is specified by the distance from the

// junction with samller ID. The value of the distance is corresponds to

// the product of the index of this data structure and the mesh width

// along the chain ( DEL_S ).

// The total number of array elements should coincide with

// "( subchain length / delta_s )+ 1".

}

}

.....

}

5.14.6 Specification of the polymers and solvents

These parameters specify the structures of the molecules (polymers and solvents). Only those whose volume
fractions are specified are actually used in the simulation. Refer to Sections 2.2 and 2.3.

Component

COMPONENT {

// Polymer is specified by connected subchains. A subchain is specified by

// a sequence of monomers with a certain length.

POLYMER {

TYPE [Key word of connection of the subchains]

// HOMO :Linear homo polymer.

// BLOCK :Linear multiblock copolymer made of a sequence of the subchains

// with the same order as they are listed in BLOCK data line as follows.

// STAR :Star block copolymer made of subchains which are connected at

// a single junction point.
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// COOMB :Comb-type block copolymer.

// The order of the subchains stored in the array is as follows.

// main chain - side chain - main chain - side chain -.....

// For example, an array of the subchains A1, B1, A2, B2, and A3

// indicates the following structure.

// A1--+--A2--+--A3

// B1 B2

// GENERAL : The way how the subchains are connected each other

// is specified by the ID’s of the two junction points at the

// both ends of each subchain.

BLOCK [Name of the monomer of the subchain] [Length of the subchain]

.....

// The monomer with this name must be defined in MONOMER.

JUNCTION [ID of junction] [ID of junction]

.....

// This parameter is available only when the type of the polymer is GENERAL.

// The values of the ID must start from 0.

// For example, when the number of elements of Block is 1 and a pair of ID’s

// is [0, 0], it means that this polymer is a ring polymer.

}

.....

Solvent [Name] [Specific volume]

.....

}

5.14.7 Volume fractions

Among the polymers and solvents defined in COMPONENT, only those whose volume fractions are specified
are used in the simulation. Depending on the assumed statistical ensembles, the meanings of the volume
fractions change. Refer to Section 2.9.8.

VOLUME {

POLYMER {

FRACTION [ID of polymer] [Volume fraction] [Ensemble] [Volume fraction of bulk]

.....

// ID is the element index of this component in the array COMPONENT.

// It starts from 0.

// Ensemble:

// CANONICAL :Canonical ensemble.

// GRANDCANONICAL :Grand canonical ensemble.

// Dynamics calculation cannot be performed when GRANDCANONICAL is selected.

}

SOLVENT {

FRACTION [ID of solvent] [Volume fraction] [Ensemble] [Volume fraction of bulk]

.....

// ID is the element index of this component in the array COMPONENT.

// It starts from 0.

// Ensemble:

// CANONICAL :Canonical ensemble.

// GRANDCANONICAL :Grand canonical ensemble.

// Dynamics calculation cannot be performed when GRANDCANONICAL is selected.

}

}

For the details, readers should refer to the explanations on the corresponding UDF data.
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5.14.8 Interaction parameters between segments (χ parameters)

Refer to Chapter 7.

CHI {

ZBE [Name of segment i] [Name of segment j] [Value of Chi_ij]

// Chi_ji is automatically set using the symmetric relation

// Chi_ji = Chi_ij.

// If the value is not defined, it is assumed to be 0.

// The name of the segment means the name of MONOMER or SOLVENT.

}

5.14.9 External conditions

The user can obtain several physical quantities which are specified using the ID’s of the polymers, solvents,
subchains, and junctions, which correspond to their element indices in the arrays defined in the SUSHIIn-
put.components. Here, as the rule in C language, the element index begins from 0.

Volume fraction of a part of a subchain

The volume fraction of a specific section on a subchain can be calculated. This parameter is valid only for
the polymers without a loop.

SEGMENT {

SET [ID of polymer] [ID of subchain] [The starting position on the subchain]

[The ending position on the subchain]

.....

// The smaller one of the two JUNCTION ID’s of the both ends of the

// subchain is used as the reference point for the position.

}

Radii of gyration (Rg)

This parameter specifies the subchains whose radii of gyration are calculated and output.

RG {

ID [ID of polymer] [ID of subchain] // if the ID of subchain = -1, calculate the Rg of full structure.

.....

}

Scattering function

SCATT [Option of restart］
//　 RESTART : calculate scattering functions of existing records　　　　　　　　　　

　　
//　 without date of the existing records

COEFFORMESHWIDTH [The coefficient for mesh width of 1D scattering function]

// The mesh witdh = this value times 2 pi

// / (the longest length of edge).

}

Interaction parameters between a wall and the segments (χs)

Refer to Section 2.9.7.

SURFACECHI {

// The value of the interaction parameter between the segment and the wall.

ZBE [End of axis] [Target segment name] [Value of parameter]

.....

// End of axis: Definition of the surface with which the segments interact.
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// XMin, XMax, YMin, YMax, ZMin, ZMax, RMin, RMax, HMin, Hmax, PARTICLE, FIBER

// ID of each obstacle (available when choosing PARTICLE or FIBER)

}

Graft conditions

A graft chain can be realized by imposing a constraint on the initial value of the path integral at the free
end(s). Refer to Section 2.9.6.

GRAFT {

// The wall onto which the chain is grafted and the grafted polymer are specified.

SET [End of axis] [Polymer ID to graft] [JUNCTION ID to graft]

.....

// End of axis: The plane to which the polymer is grafted is defined as a plane

// that goes through the end point of an axis and is parpendicular

// to the axis.

// XMin, XMax, YMin, YMax, ZMin, ZMax, RMin, RMax, HMin, Hmax, PARTICLE, FIBER

// ID of each obstqacle (availabe when choosing PARTICLE or FIBER)

}

Mask conditions

This parameter specifies the region within which the position of a free end is confined. This function can be
used in simulating micelles, etc. Refer to Section 2.9.14.

MASK {

JUNCTION {

ID [ID of the polymer to be masked] [ID of the junction to be masked]

AXIS [Name of axis] [Lower bound of the region] [Upper bound of the region]

.....

// Name of the axis: X, Y, Z and R, H

}

.....

}

5.14.10 Effective external conditions in static equilibrium calculation

Specification of the longest polymer for the static equilibrium calculation on polydisperse
linear homopolymer systems

This parameter is valid only for the static equilibrium calculations on systems composed of polydisperse
linear homopolymers composed of a monomer with a single internal state. Specifying this parameter will
reduce the memory and computational time. Refer to Section 2.9.12.

POLYDISPERSITY {

SET [ID of the longest linear homopolymer] [Polymer ID of common path integral]

.....

}

Specification of the similar path integrals for the static equilibrium calculation

Refer to Section 2.9.12. This parameter specifies the subchains whose path integrals can be shared each
other. This parameter is valid only for the static equilibrium calculations. The calculation time of the
path integrals will be reduced using this function. For example, in the calculation of two diblock copolymer
chains A10B10 and A20B20, the path integral starting from the free end of the A subchain of the longer
chain A20B20 is the same as that of the shorter chain A10B10, and can be shared. On the other hand, since
the initial values of the path integral starting from the junction points are different for A10B10 and A20B20,
these cannot be shared.
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SYMMETRY {

PATH [ID1] [ID2] [J1] [J2] [ID3] [ID4] [J3] [J4]

.....

// The path of the subchain whose path integral is shared with the other subchains.

// The path are specified as follows.

// ID1: ID of the polymer.

// ID2: ID of the subchain.

// J1 : ID of the junction from which the calculation of the path integral starts.

// J2 : ID of the junction at which the calculation of the path integral ends.

// The path of the subchain whose path integral is replaced by that defined above.

// The path are specified as follows.

// ID3: ID of the polymer.

// ID4: ID of the subchain.

// J3 : ID of the junction from which the calculation of the path integral starts.

// J4 : ID of the junction at which the calculation of the path integral ends.

}

Domain specification

In order to produce a desired domain morphology, an appropriate initial condition for the self consistent
field should be prepared using this parameter. This parameter is valid for the static equilibrium calculations.
Refer to Section 2.9.13.

DOMAIN {

SPECIFICATION {

NAME [Name of segment]

REGION [Name of axis] [Minimum value of the region where a small value is set as

the initial SCF value] [Maximum value of the region]

.....

// Name of axis: X, Y, Z and R, H

}

.....

}

Constraint conditions in the SCF calculation

This parameter specifies the constraint conditions imposed on the system when the SCF iteration is per-
formed.

CONSTRAINT {

POLYMER {

TARGET [Object to be constrained] [ID of polymer] [ID of subchain] [ID of state]

.....

// [Object to be constrained]: 1 :The volume fraction of phi only.

}

SOLVENT {

TARGET [Object to be constrained] [ID of solvent]

.....

}

}

Statical system size optimization

MAX_LO [Interval SCF step of optimization]

DL [Relative delta of length of edge, default:1e-6]

LATTICEERROR [Threshold used in the judgement of the convergence of the length of the edge, default:1e-4]

DUMPPARAM [Allowed relative variation of the lengh of the edge, default:0.4]
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5.14.11 Effective external conditions in dynamimc calculation

Mobility for each segment species

The users can specify the values of the mobility for each kind of monomer or solvent separately. If this
parameter is not specified, the mobility is assumed to be 1.0. This parameter corresponds to the constant
L0 in Eqs.(2.64) and (2.65). Refer to Section 2.9.18.

The mobility of a polymer in a dilute solution in general depends on the local concentration of the
polymer and the species of the surrounding matrix. In the dilute limit, the mobility can be written as L0ϕ,
where the parameter L0 depends on the properties of the chain and that of the matrix solvent. Refer to
Section 2.9.10.

ROUSE case: When the chain length is much longer than that of the matrix solvent and the polymer
concentration is small enough (dilute limit), the chain is in the Rouse regime. In such a case, the mobility
L is given by L = L0ϕ.

REPTATION case: When the chain length is long and is almost equal to that of the matrix molecules,
the chains are strongly entangled. In such a case, the mobility is given by L = (L0/N)ϕ, where N is the
length of the target chain. This REPTATION case is not valid for a solvent.

MOBILITY {

SEGMENT [Name] [Mobility] // The value of L0.

POLYMER [ID of polymer] [Type] // The type of the mobility for the polymer.

// ROUSE /

// REPTATION/

SOLVENT [ID of solvent] [Type] // The type of the mobility for the solvent.

// ROUSE -- only this condition is valid.

}

Chemical reactions

A chemical reaction can be introduced into the dynamic calculations. Available types of chemical reactions
are follows.

1) A+B + C + · · · → D, where each species has to be defined in COMPONENT.

2) Reactions at active sites. For example, free ends of an A-homopolymer and a B-homopolymer react to
produce an AB block copolymer.

3) Grafting reaction onto a wall.

1) A+B + C + · · · → D

If the characteristic time scale of the chemical reaction is faster than the time mesh

size used in the dynamic calculation, it is reasonable to assume that a certain amount

of the reactants turns into the same amount of the product instantaneously.

REACTION {

GROUP {

REACTANT [type of reactant] [ID of reactant]

.....

PRODUCT [type of product] [ID of product]

[Volume fraction of the reactant listed above REACTANT line

in this product] .....

CONSTANT [Reaction rate constant]

}

.....

// Type of reactants :POLYMER, SOLVENT

}
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2) Reactions at active sites

This is the case of the reactions with structural change of the molecules.

In this case, the product must be a polymer. Numbers of reactant species are limited to two.

Therefore, the reaction should be a second order one.

REACTION {

JUNCTION {

REACTANT [Type of reactant] [ID of reactant] [ID of junction of product]

REACTANT [Type of reactant] [ID of reactant] [ID of junction of product]

// Type of reactant :POLYMER, SOLVENT

PRODUCT [ID of product]

// This parameter specifies the correspondence between the subchain in the

// reactant and that in the product.

SUBCHAIN [ID of reactant] [ID of subchain in the reactant]

[ID of subchain in the product]

// ID of the reactant means the element index of the REACTANT specified

// in the first line. This parameter can be either 0 or 1.

.....

CONSTANT [Reaction rate constant]

}

.....

}

3) Grafting reactions onto a wall

REACTION {

GRAFT {

REACTANT [ID of reactant] [ID of product]

PRODUCT [ID of product]

SUBCHAIN [ID of the subchain in the product] ......

// A list of ID’s of subchains in the reactant corresponding to

// the list of ID’s of subchains in the product.

CONSTANT [Reaction rate constant]

}

.....

}

Sheared dynamics

SHEAR_RATE [Shear rate] [Period]

// When the period is zero, one direction shear is added.

Thermal fluctuation

NOISE [Standard deviation of thermal noise] [random_seed:0 or neglect is reccomended]

random_seed // If a positive value is set, the value is fixed and is not changed

// thus the positive value is used when only debugging.

Dynamic system size optimization

Refer to Section 2.9.18.

LATTICEOPT_COEF [Q in eq. (2.103)]

COMPRESS [Compressibility in eq. (2.104), default 0.]

LO_INTERVALSTEP [Interval of dynamic step of optimization]

SSO {

DIRECTION [flag of X axis] [flag of Y axis] [flag of Z axis]

....
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// If you optimize x and y axes keeping the ratio, input as

// DIRECTION 1 1 0

// If you optimize x and y axes independently, input as

// DIRECTION 1 0 0

// DIRECTION 0 1 0

}

Hydrodynamic effects

Introduce hydrodynamic effects for dynamics calculations, refer to Section 2.8.5.

HYDRO {

DENSITY [Denisty]

VISCOSITY [Name of segment]　 [Viscosity]

....

IMPLICIT　//Write this keyword when IMPLICT is used.

POISSON { // Parameter for solve pressure

ERROR [Allowed error; about 10^-10 is recommended]

MAXSTEP 　 [Maxinum number for ICCG]

}

// The parameter set to add a thermal fluctuation to the Navier-Stokes equation.

NOISE [Standard deviation of thermal noise] [random_seed:0 or neglect is reccomended]

}

5.14.12 Conditions for SCF Monte Carlo calculation

Refer to Section 2.9.17. Set the parameter of CALCMETHOD as “MONTECARLO” to use this option.

MONTECARLO {

POLYMER { // Specify the polymer whose junctions are updated

// in the Monte Carlo simulation.

ID [number of ID of polymer]

JUNCTION [number of ID’s of junctions] [cordinate x] [cordinate y] [cordinate z]

.....

// Set the initial positions of junctions.

}

.....

}

5.14.13 Electrostatic condition

Refer to Section 5.7.11.

ELECTROSTATIC {

DIELECTRIC [the value of the dielectric constant of the system]

// It must be positive.

CHARGE [name of segment] [value of charge] [dielectric constant of segment]

.....

ALPHA [direction] [value of alpha]

// The paramers of extenal electric field for Dynamics.

// direction: X, Y, and Z.

EFIELD [x value of E0] [y value of E0] [z value of E0]

// The vector of extenal electric field.

// Attention! ALPHA and EFIELD can not be used at the same time.

POISSON { // Parameters for Poisson solver of SOR( Successive Over Relation) method.

OMEGA [omega] // The parameter for SOR method.

// The value 0.8 is recommended as the default value.

// This paramerer is not used in current version SUSHI.
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ERROR [value of error for the judgement of convergence ]

// The value 10^-10 (0.0001 written in previous manuals is bug)

// is recommended as the default value.

MAXSTEP [the maximum number of iteration]

// The value 10000 is recommended as the default value.

}

}

5.14.14 Obstacles

OBSTACLE {

NDIV [Number of division of per mesh to get the boundary of obstacles.]

// About 1000 is recommended.

PARTICLE [X] [Y] [Z] [radius_of_particle] [IN or OUT]

// Center position of the particle

// In or Out:Inner region or Outer region of the shell of the particle.

FIBER [X] [Y] [Z] // coordinate one end

[X] [Y] [Z] // coordinate another edn

[radius_of_fiber]

[IN or OUT] [IN or OUT]

// In or Out:Inner region or Outer // end cap

// region of the shell of the fiber.

.....

}

5.15 Limitations of parallel computation

There are limitiatiosn of parallel computation in SUSHI.

1. Deleted:Only periodic boundary condition is available.

2. Modify:It is recommended to use multiples of 8 for the number of division (number of cell) of all axes
in GPU calculation.

3. Deleted:The number of division of all axes for MPI must be larger thean 1 to make regions.

4. SSO is not available.

5. Setting of obstacles is not available.

6. Deleted:GRPA dynamics can not be used with MPI.

When SUSHI encounters to unabel scheme. SUSHI stops with warning. These limitations will be removed
in future.





Chapter 6

Useful Python Scripts

Almost *.py scripts were moved to action files(*.act). Following descriptions of *.py are old references.
Please refer ”action” section to do run *.py scripts.

6.1 What is showed?

In SUSHI, the minimum unit for which the volume fractions can be specified is the SCF unit. You can
observe the density profile of the specified SCF unit, or the profile of a combination of several SCF units.
Please refer to Section 5.8.2 for the definition of the SCF unit and the data structure “Composition”, which
stores the results of the analyses on the compositions of each SCF unit. The SUSHIOutput.phi is the data
structure including the volume fraction fields of the SCF units.

6.2 sushi show.py

The Python script named “sushi show.py” is a tool for the visualization of the volume fraction fields obtained
with the SUSHI. As is shown in the following, the behavior of “sushi show.py” changes depending on the
dimensionality of the simulation system. This script is valid for the regular mesh, cylindrical coordinate
mesh, and the spherical coordinate mesh. At first, you need to jump to the record you want to display the
result.

6.2.1 One-dimensional case

In this one-dimensional case, when you click the “Run” button, a graph of the profile of the volume fraction
ϕ is obtained using the software “Gnuplot”. A set of messages will appear in the bottom window. These
messages are commands for Gnouplot.

Selection of the SCF unit

Set the ID of the SCF unit to the ”component list” in the python script. For example, when you want to
show the density profile of phi fields with ID 0 and 1, set the data as
component list = [ [0], [1] ].
The inner “[]” is needed to combine the plural phi fields. When you want to show the sum of the SCF units
with the ID’s 0 and 1 and also the SCF unit with ID 2, set the data as
component list = [ [0,1], [2] ].
Any way, do not forget the inner “[]”. The default is
component list = []
which means that all phi fields are drawn.

Setting the value of axes

Set the values to xmin, xmax, ymin, and ymax to specify the range to be plotted. The default values for
the X axis are
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xmin = 0.
xmax = 0.
which means that the whole range along the axis X from its minimum value to its maximum value is specified.

The plotted area can be changed also using the Gnuplot commands generated by the above procedure.
The procedure is a little bit complicate, please refer as followings if you interest in. In the bottom window,
a series of commands are shown. These commands are the Gnuplot commands that draws the graph you
are looking at. Copy whole messages to memory buffer (If you use Windows system, select the messages
and push ctrl-C). Next, click the “Plot” tab and move to the Plot window. Click the GraphSeet[] icon in
the upper left window to make it effective. Click the “Make” button. This operation sets up the data file
to be plotted and several messages will be displayed in the “Plot” window as default plotting commands.
As you have already copied special plotting commands to the memory buffer, you can use them instead of
these default ones. Then, delete these output lines by using “Clean” button and paste the special plotting
commands stored in the memory buffer to this “Plot” window (If you use Windows system, push ctrl-V).
After change the commands, clicking the “Plot” button, you will obtain a graph you want. Please refer to
the Gnuplot manual about the commands.

6.2.2 Two- and three-dimensional cases

After loading the “sushi show.py” script, click “Run” button on the “Window/Viewer” window. Then, the
volume fraction profile will be drawn. In the default action, ϕ[0] ( the volume fraction of the first SCF unit
) is drawn. If you want to show the volume fraction of another SCF unit, you have to modify the python
script. You can find the following line.
componentCoef = [ 0 ]
Replace the argument “0” with the ID of the species that you want to show. If you specify a list of ID’s
instead of a single ID, the sum of the volume fractions for the listed species will be shown. And the negative
value of ID is valid, which add the negative value of the field. For example,
componentCoef = [ 0, -1 ]
means that the profile of phi[0] - phi[1] is shown.

The regions with larger volume fraction and with smaller volume fraction are shown in blue and red,
respectively. The range to be shown is set automatically between the minimum value and the maximum
value of the data. In order to change this range, delete the “#” to validate the message
#crange=( 0., 1. )

and change the two values in the “()”, which specify the minimum value and the maximum value, respectively.

6.3 sushi show3color.py

This script is used to show the domain structures of three component systems. A color is attributed to each
of the three components. Each cell of the simulation box is painted with the color corresponding to the
component that has the highest concentration among the three in the cell. This script is valid for both two
and three dimensional systems with the regular mesh. The usage is the same as that for “sushi show.py”,
i.e., simply clicking “RUN” button.

6.4 sushi show surf.py

The interfacial distributions in three-dimensional systems can be shown. The usage is the same as that for
“sushi show.py”, i.e., simply clicking “RUN” button.

6.5 action

When the cursor is on SUSHIOutput icon as shown in the next figure, you can call an action python script
file by clicking the right button of your mouse. In order to show the results, this method is more useful than
using the python script files mentioned in the previous sections.
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Figure 6.1: Select box of the action file

6.5.1 plot 1D field

Figure 6.2: Parameters in the action box for ”plot 1D field”

1) xmin: The minimum value of the axis X

2) xmax: The maximum value of the axis X

3) ymin: The minimum value of the axis Y

4) ymax: The maximum value of the axis Y

5) component list: A list of ID’s of the fields to be plotted.
For example, to display the fields of ID 1 and ID 2, specify as [ [1], [2] ].
To display a sum of the fields of ID 1 and ID 2, and the field of ID 3,
specify as [ [1,2], [3] ].
The inner “[]” means that the values of the fields with the ID’s enclosed
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in this “[]” are summed up. Do not forget the inner “[]”.
The default is empty, which means that all the fields are plotted.

6) name: Select the name of the field you want to display.

7) axis name: Select the name of axis.

8) xstart: Start position in X or R axis（available in 2D and 3D）

9) ystart: Start position in Y or H axis（available in 2D and 3D）

10) zstart: Start position in Z axis（available in 2D and 3D）

6.5.2 show field

Figure 6.3: Parameters of the action box for ”show field”

1) nx: Number of periodic of X axis

2) ny: Number of periodic of Y axis

3) nz: Number of periodic of Z axis

4) component coef: The ID’s of the fields to be plotted are specified
with signs.
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Replace the argument “0” with the ID of the field that you want to show.
If you specify a list of ID’s instead of a single ID,
the sum of the fields for the listed species will be shown.
The negative value of ID means subtracting the value of the field.
For example, component coef = [ 0, -1 ] means to show the value of
field[0] - field[1].

5) min: The minimum value of the range to be shown.

6) max: The maximum value of the range to be shown.
The default values are min = 0 and max = 0. This means that the range is set
automatically between the minimum value and the maximum value of the data.

7) name: Select the name of the field whose profile you want to display.

8) discrete color: Show a multi component system using multi colors.

9) surface: Show interfaces of a three-dimensional system.
The interface is defined as the surface on which the density is constant.

10) value of surface: The value of surface to show.

11) cutplane: Show the density distribution on a cross section of a three-dimensional system.

12) position on plane: The position of the plane on which the crosssection is shown.

13) nomal vector: Show the normal vector to the above plane for which the crosssection is drawn.

14) shear rate: Shear rate, this value is inputted autonmatically in sheared dynamics, so no need to input.

Only one of the following switches can be effective: discrete color, surface and cutplane.
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6.5.3 value of record plot

Figure 6.4: Parameters of the action box for ”record plot”

The action file can be used to plot the values in each record. In the case of a dynamic calculation, the X
axis is used to show the time. In the case of the SCF Monte Carlo simulation, X axis is used to show the
number of steps of the record.

1) ymin: The minimum value of the Y axis.

2) ymax: The maximum value of the Y axis.
The default values are ymin = 0 and ymax = 0. This means that the range is set automatically
between the minimum value and the maximum value of the data.

3) y label: The label of the Y axis.
If this is not specified, the name of the selected variable is used.

4-12) values to plot: Toggle switches to specify whether the is drawn or not.
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CPC: Simple Python scripts for
estimating the χ-parameters

7.1 Introduction

Although the χ-parameters are important parameters that determine the physical properties of polymer
blend systems, such as the miscibility and the interfacial tension, it is difficult to estimate the values of
the χ-parameters theoretically. One of the simple and well-known theoretical techniques to estimate the
χ-parameters is the method using the solubility parameters.[25, 26, 27]

In the OCTA system, we offer you several UDF files that contain useful data on physical properties of
various kinds of polymers. These UDF files are stored in the POLYMERDATABASE folder, and can be
referred by using GOURMET. Hereafter, we call these UDF files as PolymerDatabase.

ChiParameterCalculator.py is a Python script that estimates the values of the χ-parameters using the
data on the molar volume and the solubility parameter for the segments stored in PolymerDatabase.

If the data on the solubility parameter are not registered in PolymerDatabase, you can estimate them
using the Python script named SolubilityParameterCalculator.py, which estimates the solubility parameters
from the chemical structure of the monomer unit by using the group contribution method.

7.2 Principle of the method to estimate the χ-parameters

7.2.1 The Flory-Huggins lattice theory and the χ-parameters

In this section, according to the lattice theory on the polymer solutions/alloys proposed by Flory and
Huggins, we define the Flory-Huggins interaction parameters, i.e. the so-called χ-parameters.[28]

In order to judge the miscibility or the solubility of a polymer solution or a polymer alloy, it is necessary
to evaluate the mixing free energy, ∆GM . This mixing free energy is defined as the difference in the free
energy of the system between the states before and after the mixing, and is generally a function of the
compositions, temperature, and molecular weights, etc. Assuming no volume change upon the mixing, the
mixing free energy is written as

∆GM = ∆HM − T∆SM (7.1)

in terms of the entropic contribution ∆SM and the enthalpic contribution ∆HM .
In order to obtain explicit expressions for each term in eq. (7.1), we use the lattice model. For simplicity,

we consider a mixture of two homopolymers A and B in a system of volume V. Each polymer is assumed to
be composed of the same kind of segments, and we also assume that an A-segment and a B-segment have
the same volume. The total numbers of the segments contained in an A-chain and in a B-chain are denoted
as NA and NB , respectively. The contents of A-chains and B-chains in the system are assumed to be MA

and MB moles, respectively. Using the theory of regular solution mixture, the total mixing entropy of the
system, ∆SM , is calculated in the same manner as the mixing entropy of an ideal gas. This is just counting
the numbers of possible configurations of MA A-polymer chains and MB B-polymer chains on MA + MB

lattice sites, and gives the following expression.

∆SM = −R(MA lnϕA +MB lnϕB), (7.2)
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where R is the gas constant. Here, ϕA and ϕB are the volume fractions of the A-polymer and the B-polymer,
which are defined by

ϕA =
MANA

MANA +MBNB

ϕB =
MBNB

MANA +MBNB
. (7.3)

Equation (7.3) can be solved with respect to MA and MB to give

MA =
V
Vr

ϕA

NA
, MB =

V
Vr

ϕB

NB
. (7.4)

Here, Vr is the molar volume of the segment, which is assumed to be the same for A and B. In the Flory-
Huggins lattice model, these segmental molar volume Vr is equivalent to the volume assigned to a lattice
site, i.e. a volume of a cube with its side length equal to the effective bond length b.

Substituting eq. (7.4) to eq. (7.2), the following relation is obtained for the mixing entropy.

−T∆SM

RT (V/Vr)
=

ϕA

NA
lnϕA +

ϕB

NB
lnϕB . (7.5)

In the Flory-Huggins lattice theory, all the complicated effects of mixing except for the mixing entropy
of regular solution given by eq. (7.5) is accounted for by a single parameter χAB . Then, the mixing free
energy is written as follows.

∆GM

RT (V/Vr)
=

ϕA

NA
lnϕA +

ϕB

NB
lnϕB + χABϕAϕB (7.6)

This expression is called as the Flory-Huggins mixing free energy and the parameter χAB is called as the
Flory-Huggins interaction parameter, or simply called χ-parameter.

Due to the above definition of the Flory-Huggins free energy, the χ-parameter obviously includes not
only the enthalpic contribution resulting from the contact interaction between segments but also the entropic
contribution other than the mixing entropy of the regular solution (so-called combinatorial entropy). An
example of the latter entropic contribution is the entropy associated with the internal degrees of freedom of
the segments such as the relative orientation of two interacting segments. Although the contact interaction
in eq. (7.6) is assumed to be proportional to the product of the segment densities, it is common that the
actual contact interaction shows much complicated dependence on the segment density. For these reasons,
the χ-parameter introduced in eq. (7.6) is in general a complicated function of the degree of polymerization,
the density of the polymer chain, temperature, etc.

The specific volume of the K-type segment rK , introduced in Section 2.9.2, is calculated using the molar
volume VK of the K-type polymer and the segment molar volume Vr as follows.

rK = VK/Vr (7.7)

7.2.2 Solubility parameters

In order to calculate the contact interaction term in eq. (7.6), we assume that the contact interaction works
only between the nearest neighbor lattice sites. Let us denote the number of the nearest neighbor lattice
sites as z. Evaluating the contact interactions using mean field approximation, the χ-parameter in eq. (7.7)
is expressed as follows.

χAB =
z

kBT

[1
2
(ϵAA + ϵBB)− ϵAB

]
(7.8)

Here, ϵKK′ is the interaction energy between a nearest neighbor pair of a K-type segment and a K ′-type
segment. For pairs of non-polar segments with no long range interactions, it is a good approximation to
assume that

ϵAB ∼
√
ϵAA · ϵBB . (7.9)

Applying this approximation to eq. (7.8), the following expression is obtained.

χAB =
z

2kBT
(
√
ϵAA −

√
ϵBB)

2 (7.10)
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The interaction energy between a segment pair ϵKK in eq. (7.10) can be calculate using the values of
the cohesive energy of pure systems. Here, the cohesive energy is defined as the energy required to take
a cohesive state of molecules into isolated molecules with infinite separation. Let us consider a system of
volume V composed of N lattice sites. If all the lattice sites are occupied by the K-type segments, the total
interaction energy of this system is given by

Ecoh
K = −1

2
zN ϵKK ≡ Vδ2K . (7.11)

Here, the parameter δK (K = A or B) is called the solubility parameter, and is defined using the cohesive
energy Ecoh

K of the pure system composed of the K-type segments as

δK =
(Ecoh

K

V

)1/2

. (7.12)

The total interaction energy of the uniformly mixed state of A and B segments with the volume fractions
ϕA and ϕB , respectvely, is given under the mean field approximation as

Ecoh
A+B = −1

2
zN

[
ϵAAϕ

2
A + ϵBBϕ

2
B + 2ϵABϕAϕB

]
= −V

[
δ2Aϕ

2
A + δ2Bϕ

2
B + 2δAδBϕAϕB

]
. (7.13)

By using eqs. (7.11) and (7.13), the mixing enthalpy is written as follows.

∆HM = (Ecoh
A+B − Ecoh

A ϕA − Ecoh
B ϕB)/V

= (δA − δB)
2ϕAϕB (7.14)

By using this relation and eq. (7.8), an expression for the χ-parameter in terms of the solubility parameter
is obtained as

χAB =
Vr

RT
(δA − δB)

2, (7.15)

where, Vr is the molar volume defined in the previous section.
The other contribution to the interaction parameter except for the enthalpic contribution given in

eq. (7.15) is mainly due to the entropic effect associate with the internal degrees of freedom of the segments,
and is usually denoted as χS . By adding this term to eq. (7.15), the final expression of the χ-parameter is
often expressed as

χAB = χS +
Vr

RT
(δA − δB)

2. (7.16)

Here, χS expresses the contribution that cannot be expressed by eq. (7.15) and is empirically assumed to
be [25]

χS ∼ 0.34. (7.17)

In eq. (7.16) which is the final expression of the χ-parameter, the solubility parameters δA and δB are
constants characteristic to the substances at the given temperature. On the other hand, there still remains
an ambiguity in the segment molar volume Vr depending on the definition of the segment. Therefore, in
order to use eq. (7.16), it is necessary to specify the segment molar volume Vr, or in other words, one has
to define what is the segment. (Once the segment is defined, the total number of segments in a chain NK is
automatically given.)

7.2.3 The group contribution method

As was discussed in Section 7.2.2, one can estimate the value of the χ-parameter using eq. (7.16) when the
values of the solubility parameter (or the cohesive energy) of pure systems are provided. Though the precise
value of the solubility parameter should be determined in experiments, a rough estimate of the parameter
can be obtained using the so-called group contribution method. In this technique, the solubility parameter of
a monomer unit is expressed as a sum of independent contributions from the atomic groups that constitute
the monomer unit.[25]

For example, the monomer unit shown in fig. 7.1 can be divided into the following groups.[25] The
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Figure 7.1: n-butyl methacrate monomer

values of the contributions to the cohesive energy from atomic groups have been estimated by various
researchers.[25, 26, 27]

Group Number

−CH2− 4
−CH3 2
> C < 1
−COO− 1

For example, if we use the values proposed by Hoftyzer and van Krevelen (1976)[29], the cohesive energy
can be estimated as follows.

Group Number CohesiveEnergy(J/mol)

−CH2− 4 4190
−CH3 2 9640
> C < 1 −5580
−COO− 1 13410

Sum Ecoh = 4× 4190 + 2× 9640 + 1× (−5580) + 1× 13410 = 43870(J/mol) (7.18)

Then, as the molar volume of this monomer unit is Vr = 136 (cm3/mol), the solubility parameter can be
estimated as

δ =
√
Ecoh/Vr = 18.0 (J1/2/cm3/2). (7.19)

When the value of the molar volume Vr is unknown, it can be estimated by using the method of Fedors[30].
In this method, in a similar manner used for the cohesive energy, the value of the molar volume for a segment is
calculated using the values of the molar volume of the constituent groups. For the above-mentioned example,
the molar volume is calculated as follows.

Group Number MolarVolume(cm3/mol)

−CH2− 4 16.1
−CH3 2 33.5
> C < 1 −19.2
−COO− 1 18.0

Sum Vr = 4× 16.1 + 2× 33.5 + 1× (−19.2) + 1× 18.0 = 130.0(cm3/mol) (7.20)

The calculated value is close to the experimental value Vr = 136 (cm3/mol).
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7.3 Operation of various scripts

7.3.1 ChiParameterCalculator : χ-parameter estimation using PolymerDatabase

The values of many physical properties of various monomers are stored in PolymerDatabase. In this Poly-
merDatabase, the data of the solubility parameter (in unit of J1/2/cm3/2) and the molar volume (in unit
of cm3/mol) are also contained. The Python script ChiParameterCalculator.py is a script to estimate the
χ-parameters using these data.

The procedure to use ChiParameterCalculator.py is as follows.

(1) Start GOURMET and open polymerdata.udf in PolymerDatabase by using UDF Editor.

(2) Set Table-View, and select PolymerDatabase → GeneralPolymers[] → Properties[] .

(3) Among the many items, Flag:int is the only item that you need to edit.

The PolymerDatabase.GeneralPolymers[] on the upper level of the data structure shows the
correspondence between the data column and the monomer species. Enter non-zero integers in the
Flag:int items of the monomers for which you want to calculate the χ-parameters. (You can specify
more than two monomers. In such a case, χ-parameters for all the possible pairs are calculated.)

(4) Click Load in the Python-panel, and load

SUSHI3/ChiParameterCalculator/python/ChiParameterCalculator.py .

(5) In the Python Scripting Window, find the following lines. (They are located between 28th and 30th
lines.)

#########################################################################

Vr = -1.0E99 # Please enter molar volume

# of the segment in ( cm^3 / mol ).

T = -1.0E99 # Please enter absolute temperature in ( K ).

#########################################################################

Replace each -1.0E99 with the value of the molar volume in cm3/mol and the temperature value in
Kelvin. If you do not specify these values, the Python script will be aborted.

(6) Click Run in the Python-panel to execute this script.

(7) The result will be shown in the Python Log Window. (χ-parameters are dimensionless.)

Note 1 : You should execute the script after substituting the values of the molar volume Vr (in unit
of cm3/mol) of the segments and the absolute temperature T (in unit of K) in the Python script. As was
described in Section 7.2.2, the molar volume of a segment is ambiguous depending on its definition. Therefore,
the definition of the molar volume and the polymer chain length NK should be selected consistently.

Usually it is acceptable to use the value Vr = 100 (cm3 / mol), which is a typical value of the molar
volume of low molecular solvents, such as toluene, etc. Once you define the segmental molar volume, the
total number of segments per chain NK is calculated according to the following relation.

NK = (total number of segments in the chain)

= (total number of monomers in the chain)× (molar volume of the monomer)

/(molar volume of the segment Vr)

= {(molecular wegiht of the chain)× (molar volume of the monomer)}
/{(molecular weight of the monomer unit)× (molar volume of the segment)}. (7.21)

Therefore, if the molar volume Vr of the segment is given, the total number of segments NK which constitute
the K-type chain can be calculated using this method. On the other hand, another condition is required to
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determine the effective bond length bK . For example, if the value of the radius of gyration RG of the chain
is provided, the effective bond length bK can be determined as

1

6
NKb2K = R2

G. (7.22)

According to eq. (7.7), the specific segment volume of the K-type segment rK is determined as

rK = VK/Vr. (7.23)

Note 2 : When the value of the solubility parameter is -1.0E99 in PolymerDatabase, it means that the
corresponding data is not registered. The execution of the Python script using such data will result in a
failure with the following message.

==================================================

The value(s) of the solubility parameter is(are)

not defined.

Calculation aborted.

==================================================

In this case, it is necessary to register the value of the solubility parameter into SolubilityParam:double

(in unit of J1/2 / cm3/2). When the value of the solubility parameter is unavailable, it can be estimated using
the group contribution method as will be described in Section SolubilityParameterCalculator.

7.3.2 SolubilityParameterCalculator : Estimating the Solubility Parameters
Using the Group Contribution Method

When the data of the solubility parameter are unavailable, these can be estimated using the group contri-
bution method. For this purpose, we provide several databases (UDF files) in PolymerDatabase which store
the numerical data used in the calculations based on the group contribution method. The user should choose
one of the following databases.

• SolubilityParameter Hoftyzer&vanKrevelen.udf :
The original data can be found in the reference [29] except for the data of the molar volume which can
be found in the reference [30].
(Note) Although the accuracy of the data is better than the other databases, the numbers of the registered
groups are less than those of the others.

• SolubilityParameter Dunkel.udf :
The original data can be found in the reference [31] except for the data of the molar volume which can
be found in the reference [30].
(Note) The numbers of the registered groups are comparable with those of

SolubilityParameter Hoftyzer&vanKrevelen.udf, and the accuracy of the data is also on the same
level.

• SolubilityParameter Fedors.udf :
The original data can be found in the reference [30].
(Note) The numbers of the registered groups are many but the accuracy is rather worse.

In order to estimate the solubility parameter using these databases, a Python script SolubilityParameter-
Calculator.py is provided.

The procedure to use SolubilityParameterCalculator.py is as follows.

(1) Start GOURMET and open PolymerDatabase by using UDF Editor.

The file name of the database is one of the followings,
POLYMERDATABASE/SolubilityParameter Hoftyzer&vanKrevelen.udf ,
POLYMERDATABASE/SolubilityParameter Dunkel.udf,
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or
POLYMERDATABASE/SolubilityParameter Fedors.udf.

(2) Set Table-View and select SolubulityParameterDatabase → GeneralProperties[] .

(4) Among many items, NumberOfUnits:int is the only item you need to modify.
Each column corresponds to the group specified in GroupName. You need to set the number of the
groups in the target monomer into NumberOfUnits:int.

(5) Click Load in the Python-panel to load the file named as
SUSHI3/ChiParameterCalculator/python/SolubilityParameterCalculator.py.

(6) Click Run in the Python-panel to execute the script.

(7) The results (the values of the cohesive energy and the molar volume) are shown in the Python Log
Window.

Note 1 : Since the values of the solubility parameter calculated by SolubilityParameterCalculator.py are
not automatically registered to the PolymerDatabase, the user has to register the obtained values by yourself
to PolymerDatabase or some other UDF files.

Note 2 : When either of CohesiveEnergy:double or MolarVolume:double in
SolubilityParameterDatabase *****.udf is specified as -1.0E99, it means that the data of the cohesive

energy or the molar volume of this group is not registered. If you execute the script in this case, you will get
no calculation result. Instead, the following message will be displayed.

==================================================

The value(s) of the solubility parameter is(are)

not defined.

Calculation aborted.

==================================================

==================================================

The molar volume of the segment Vr

or the temperature T is not defined.

Calculation aborted.

==================================================





Chapter 8

SPCF: A tool for calculating the
spatial correlation functions

Spcf *.py file was moved as action file. Please use SPCF button shown by right-click of mouse button on
SUSHIOutput sub-holder.

8.1 Outline

As a result of the simulation using SUSHI, we obtain scalar field data such as the segment density distribu-
tions, which show the spatial distributions of the polymers. Spatial correlation function ⟨ϕ(0)ϕ(r)⟩ is one of
the measures of the spatial order in the scalar field ϕ(r). To obtain this quantity, an auxiliary analysis tool
SPCF is provided. A graph of the spatial correlation functions can be obtained by using SPCF.

Here, the spatial correlation function ⟨ϕ(0)ϕ(r)⟩ is defined as following

⟨ϕ(0)ϕ(r)⟩ =

∑
i,j∈|rij |=r

ϕiϕj∑
i,j∈|rij |=r

1
, (8.1)

where, i and j are indices to specify the positions, ϕi and ϕj are the values of the target scalar fields at
positions i and j, and rij is the relative position vector from i to j, respectively. Since the scalar fields are
discretized in the numerical computations, the distance r is also discretized. Therefore, in the calculation of
SPCF, a suitable value for the unit length ∆r should be set. Then, the distance r is defined by

|rij | = r =⇒ r − ∆r

2
≤ |ri − rj | ≤ r +

∆r

2
, (8.2)

where ri and rj are the position vectors.

8.2 How to execute

The SPCF is an executable program that can be operated in the command prompt. It requires a command
file that stores the operations directed to the SPCF at run-time and the data file that stores the target
density fields for the analysis. Suppose that these files are prepared, the operations in the command prompt
should be as follows. �



�
	% spcf.exe ctrl.cmd

In this example, the file names of the executable program and the command file are spcf.exe and ctrl.cmd,
respectively. In the software media of OCTA system, the executable files of the SPCF for WindowsNT/2000
(cygwin) and Linux (x86) are stored in the SUSHI3/spcf/bin directory.

145



146 CHAPTER 8. SPCF: A TOOL FOR CALCULATING THE SPATIAL CORRELATION FUNCTIONS

[Notes] Although SPCF is a stand-alone program, the executable file for cygwin requires a dynamic link
library (cygwin1.dll) at run time. Thus, you have to copy cygwin1.dll to the same directory as that contains
the executable file or to one of the directories registered in the environment variable PATH.

Each line in the command file consists of a keyword ending with colon (:) followed by one or more values
that are separated with one or more blank characters (spaces or tabs) with each other. here, the keyword is
one of the following strings:

’rmax:’, ’rstep:’, ’spherical:’, ’dirvec:’, ’clip:’, ’shift:’, ’pairlist:’, ’infile:’, ’outfile:’, ’outfile-format:’, and
the value is one or more numerics or strings, which depend on the corresponding keyword.

An example of the syntax of the command file is shown below.
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# input data for ’spcf.exe’

# The lines starting with ’#’-character are the comment lines,

# and are neglected.

# Blank lines (such as the next line) are also neglected.

# The upper bound of the distance up to which the calculation is performed.

# [format] rmax: (numeric)

rmax: 16.0

# The mesh width for the distance

# [format] rstep: (numeric)

rstep: 1.0

# In case the keyword ’spherical:’ is false,

# the distance is defined as the size of the projection of the relative

# position vector to the direction specified by the keyword

# dirvec:

# spherical: false

# dirvec: 1.0 1.0 1.0

# The upper bound and the lower bound of the field data.

# The field values outside of this range are replaced by the upper bound value

# or the lower bound value.

# [format] clip: (lower-limit) (upper-limit)

clip: 0.0 1.0

# The values by which the field data for each component are shifted.

# The number of the values should be equal to the

# number of the components. Each of the values is added to the field data

# of each component.

# [format] shift: (numeric) (numeric) ...

shift: -0.2 -0.8

# The type of the component pair for which the correlation function is

# calculated. "self", "distinct" and "all" mean the self-correlation,

# the correlation function between distinct species, and the correlation

# function for all possible pairs of the components, respectively.

# [format] pairlist: self | distinct | all

pairlist: self

# The name of the file that stores the input data of the scalar field.

# [format] infile: filename

infile: Susi_Phi.dat

# The name of the file to which the output data are written

# and the data format of the outfut file.

# The type of the data format is one of GNUPLOT-style(gnuplot),

# tab separated style(tabtext), or comma separated style (csvtext).

# In the case of GNUPLOT-style, the command file for GNUPLOT is also

# created. The command file is named as XXX.gnuplot.

# [format] outfile: filename

# [format] outfile-format: gnuplot | tabtext | csvtext

outfile: plot.dat

outfile-format: gnuplot

Each line in the input data file of the density fields consists of the x, y and z-coordinates of the position
vector and the field value(s). An example of the syntax of the input file is shown in the following.
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# scalar field data

# The lines starting with ’#’-character are comment lines, and are neglected.

#

# X-value Y-value Z-value phi-0 phi-1

0.0 0.0 0.0 0.199685 0.800365

0.0 0.0 0.5 0.200342 0.801061

0.0 0.0 1.0 0.201941 0.798672

0.0 0.0 1.5 0.20148 0.801061

0.0 0.0 2.0 0.20088 0.801031

# In this example, the number of the fields is 2.

# As long as the data are described in a single line,

# any number of the fields are allowed.

The result of the calculation is stored in another file, whose name and format are specified in the command
file. To assist the users to create the input data file of the density field(s) from the output data of SUSHI,
a Python script SUSHI2spcf.py is provided. You can find this script in the SUSHI3/spcf/python directory.
The usage of this script is shown in the following.

1. Start GOURMET and load the UDF output of SUSHI by Browser or Editor.

2. Set Table-View and Record-Location, and change the slider to set the target record number.

3. Push Load in the Python panel to load the file named SUSHI2spcf.py

4. Push Run in the Python panel to create the output data file for the density field that can be read
by SPCF. You may change the file name or the folder name by modifying “destdir” (180th line) and
“datafile” (177th line) in the SUSHI2spcf.py.

8.3 Sample data

Several samples of SPCF are provided in the SUSHI3/spcf/sample directory.

8.3.1 A/B polymer blend

The density filed obtained by performing SUSHI for a blend system of polymer A and polymer B is shown
in fig. 8.1a. Corresponding spatial correlation function is shown in fig. 8.1b. The simulation system is a
2-dimensional square box with 256 × 256 meshes, and the volume fraction ratio, the chain length, and the
interaction parameters of the polymers are 0.5:0.5, 10 for A-polymer and 10 for B-polymer, and χAB = 0.5,
respectively. In fig. 8.1a, the density of the polymer A is shown by gray scale, black corresponding to 0.0
and white to 1.0. The names of the files used/obtained in this example are A-B-blend.cmd, A-B-blend.dat,
and A-B-blend.plot.

(a) Segment density distribution
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Figure 8.1: The segment density distribution and the spatial correlation function of an A/B polymer blend
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8.3.2 A-B block polymer

The density filed obtained by performing SUSHI for an A-B block copolymer melt system is shown in fig. 8.2a.
Corresponding spatial correlation function is shown in fig. 8.2b. The simulation system is a 2-dimensional
square box with 256× 256 meshes, and the chain length and the interaction parameters of the polymers are
20 for the A-block and 20 for the B-block, and χAB = 0.5, respectively. In fig. 8.2(a), the density of segment
A is shown by gray scale, black corresponding to 0.0 and white to 1.0. The names of the files used/obtained
in this example are A-B-block.cmd, A-B-block.dat, and A-B-block.plot.

(a) Segment density distribution
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Figure 8.2: The segment density distribution and the spatial correlation function of an A-B block copolymer
melt

8.3.3 Effect of the direction vector

Generally, the correlation function is obtained as the spherically averaged value over all the displacement
vectors with a fixed magnitude r. However, when the system has the anisotropy toward a certain direction,
the structure may become clearer if the distance r is defined as the projection onto the direction. Such an
example, where a periodicity exists in the (1,1,0)-direction, is shown in fig. 8.3.
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Figure 8.3: A result with the periodicity in the (1,1,0)-direction: zA = cos((x+ y)× π√
2
), zB = −zA

The utility “spcf” has a function to calculate such a correlation function for the anisotropic systems where
the distance is defined as the projected size of the relative vector toward the direction of the anisotropy. In
such a case, the keyword spherical: should be set as false and the direction vector should be specified by
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using the values of keyword dirvec:. An example of anisotropic density field is given in fig. 8.3. For such
a density field, the circularly averaged correlation functions and the anisotropic correlation function to the
specific direction are calculated and the results are shown in figs. (8.4a) and (8.4b), respectively. The names
of the files used/obtained in this example are dirvec.cmd, dirvec.dat, and dirvec.plot.
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(a) Usual spatial correlation function
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Figure 8.4: Results of (a) the circularly averaged correlation function and (b) the anisotropic correlation
function to the specified direction for the density field shown in fig. 8.3.
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Input UDF format for navigating data
input

SUSHIInput.udf defines the input data structure for SUSHI. Using this UDF format, one can prepare the
input UDF data conveniently. However, the way in which GOURMET displays the input data structure
is not so intelligent. In order to improve this problem, we prepared SUSHIInputV2.udf where the select
function of UDF is extensively used to assist the user to type the data on GOURMET. Since most of the
definitions in SUSHIInputV2.udf is the same as those in SUSHIInput.udf, such common part will not be
described in the following. Basic data structures defined in SUSHIInputV2.udf are as follows.

SUSHIInputV2:{

System:{

name:KEY

mesh:select { "REGULAR", "RECTANGULAR", "CYLINDRICAL", "SPHERICAL" }

}

Monomers[]:Monomer

Components:{

polymers[]:Polymer

solvents[]:Solvent

}

Chi_parameters[]:ChiParameter

Ensemble: {

type:select { "CANONICAL", "GRANDCANONICAL" }

}

Properties:{

segment_volume_fraction_conditions[]:SegmentVolumeFractionCondition

radius_of_gyration_conditions[]:SubchainUnit

}

External_conditions:{

surface_chi_parameters[]:SurfaceChiParameter

graft_conditions[]:GraftCondition

mask_conditions[]:MaskCondition

}

Solver: {

type:select { "ADF", "FH", "SCF" }

}

Run: {

type:select { "START", "CONTINUE", "RESTART", "RESTART_READMESH" }

}

}

The order of the above data are different from that defined in SUSHIInput.udf.
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Sysytem, Components, Chi_parameter, Ensemble, Properties, External_condition, Solver, and Run.
The select function of UDF navigates the user to correct items that should be specified, which prevents the
mistakes from taking place. For example, Regular mesh can be specified as one, two and three-dimensional
structures, while Spherical mesh is allowed to be only one-dimensional. In such a case, the selected function
prevents the user from setting a wrong combination of the Mesh type and the dimensionality by locking the
items that should not be specified.

System:

mesh:select

+-REGULAR:

dimension:select

+-D1 // one-dimensional

+-D2 // two-dimensional

+-D3 // three-dimensional

+-RECTANGULAR:

dimension:select

+-D1

+-D2

+-D3

+-CYLINDRICAL:

dimension:select

+-D2

+-SPHERICAL:

dimension:select

+-D1

Ensemble:

type:select

+-CANONICAL:

calculation_method:select

+-STATICS

external_conditions_of_statics:ExternalConditionsOfStatics

+-DYNAMICS

dynamics_parameter:DynamicsParameter

external_conditions_of_dynamics:ExternalConditionsOfDynamics

+-MONTECARLO

monte_carlo_parameter:MonteCarloParameter

external_conditions_of_monte_carlo:ExternalMonteCarlo

+-GRANDCANONICAL:

calculation_method:select

+-STATICS

external_conditions_of_statics:ExternalConditionsOfStatics

Solver:

type:select

+-ADF

+-FH

+-SCF

Run:

type:select

+-START // start new calculation

+-CONTINUE

+-RESTART

+-RESTART_READMESH

Although it is user’s freedom to choose one of SUSHIInput.udf, SUSHIInputV2.udf, and SEED formats,
SUSHIInputV2.udf format is recommended when there are no reference data file of SUSHIInput.udf format.
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Compiling SUSHI

B.1 The directory structure for the source files

The directory structure for the source files of SUSHI is as follows.

SUSHI10.54--+--SurfaceSimulator

|

+--Susi--+--def_udf--+--SUSHIinput.udf Input UDF definition file

| +--SUSHIOutput.udf Output UDF definition file

|

+--bin The directory containing executable modules.

|

+--include The directory containing include files.

|

+--src The directory containing source files.

B.2 How to compile SUSHI on UNIX system

On the UNIX operating system (including cygwin on Windows), the GNU ”make” command should be
used for the compilation of the source codes. The correct compilation is guaranteed only for the GNU
make command. To check whether your ”make” command is GNU make command or not, use ”make -v”
command. If you are using the GNU make command, you will get like the following message.

> make -v

> GNU Make version 3.77, by Richard Stallman and Roland McGrath.

> ......

Make on SUSHI directory.

> cd SUSHI10.54

> make all

When you execute the “make all” command, all the libraries are first compiled and stored under the
SUSHI/lib directory. Next, SUSHI and InterfaceSimulator are compiled using these libraries. The selec-
tion of the operating system (OS) is done automatically.

When the Makefile of SUSHI is not suitable for your environment and the compilation of SUSHI is failed,
try to generate a Makefile as

> cd Susi/src

> sh ./mkmk.sh

these commands will make a new Makefile for your environment.
To add version information after module name, use VERSION option as

> make all [VERSION=version_number_etc]
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If you want to compile only 1 core version SUSHI.

> cd SUSHI/susi/src

> make all

It is strongly recommended to use FFTW library when make SUSHI for RPA calculation. The option is
FFTW=ON.

B.3 How to compile SUSHI for parallel computation

Pthread version

To make the shared memory version using pthread, use PTL option as

> cd SUSHI10.54/Susi/src

> make all PTL=ON

You can make sushiPTL.

GPU version

To make the shared memory version using CUDA, use GPU option as

> cd SUSHI10.54/Susi/src

> make all GPU=ON COMPUTECAPABILITY=60

You can make sushiGPU. Before this make, You need to install CUDA and GPU device and modify lines
about CUDA in src/Makefile. COMPUTECAPABILITY will be selected for your GPU device. Default
value is 60.

MPI version

To make the distributed shared memory and CPU version using MPI, use MPI option as

> cd SUSHI10.54/Susi/src

> make all MPI=ON

You can make sushiMPI. Before this make, You need to install some MPI library and modify lines about
MPI in src/Makefile.

For K-computer, use the option MACHIN=K.
MPI and GPU, and MPI and PTL options are compatible.
We will use the version description as follows
MPU=MPI＋ GPU, MPR=MPI＋ PTL.

How to make all version

To make all versions incluiding 1 core version, make on SUSHI10.54 directory as

> cd SUSHI10.54

> make allsushi [VERSION=version_number_etc]

B.4 Building SUSHI with Microsoft Visual C++

In order to compile SUSHI with Microsoft Visual C++ (VC++), start Microsoft VisualStudio and load the
project file named ”susi.sln” on the SUSHI10.54/Susi directory. Then, build the project named ”susi”.

To build each parllel versions, these definitions in Susi/include/definitions.h should be enable.
//#define MPIUSE
//#define CUDAUSE
//#define PTHREADUSE

For Linux/UNIX version, these commentouts are not allowed.
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Windows environment for VC++

The paths of libraries should be defined in the Windows’s environment variables for VC++ as followings.

• libplatrom:PF FILES(/include or /lib)

• MPI:MPI INC PATH, MPI LIB PATH

• CUDA:CUDA PATH(/include, /lib)

• Pthread:PTHREAD INC PATH, PTHREAD LIB PATH

• FFTW:FFTW INC PATH, FFTW LIB PATH

For your build, no need libraries should be deleted in project file when build.
Or on SUSHI10.54 directory, type command

> .\buildall2017

which build all executable modules by VC++2017.

B.5 How to install SUSHI

In the case of UNIX-type OS, the following command install all executable moduldes to PF ENGINE/bin/*

> cd SUSHI10.54

> make install

On Windows OS, the executable module stored is Susi/bin or in InterfaceSimulator/bin directories should
be copied manually.

B.6 How to clean up the directories

In the case of UNIX-type OS, the temporary object files under SUSHI10.54 directory can be deleted by the
following command.

> cd SUSHI10.54

> make clean





Appendix C

Extension of the system

C.1 How to write a program code for a static equilibrium simu-
lation

SUSHI is not a complicated and mysterious program. It is build using many well-organized components
(classes of C++). The class SCFEngine is the main part of the program. If you understand how to use this
class, you could implement the SCF calculation performed by SUSHI into other programs. As an example,
let us make a program for the static equilibrium calculation of a one-dimensional A/B polymer blend system.
The program is as follows.

#include "SCFEngine.h" // Header file of the main part of the simulator.

#include "FieldNoise.h" // Header file of the generator of noise given to fields.

int main() {

try {

double sigma = 0.0001; // The standard deviation of the noise

// given to a field.

int randomSeed = 12345; // The seed for a random number.

double minimumOfXAxis = 0.;

double maximumOfXAxis = 32.;

int numberOfDivisionOfXAxis = 32 ;

double deltaS = 1.;

double effectiveBondLength = 1.;

double specificVolume = 1.;

double chainLength = 20.;

int numPolymer = 2;

double chiAB = 0.2;

double volumeFractionOfA = 0.5;

double volumeFractionOfB = 0.5;

// Monomers are defined first.

Monomer monomerA( "A", specificVolume, effectiveBondLength );

Monomer monomerB( "B", specificVolume, effectiveBondLength );

// Polymers are made of monomers.

Polymer homoPolymerA( monomerA, chainLength );

Polymer homoPolymerB( monomerB, chainLength );
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// Geometrical boundary conditions specified as the periodic boundary

// condition. The default is the periodic boundary condition.

GeometricalBoundaryCondition geometricalBoundaryCondition;

// Regular mesh is specified.

RegularMesh mesh( "test", geometricalBoundaryCondition

, minimumOfXAxis, maximumOfXAxis

, numberOfDivisionOfXAxis );

// Physical boundary conditions on both ends are specified as

// an absorbing wall and a reflective wall. The default is

// the periodic boundary condition.

PhysicalBoundaryCondition physicalBoundaryCondition;

// The values of the chi parameters are specified.

ChiParameter chiParameter;

chiParameter.set("A", "B", chiAB );

// A container for the polymers is prepared using the STL vector class.

vector<Polymer*> polymers;

polymers.push_back( &homoPolymerA );

polymers.push_back( &homoPolymerB );

// A container for the values of the volume fractions of each component

// is prepared.

vector<double> polymerVolumeFraction;

polymerVolumeFraction.push_back( volumeFractionOfA );

polymerVolumeFraction.push_back( volumeFractionOfB );

// Containers for the scalar fields phi and fV are prepared.

// The values of the volume fractions and the self-consistent fields

// conjugate to them are stored.

vector< ScalarField* > phi, fV;

phi.push_back( new ScalarField( mesh, volumeFractionOfA ) );

phi.push_back( new ScalarField( mesh, volumeFractionOfB ) );

for( i = 0; i < numPolymer; i++ ) {

fV .push_back( new ScalarField( mesh, 0. ) );

}

// To start the SCF calculation, small fluctuations are given as the

// initial value of one of fV’s.

*fV[ 0 ] += FieldNoise( mesh, sigma, randomSeed );

// Constract the simulation engine.

SCFEngine engine( polymers

, polymerVolumeFraction

, chiParameter

, mesh

, physicalBoundaryCondition

);

// The function getEquilibrium is called. The calculation results are

// stored in phi and fV.

cout << "nSCF " << engine.getEquilibrium( phi, fV ) << endl;

// Output phi to the console.

for( i = 0; i < numPolymer; i++ ) {
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cout << "phi " << i << " " << *phi[i] << endl;

}

// Delete all objects that are generated by "new" command.

deleteFields( phi );

deleteFields( fV );

}

catch( MFException x) {

x.display(cerr); // In case an error occurs, a message is displayed.

}

return 0;

}

Such a simple program really runs. To controll the simulation, one can add an instance of the class SCFChar
argument as an argument of the “getEquilibrium” function. The default conditions prepared in the SCFChar
are enough to solve rather simple problems. Following is an example of the calculation result.

.....

nSCF 388

phi 0

0.022021319 0.023472855 0.02768036 0.039853661 0.076080462

0.18612184 0.45549125 0.76249782 0.90618754 0.95434671

0.97035272 0.97586031 0.9777627 0.97839868 0.97856398

0.97846946 0.97799456 0.97654264 0.97232646 0.96013022

0.92385038 0.81371286 0.54438197 0.23758755 0.093894333

0.045705149 0.029682295 0.024167216 0.022258887 0.021616024

0.021445561 0.021542225

phi 1

0.97798162 0.97653571 0.97225781 0.96010011 0.92395215

0.81397296 0.54452043 0.23743126 0.09379216 0.0456568

0.02965645 0.024150693 0.022248863 0.021613048 0.021447831

0.021542434 0.022017497 0.023469804 0.027687145 0.039888208

0.076186746 0.18636283 0.45562929 0.76235723 0.90609141

0.95424992 0.9702444 0.97582681 0.97774844 0.97837143

0.97855848 0.97845004

Finally the values of the field phi are displayed. You can confirm that a phase-separated structure is
successfully simulated. We hope this simple example gives you an idea on how to perform SCF calculations
using SCFEngine.

C.2 How to write a program code for a dynamic mean-field sim-
ulation

The calculations that can be performed by SUSHI are not restricted to the static equilibrium calculations.
It can also perform dynamic mean-field simulations,

The class SCFEngine is the core program of SUSHI that performs the SCF calculations. It is a derived
class of a virtual class named MeanFieldEngine. MeanFieldEngine has many interfaces with which one can
get information on the system. One can construst a new engine for the mean-field simulation using this
MeanFieldEngine class as a base class. Then, let us build a dynamic mean-field simulator based on the
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Cahn-Hilliard type equation of motion, and apply it to the phase separation of an A/B polymer blend as an
example. A basic equation for this system is as follows.

∂

∂t
ϕK(r, t) = ∇[LK(r, t)∇µK(r, t)]. (C.1)

The chemical potential µK is derived from the following extended Flory-Huggins free energy model (See
eq. (2.35))

F
kBT

=
∑
K

ϕK

NK
lnϕK +

∑
K

∑
K′>K

χKK′ϕKϕK′ +
∑
K

κ

2
|∇ϕK |2, (C.2)

where κ is a positive coefficient that is related to the energy accumulated at the interface.
Let us construct a simulation engine for the above dynamical model. Actually, such a simulation engine

has already been implemented in SUSHI with the name FHEngine. Please take a look at the source program
for more detail. The contents of the header file are as follows.

#ifndef _FHENGINE_H_

#define _FHENGINE_H_

#include "MeanFieldEngine.h"

#include "FHChar.h"

class FHEngine: public MeanFieldEngine {

public:

FHEngine( ..... // Constructor

.....

);

int getEquilibrium

( vector<ScalarField*>& phi, vector<ScalarField*>& fV

, vector<int> isConstrained = vector<int>(0)

, MeanFieldChar* pMeanFieldChar = NULL

) ;

int getChemicalPotential

( const vector<ScalarField*>& phi, vector<ScalarField*>& fV

, MeanFieldChar* pMeanFieldChar = NULL

);

};

#endif //_FHENGINE_H_

As the program is derived from MeanFieldEngine, an explicit definition of the constructor is not neccesary.
The function getChemicalPotential is to calculate the chemical potential using an appropriate model of
the free energy. As this function getChemicalPotential is a virtual function, it should be implemented in
the derived class, i.e. in FHEngine in the present case. Same is true for the getEquilibrium function.

The segment density fields ϕ and the self consistent field V are instances of the classScalarField class.
This ScalarField class has the operators “+,-,*,/” and functions ln(), exp() etc.. The operator ∇2 is
implemented as *p_freePropagator.

There are several private objects that keep the information on the system. One can get the chain length
from the array d_polymer[] using the command d_polymer[i]->numMonomer(). One can also get the
composition from p_composition.

int FHEngine::getChemicalPotential

( const vector<ScalarField*>& phi // phi ( segment volume fraction )

, vector<ScalarField*>& fV // chemical potential

, MeanFieldChar* pMeanFieldChar // control parameters for the calculation

)
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{

FHChar& rFHChar = *( (FHChar*) pMeanFieldChar ); // casting MeanFieldChar onto FHChar.

int n = p_composition->numSCFUnit();

int speciesI, speciesJ;

*fV[ n - 1 ] = 0.;

double polymerLength = d_polymer[ n - 1 ]->numMonomer();

ScalarField engN = ( phi[ n - 1 ]->log() ) / polymerLength + 1. / polymerLength;

for( int i = 0; i < n - 1; i++ ) {

polymerLength = d_polymer[ i ]->numMonomer();

// entholopy part: ln( phi ) / N + 1 / N

*fV[ i ] = ( phi[ i ]->log() ) / polymerLength + 1. / polymerLength - engN;

speciesI = p_composition->stateId( p_composition->SCFUnit( i ) );

// enthalpy part: chi * phi

for( int j = 0; j < n; j++ ) {

speciesJ = p_composition->stateId( p_composition->SCFUnit( j ) );

*fV[ i ] += *phi[ j ] * p_chi[ speciesI ][ speciesJ ];

}

*fV[ i ] -= *phi[ i ] * p_chi[ speciesI ][ speciesJ ];

*fV[ n - 1 ] += *fV[ i ];

*fV[ i ] -= ( *p_freePropagator * *phi[ i ] ) * ( 2. * rFHChar.d_kappas[ i ] );

}

*fV[ n - 1 ] *= - 1.;

*fV[ n - 1 ] -= ( *p_freePropagator * *phi[ n - 1 ] )

* ( 2. * rFHChar.d_kappas[ n - 1 ] );

return 1;

}

As is shown above, the total length of the program code is not so large. The program can be easily
written with the use of the objects ( private members and arguments ). Please refer the header files for
ScalarField, FreePropagator, Polymer, and Composition for the usage of the objects.

The parameters of the physical system is stored in FHChar class, which is a derived class of classMeanFieldChar.
In the present case, only a variable κ is added as follows.

class FHChar :public MeanFieldChar{

public:

FHChar(): MeanFieldChar( MeanFieldChar::FH );

....

vector< pair< int, double > > d_kappaData; // pair of the polymer ID and kappa.

};

This variable can be accessed through a public method of the class SCFEngineDataIO, i.e. the I/O interface
class of SUSHI.

class SCFEngineDataIO {

.....

FHChar* p_FHChar; // Public member.

.....

MeanFieldChar* getEngineControlChar() // SUSHI calls this function.

FHChar* newFHChar( classOfInterface& interfaceObject );

// This function is called by the above function.

// The argument "classOfInterface" means the I/O interface

// objects such as the UDF object or the SEED object.

// Off course, the user can modify or replace the interface

// as he/she likes.
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.....

}

MeanFieldChar* SCFEngineDataIO::getEngineControlChar() {

switch( d_solver ) { // This function returns the appropriate controller class

// depending on the solver type "d_solver".

case MeanFieldChar::ADF :

return getADFChar();

case MeanFieldChar::FH :

return getFHChar();

case MeanFieldChar::SCF :

default:

;

}

return getSCFChar();

}

FHChar* SCFEngineDataIO::newFHChar( classOfInterface& interfaceObject ) {

// Please refer the source code for the detail.

....

}

The source codes of the interface class for the “SUSHIInput.udf” format are generated with the use of the
”makeinterface” program that is offered by GOURMET. Please refer the GOURMET manual for the detail.

After completing the writing of the program codes, one has to registrate ”EngineGenerator” class. The
private functions and the data needed for the class ”EngineGenerator” are as follows.

class EngineGenerator {

....

private:

void setEngine

( const vector<Polymer*>& polymer

, const vector<double>& polymerVolumeFraction

, const vector<Solvent*>& solvent

, const vector<double>& solventVolumeFraction

, const ChiParameter& chiParameter

, const MFBaseMesh& mesh

, const PhysicalBoundaryCondition& physicalBc

, const map<string, MonomerMeanFieldChar* >* pMonomerMeanFieldCharTable

, const FreePropagator* pFreePropagator

, const MeanFieldChar* pMeanFieldChar

);

....

FHEngine* p_fhEngine;

....

};

The actual implementation of the EngineGenerator.setEngine is as follows.

switch( pMeanFieldChar->type() ) {

....

case MeanFieldChar::FH :

p_fhEngine = new FHEngine

( polymer, polymerVolumeFraction

, solvent, solventVolumeFraction
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, chiParameter, mesh, physicalBc

, pMonomerMeanFieldCharTable

, pFreePropagator

, pMeanFieldChar

);

p_engine = p_fhEngine;

break;

....

}

The classes for the dynamic simulations can be used commonly. Thus, by writing only a code for
the evaluation of the chemical potential, one can obtain a program for the dynamic simulations. The
blend2D 4 FH dy uin.udf is a sample input file. The result of a simulation with κ = 0.1 is shown in the
following Figure.

Figure C.1: Dynamics of an A/B polymer blend obtained by FHEngine





Appendix D

Interface Simulator: An example of
the system extension for solving
interfacial problems

In this appendix, we show, using the interfacial problems as a target, three examples of the extensions of
SUSHI described in the previous appendix. Source programs for these extended simulators are stored under
the “InterfaceSimulator” directory. The names of these simulators are

• FluidSimulator(fluid)

• MicelleSimulator(micelle)

• SurfaceSimulator(surface).

In these simulators, the input data can be supplied as UDF files. The output of these simulators consists of
many text files. The execution of the simulators is started from the command line by entering the following
command.

fluid -I fluid.udf, etc.

Since the simulator will create a large number of output files with fixed names, it is desirable to prepare a
separate directory for each run. The “MicelleSimulator” is supplemented by a Python script for analyzing
the output files. Several samples of the input UDF files are stored under the “udf” directory. One can
understand the procedures performed in the simulators by reading the contents of these sample UDF files.

D.1 FluidSimulator

“FluidSimulator” calculates the interfacial structure and the interfacial tension changing the compositions of
the target multi-component system. As the components of the system, one can choose polymers and solvents
with any architectures. A change in the composition of the system is specified in the input UDF file by a list
of the volume fractions (by specifying the volume fractions in the canonical ensemble) of each component.
Although the interfacial tension is calculated by SUSHI using the excess free energy, such a single value of
the interfacial tension for a certain composition is not useful in the actual applications. In many cases, we
need to know the behavior of the interfacial tension as a function of the composition of the system. For
example, when a block copolymer is added to a phase-separating homopolymer blend, it is important to
know how the interfacial tension is reduced according to the amount of the added block copolymer.

For the above-mentioned applications, two special techniques are adopted in the “FluidSimulator”. The
first technique is to prepare the initial condition of a simulation using the final configuration generated by a
previous simulation. This technique makes the convergence of the SCF iterations faster if the composition
listed in the input UDF file is changing gradually. The second technique is the use of the scheme where the
excess free energy can be calculated using the canonical ensemble. Here, we should note the fact that when
a macroscopic phase separation is simulated using the canonical ensemble, the sum of the compositions of
each phase-separated domain weighted by its size does not coincide with the total composition of the system
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specified in the input UDF file. This discrepancy originates from the finite size effect of the simulation box,
i.e. the volume occupied by the interfacial region between the bulk phases cannot be neglected compared
with the total volume of the system. Therefore, in the canonical ensemble case, the compositions of the
reference bulk equilibrium states used in the calculation of the excess free energy does not correspond to the
compositions specified in the input data. Instead, one should use the compositions of the bulk phases of the
phase-separated system obtained in the simulation. Here, we encounter a problem that the determination
of the volume occupied by each phase is ambiguous since the interfaces have a finite thickness (there are
no means to determine the interfacial position uniquely). The solution is not trivial, but can be derived
from the Gibbs-Duhem relation. That is to use the composition of just one of the coexisting phases as
the reference composition to calculate the excess free energy of the whole system including other coexisting
macroscopic phases. It is then straightforward that the other coexisting phases does not contribute as an
excess free energy and just the interfacial excess can be extracted. The output files of “FluidSimulator”
includes the spatial profiles of the volume fraction of each component (phis_xxxx_xxxx.dat) corresponding
to the compositions listed in the input UDF file, and the list of the value of the interfacial tension as well as
the compositions of the two coexisting phases (energyOfInterface.dat).

D.2 MicelleSimulator

If a copolymer is dissolved to a selection solvent, a micellar solution will be formed. An isolated micelle can
be calculated with SUSHI for a blend of a copolymer and a solvent under the canonical ensemble. As the
center of mass of the micelle is fixed in such a calculation, the contribution from the translational degrees of
freedom of the micelle is not taken into consideration. Therefore, this method is inadequate to calculate the
physical properties of a micellar solution, such as the critical micelle concentration (cmc). “MicelleSimulator”
is a simulator for treating such micellar solutions. Using this simulator, the structure and the free energy of
micelles with given aggregation number can be calculated. The distribution of the aggregation numbers of
the micelles for a given polymer concentration is obtained by analyzing these data using a python script.

Simulation of a micelle with given aggregation number can be performed using a special function of
SUSHI. The polymers that form the micelle are assumed to obey the canonical ensemble in order to fix the
aggregation number explicitly. In order to make the input file for the SUSHI, it is necessary to convert the
aggregation number into the volume fraction of the block copolymer. Such a procedure is automatically
done in the “MicelleSimulator”. On the other hand, the solvents are assumed to obey the grand canonical
ensemble. Thus, their bulk volume fractions are specified under the condition that the sum of the bulk volume
fractions of solvents must equal to unity because the block copolymer cannot escape from the system.

In order to form a stable micelle in the calculation, the positions of the free ends of the copolymers that
form the core of the micelle are restricted within a region around the center of the micelle. For this purpose,
the MASK function of SUSHI is used. If the restricted region is too small, the excess free energy will be
estimated larger than its true equilibrium value due to the restrictions on the chain conformations. As long
as the restricted region is large enough, however, the value of the excess free energy dose not depend on
the size of the restricted region. Due to this reason, the calculation of a micelle with a certain aggregation
number requires many simulations changing the size of the MASK region. “MicelleSimulator” performs such
a series of simulations automatically using the input data on the MASK conditions and on the tolerance in
the judgement of the convergence of the SCF iterations. Using the “MicelleSimulator”, one can calculate
tens or hundreds of micelles with different aggregation numbers in a single simulation run.

The main outputs of the “MicelleSimulator” are as follows.

energyPerMonomer.dat // Excess free energy per monomer.

getMicelle_xxxx_xxxx.dat // The relations between the MASK size and the excess free energy.

phis_xxxx_xxxx.dat // Profiles of the volume fractions.

plot_phis_xxxx_xxxx.plt // Gnuplot commands that are used in plotting the

// data in "phis_xxxx_xxxx.dat".

Here, “xxxx” means the aggregation number of the micelle (in case of a mixed micelle composed of two or
more copolymers, the aggregation numbers of each component).

The data analysis using the Python script is performed as follows.
In the directory where “energyPerMonomer.dat” exists, enter the following command.

python distribution.py <N> <mu>
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Then, the distribution of the aggregation numbers of the spherical micelles is obtained. Here, <N> is the
chain length of the polymer that forms the micelle (if the micelle is composed of a single component). <mu>
is the Lagrange multiplier for the constraint on the total volume fraction of the polymers.

When the above-mentioned command is executed, a file named "distribution.dat" is created. Simi-
larly, if one enters the following command,

python analysis.py <N> <mu0> <mu1>

the following three quantities are calculated as a function of the total volume fraction of the polymers; (1)
the volume fraction of the polymers which are not forming micelles (unimer volume fraction) (2) the weight-
average aggregation number, and (3) the fraction of the number of polymers that form the micelles to the
total number of polymers included in the system. The names of the files to be generated are

unimerVsOverall.dat

paveVsOverall.dat

micelleFractionVsOverall.dat,

respectively.

D.3 SurfaceSimulator

“SurfaceSimulator” is a simulator for calculating the free energy of a system composed of two parallel solid
surfaces separated by a polymer solution, and gives the interaction between these surfaces as a function of
the distance between the surfaces. In the current version of SUSHI, only flat surfaces can be treated. The
polymer chains can be grafted to the surfaces. For each value of the separation distances registered in the
input UDF file, the SCF calculations are performed, and the values of the excess surface free energy are
written into the output file named "energyOfSurfaces.dat". The other output files are as follows.

phis_xxxx.dat // Profiles of the volume fractions.

plot_phis_xxxx.plt // Gnuplot commands that are used in plotting the

// data in "phis_xxxx.dat".
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