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Chapter 1

Theoretical background of
PhaseSeparation

The PhaseSeparation of MUFFIN is a simulator which deals with the dynamics of phase separation induced
by the change of thermodynamics variables or external fields.

The main target of this simulator is the dynamics of the polymer mixture system in a liquid state.
Considering the dynamics of a system in a liquid state, key fields relevant to a certain phenomenon depend
on a problem. It is desired to use various equations for calculating chemical potential and to use various
calculation techniques for performing a simulation. Thus, the PhaseSeparation simulator is designed to have
flexibility, which makes it possible to construct a simulator by combining fields relevant to a phenomenon.
In the following section 1.1, the calculation principle of a multiphase fluid system will be explained.

1.1 Basic equations of PhaseSeparation

1.1.1 Equation of a volume fraction

The MUFFIN fluid simulator deals with the dynamics of the multi-component mixture system under a
flow. Now, we consider a fluid mixture which consists of M components. The temperature of the system is
assumed to be a constant To. This system is expressed by a spatial distribution of the volume fraction field
of each component. The volume fraction of the α component in a volume element vo = a3 ( a is monomer
size here) at a position r is expressed as ψα(r).

1 The subscript α specifies a component, and can take the
value of {0, 1, · · · ,M − 1}. The time evolution of the volume fraction of each component is described by the
following equation of continuity,

∂ψα

∂t
= −∇ · J (Total)

α , (1.1)

where J (Total)
α of the right-hand side expresses the flux of a component α. This flux J (Total)

α consists of the
following three contributions,

J (Total)
α = J (h)

α + J (d)
α + J (r)

α , (1.2)

where J (h)
α means the flux of the component α induced by the hydrodynamics flow, and is expressed as

J (h)
α = vψα using the local velocity v of the fluid. The second contribution J (d)

α denotes the diffusion flux
induced by a thermodynamics force. Assuming this diffusion flux is proportional to the spatial gradient of
chemical potential, it is given as

J (d)
α = −

∑
α′

Lαα′∇µα′ , (1.3)

where, Lαα′ is a transport coefficient and µα is a chemical potential. When the expression of free-energy F
is given by the Flory-Huggins theory, the chemical potential can be expressed as

µ(FH)
α =

δF

δψα(r)
. (1.4)

1In the below, Greek characters like α, β are used as suffixes indicating components, and i, j, k are used as suffixes indicating
x, y or z.

1



2 CHAPTER 1. THEORETICAL BACKGROUND OF PHASESEPARATION

When the calculation method of chemical potential is not specified, the chemical potential will be written
by µα. Superscripts as follows are used to specify a calculation method.

µ(FH)
α : Flory-Huggins De Gennes

µ(GL)
α : Symmetric Ginzburg Landau free energy

µ(OK)
α : Ohta-Kawasaki

µ(ADF )
α : Approximate Density Functional Theory

µ(SCF )
α : the self consistent mean field theory

The transport coefficient is usually assumed to be diagonal as Lαα′ = Lαδαα′ in many cases, and this
assumption is also used here. So the diffusion flux is expressed as J (d)

α = −Lα∇µα. The ψα dependency of
Lα may be taken as

Lα = Lαψα (Lα = Const.), (1.5)

so that it agree with the diffusion coefficient in single phase state. When the composition dependence of a
transport coefficient is not important for the system, it may be simplified as

Lα = Lα = Const.. (1.6)

The equation (1.5) is used for electrolytes, while equation (1.6) is used for other systems. The diffusion
flux can be induced by other thermodynamics forces. The diffusion flux may be a function of some ther-
modynamics forces such as the diffusion flow in a viscoelastic system or the one induced by a temperature
gradient. The third contribution J (r)

α is a random current induced by the thermal noise. Its magnitude is
determined to satisfy the following fluctuation dissipation theorem.

⟨J (r)
αi (r, t)J

(r)
αi (r

′, t′)⟩ = 2kBTLαδijδ(r − r′)δ(t− t′). (1.7)

Finally, the equation of the time evolution for the volume fraction ψα is given as

∂ψα

∂t
= −∇ · (vψα)−∇ · Jα, Jα = −Lα∇µα + J (r)

α . (1.8)

1.1.2 Equation for fluid

In this section, we consider the equation of the fluid. Because we are considering a system with large
viscosity like a polymeric system, its Reynolds number is small enough. Such a system is described by the
Navier-Stokes equation ignoring the convection term (Stokes approximation) :

ρ
∂v

∂t
= ∇ ·

(
ηD

)
−∇p+K, (1.9)

where v is the velocity, p is the pressure, ρ is the density, and η is the viscosity. Dij is a velocity gradient
tensor defined by

Dij = ∂vi/∂xj + ∂vj/∂xi.

The third term K(r) of the right-hand side of the Stokes equation is a body force. Since a dynamic
balance is satisfied in a very short time when the viscosity is large enough, it can be assumed that the time
change of a flow is small enough to make ∂v/∂t = 0. So we can use the equation of fluid as follows;

∇ · (ηD)−∇p+K = 0. (1.10)

We impose an incompressibility condition expressed by the following equation

∇ · v = 0. (1.11)

Using eq.(1.11), we can derive the following Poisson equation for the pressure

∆p = ∇∇(ηD) +∇ ·K. (1.12)
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Summary

Basic equations

∂ψα

∂t
= −∇ · (vψα)−∇ · J (1.13)

ρ
∂v

∂t
= ∇ ·

(
ηD

)
−∇p+K, ∇ · v = 0 (1.14)

In the PhaseSeparation simulator of MUFFIN, the simulation of various systems is realized by changing
the function which calculates a chemical potential and so on.

1.1.3 Free energy and chemical potential of M component polymer mixture
system

The free energy based on the Flory-Huggins-deGenne theory is written as,

F (FH) =
kBT

vo

∫
dV

[M−1∑
α=0

ψα

Nα
lnψα +

M−1∑
α<α′

χαα′ψαψα′ +
1

2

M−1∑
α<α′

Cαα′(ψα, ψα′)[∇(ψα − ψα′)]2
]
. (1.15)

In the eq.(1.15) the coefficient Cij is given as

Cαα′ =
a2

18ψαψα′
, (1.16)

by a random phase approximation (RPA). Here, v0 is given by v0 = a3 using monomer size a. χαα′ is known
as Flory’s χ-parameter. For the chemical potential µα = δF/δψα, when we define µ̂α as chemical potential
of a component α calculated as δF/δψα making ψ0, ψ1, ψ2, · · ·ψM−1 independent variables, µα is written
as

µα = µ̂α − µ̂0, (1.17)

µ̂(FH)
α =

kBT

vo

[
1

Nα
lnψα +

M−1∑
α′=0

[
χαα′ψα′ − 1

2

∂Cαα′

∂ψα
{∇(ψα − ψα)}2 −∇{Cαα′∇(ψα − ψα′)}

]
. (1.18)

Driving force term K is given by

K = −
M−1∑
α=1

ψα∇µ(FH)
α . (1.19)

1.1.4 Free energy and chemical potential of a M component system under an
electric field

The charge density in a tiny volume vo at the position r can be written as

ρe(r) =
M−1∑
α=0

ρeαψα(r), (1.20)

where ρeα = eζα and ζα is a valence density of the α component. The dielectric constant in a mixed state
is assumed to be given by a following simple mixing rule:

ϵ(r) =
M−1∑
α=0

ϵαψα(r), (1.21)

where ϵα is the dielectric constant of the α component. Using the expressions the free energy is written as
follows

F = Fmix +

∫
dV

[
− 1

2
ϵ({ψα}, T )E2 +

1

2
ρe({ψα})Φ

]
, (1.22)
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where E = E(r) is the electric field and Φ = Φ(r) is the electric potential (scalar potential). The chemical
potential is written as

µ(X)
α = µ

(X)
αmix − 1

2
(ϵα − ϵ0)E

2 + (ρeα − ρe0)Φ, (1.23)

where µ
(X)
αmix denotes a chemical potential coming from a mixing free energy and the superscript X expresses

the calculation method (X = FH,ADF and SCF, etc.). The body force K(r) can be written using the
expression of this chemical potential

K = −
M−1∑
α=1

ψα∇µα. (1.24)

Although eq.(1.24) is the same expression as the one in the previous section, in addition to the effect of the
osmotic pressure and a surface tension, the Maxwell stress and the body force coming from the charge are
newly included in K.

Since the electric fieldE and the scalar potential are added as new fields which are necessary for describing
the chemical potential and the driving force term of this system, the equations to solve them are required.
Supposing that ∇×E = 0 is satisfied for the electric field, the electric field are expressed as E = −∇Φ using
scalar potential Φ. Using the Maxwell equation: divD = ρe(r) and D = ϵE, the electrostatic potential is
calculated by

∇·
[
ϵ(r)∇Φ

]
= −ρe(r). (1.25)
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1.2 Equations for various systems and similarity

In this section, we explain the similarity of equations for various systems using four examples. The first
example is an equation which describes the Stokes flow. Here, we assume that no body force is applied on
the fluid.

Stokes flow

∇ · (ηD)−∇p+K = 0 (1.26)

∇ · v = 0 (1.27)

K = 0 (1.28)

The second example is the equations which describe the dynamics of a multi-component system (a
system of polymer blend or block copolymer, the phase separation under electric field). The effect of a
hydrodynamic flow can also be taken into account by combining these equations with the equation of fluid.
Some approximation theories exist to obtain the chemical potential of an M component system (Flory-
Huggins, Approximate Density Functional Theory, Self-Consistent Field Theory, etc), and it is necessary to
use them properly according to a required level of approximation. In this simulator, the phase separation
will be dealt with using the Flory Huggins theory. It is possible to calculate chemical potential by other
calculation methods by extending this simulator.

Multi-component mixture system

∂ψα

∂t
= −∇ · (ψαv)−∇ · Jα (1.29)

Jα = −Lα∇µα + J (r)
α (1.30)

K =
M−1∑
α=1

Kα = −
M−1∑
α=1

ψα∇µα (1.31)

and Eq.(1.26) and Eq.(1.27)

The third example is an electrolyte system. Although there is a difference between concentration Cα and
volume-fraction ψα, it turns out that the equations themselves are completely equivalent to the ones of the
M component mixture under an electric field.

Electrolyte

∂Cα

∂t
= −∇ · (vCα)−∇ · Jα Jα = −Dα

[
∇Cα +

ρeαE(r)

2kBT

]
(1.32)

K = −kBT
∑
α

[
∇Cα +

ρeαE(r)

2kBT

]
(1.33)

F =

∫
ddrkBTCα lnCα +

1

2

∫
ddr

∫
ddr′

CαCβqαqβ
4πϵ|r − r′|

(1.34)

and Eq.(1.26) and Eq.(1.27)

An immiscible electroviscous fluid (block copolymer under electric field), an electrolyte, and a polyelectrolyte
can be described by completely similar equations. The only difference is the expression of the chemical
potential.

The fourth example is the equations which describe viscoelastic phase separation in a polymer solution
system. The equations are derived based on the two fluid model. In eq.(1.35) - (1.39), ψp is the volume
fraction of a polymer. In this system, the network stress resulting from entanglements of polymers plays a
very important role. So it is necessary to calculate the network stress using a constituitive equation etc.
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Viscoelastic phase separation

∂ψp

∂t
= −∇ · (vψp)−∇ · J (1.35)

J = −L
[
ψp∇µ−∇ · σ(N)

]
(1.36)

L =
1

ζ
ψ2
sψp ≃ a2

6πηsψp
(in Θ solvent) (1.37)

K = −ψp∇µ+∇ · σ(N) (1.38)

∇ · σ(N) : Contribution from network stress (1.39)

and Eq.(1.26) and Eq.(1.27)

As described above, it turns out that various systems can be described by the equation group with the
same structure. Expressions of the chemical potential and the body force determine the characteristic of
these systems.

1.3 Dimensionless expressions of parameters and equations

1.3.1 The unit of time and length

In the numerical calculation, it is important to make equations and parameters dimensionless. Using the
characteristic time and spatial scale of a system, the dimensionless control parameters of the target system
can be obtained. Let us return to a set of basic equations eqs.(1.13) and (1.14) again.

Basic equations

∂ψα

∂t
= −∇ · (vψα)−∇ · Jα (1.40)

ρ
∂v

∂t
= ∇ ·

(
ηD

)
−∇p+K, ∇ · v = 0 (1.41)

In the following, the definition of dimensionless variables and dimensionless parameters are explained.

Notice

In the following, a tilde sign will be attached to the dimensionless variable.

[The space unit in a simulation]
In a system for which we perform simulations, there are some characteristic lengths which have physical

meanings. For example, they are the characteristic size L(t) of domain, the interface width λ, the gyration
radius Rg of a polymer, the monomer size a, etc. For lengths characteristic to the system, it is very
important to specify the shortest length that must be expressed by the continuum picture. Because, if a grid
size larger than the reasonable short length which appears in a system is used, the precision of calculation
will significantly decrease and calculation will often fail. The shortest length which must be expressed by the
continuum picture among these characteristic lengths is a width of an interface λ between two phases. If
many phases coexist, you have to find out the shortest width of interface. Since the width of the interface
is the minimum length which appears in this system, the size of mesh must be small enough to express the
smooth interface.

Although there is no quantitative results from a theoretical analysis, it is known empirically that the
space-lattice size ∆x which is about 1/4 of the interface width λ is sufficient to express the interface configu-
ration with a good precision (five lattice points in the interface). This length is expressed by ξ ≃ λ/4. Since
ξ only differs from the interface width λ at most about 4 times, we call this length as the interface width
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λ=4ξ

Figure 1.1: Explanation for interface width. ξ is about 1/4 of λ.

hereafter. The interface width depends not only on the kinds of materials, but also on the χ-parameter,
the temperature, etc. For example, the interface width becomes very large near the critical point, and di-
verges at the critical point. It is very important to know how the interface width ξ depends on physical
constants such as the χ-parameter (temperature). Since theM component system is considered now, there is

MC2 =M(M − 1)/2 kinds of combination of phases forming interfaces. For such a case, we have to find out
the minimum of width ξ, and makes it the minimum length which exists in a system. This minimum length
is taken as the unit of a space ξ. How does it depend on the χ-parameter or the degree of polymerization?
Considering the interface of two phases near the critical point of two phase (α, α′) and using eq.(1.15) for
free energy, the interface width ξαα′ between two phases (α, α′) will be given as

ξαα′ ≡

√
Cαα′

∆χαα′
=

√
1

∆χαα′
· a2

18ψ̄αψ̄α′
, (1.42)

where ∆χαα′ ≡ χαα′ − χ
(c)
αα′ , χ

(c)
αα′ ≡ (

√
Nα +

√
Nα′)2/2NαNα′ . At first, we have to calculate ξαα′ , then we

determine the minimum width ξββ′ by using the following equation:

ξββ′ ≡ Min
<α,α′>

ξαα′ . (1.43)

(In order to reduce symbol, the combination of the minimum interface width will be described as ξ ≡ ξββ′ . If
there is no confusion for the following abbreviation, ∆χββ′ will be written as ∆χ.) Using eo = (kBT/v0)∆χ
as a unit of energy density, the chemical potential will be scaled as

µ̃α = µα/eo

=
1

∆χββ′

[ 1

Nα
lnψα +

M−1∑
α′=0

χαα′ψα′

]
−

M−1∑
α′=0

Cαα′

Cββ′
∆̃(ψα − ψα′), (1.44)

where ∆̃ ≡ ∆ · ξ2ββ′ .
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[Time unit in the simulation]
Next, we consider the unit of time. In order to determine the unit of time τ , it is important to find out

the fastest transport phenomena in the system.
As described in section 1.1, two transport mechanism exist in the system. These are the diffusional

transport and the hydrodynamics one. Therefore, in order to determine the unit of time, it is necessary to
compare the quickest transport by the diffusion with the hydrodynamic transport 2. These two characteristic
times are defined as follows using the shortest interface width ξ which appears in the phase-separation
phenomenon of this system.

Two time scales

(1) Being τ
(D)
α a time required for component α to diffuse over the distance of the interface width ξ,

τD is the minimum value among τ
(D)
α (τD = Min

α
τ
(D)
α ).

(2) Time which is needed a substance to be transported by the distance ξ by a flow U which exists in
a system (an imposed flow field or interfacial tension).

The characteristic time originating from a diffusion (1) can be estimated by the following equation,

τo ≡ ξ2/Do
α, Do ≡ kBTLα, (1.45)

where Lα is the transport coefficient. However, since we should consider a cooperative diffusion (counter
diffusion), the time to diffuse by a distance ξ is not τo in eq.(1.45) but depends on χ-parameter 3. We can
get mutual diffusion coefficient Dαα′coop of two phases α− α′ by

Dαα′ coop ≡ Do
α ∆χαα′ , (1.46)

where 1/χαα′ is a susceptibility. This corresponds to the cooperative-diffusion coefficient of the α component
when the α′ component is a solvent. The fastest mutual-diffusion process is determined by the following
equation,

Dcoop = Max
<αα′>

Dαα′ coop. (1.47)

Therefore, the shortest transportation time τD by the cooperative diffusion is estimated by the following
equation

τD = ξ2/Dcoop. (1.48)

Next, we estimate characteristic time τH of the hydrodynamic transportation (2). If the magnitude of
the characteristic flow field is U , τH is given as

τH = ξ/U. (1.49)

The ratio of the above two characteristic times serves as an important quantity. We define this ratio g0 as

g0 = τD/τH . (1.50)

How is the magnitude of a characteristic flow field U determined? The magnitude of a characteristic
velocity is determined by the balance between the viscosity term (the second term of the right-hand side
of equation (1.41)) and the body force term (Kof equation (1.41)). However, because of the generality
of a simulator, it is impossible to make an exact estimation for a general situation. It will be estimated
approximately assuming that the body force comes from an interfacial tension. The viscous force can be
estimated to be ηL−2

D U supposing the scale of spatial change of velocity is the scale of domain size. Here,
LD is the characteristic size of domain. The magnitude of body force coming from an interfacial tension can
be estimated from the Laplace’s equation. Supposing that the spatial scale of the pressure gradient is the
scale of the width of the interface, it is written as ∇p ≃ p/ξ. Supposing that the gradient of the pressure
can be written using the interfacial tension γ as p = γ/LD by Laplace’s formula, the gradient of the pressure
can be estimated as γ/ξLD.

2In the estimation here, since the transport by diffusion depends on components, an attention will be paid only to the
quickest transportation among them.

3Since susceptibility diverges near the critical point, a cooperative-diffusion coefficient becomes remarkably small.
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The magnitude of a characteristic velocity is determined by a balance of these two forces as

Viscosity ∼ body force(interfacial tension) (1.51)

ηminL
−2
D U ∼ γ

ξLD
(1.52)

where, ηmin is the smallest viscosity in all the components (ηmin ≡ Min ηα). For this viscosity, U becomes
the maximum. In this estimation, it is assumed that the characteristic scale of spatial change of flow is LD

(= characteristic domain size). From the equation (1.52), the characteristic velocity U can be estimated as

U ∼ γ

η̄min

LD

ξ
(1.53)

The interfacial tension γ is defined as

γ ≃
√
2kBT

a2
(∆χ

ββ′ )
3/2

χ2
c

√
NβNβ′ ψ̄βψ̄β′

, χc =
1

2

( 1√
Nb

+
1√
Nb′

)2

.

The scale of the velocity field estimated by the formula (1.53) is not suitable as a unit of a velocity field
because it depends on the characteristic domain size. So, Uo = γ/ηmin is used as a unit of a velocity field.
The velocity field ṽ is scaled as using Uo as

ṽ =
v

Uo
, Uo ≡ γ

ηmin
.

The dimensionless pressure p̃, the body force K̃, and the viscosity η̃ are defined as

p̃ =
ξ

ηmax Uo
p, K̃ =

ξ

eo
K, J̃ =

ξ

eo
J , η̃ =

η

ηmax
.

Here, ηmax means the maximum value (ηmax ≡ Max ηα) in the viscosities for all the components.

After estimating the characteristic time τD and τH using actual physical constants, it turns out to be
τH ≪ τD for polymer mixture systems 4. Then, we use characteristic time τH as a unit of time, and this
will be written as τ from now on. Using this τ a dimensionless time is defined as

t̃ = t/τ.

[Dimensionless equations]
Using the spatial and time units, dimensionless equations are obtained as follows.

Basic dimensionless equations 1 : when the inertia of fluid cannot be ignored

∂ψα

∂t̃
= −∇̃ · (ṽψα)− D̃α∇̃ · K̃α (1.54)

Re · ρ̃ ∂ṽ
∂t̃

= −∇̃p̃+ ∇̃ ·
(
η̃D̃

)
+Ca−1K̃, ∇̃ · ṽ = 0 (1.55)

D̃α ≡ Dα|∆χ|
τ

ξ2
, Ca−1 =

kBT

vo

∆χξ

ηmaxUo
, Re =

ρ̄ ξ Uo

ηmax
(1.56)

Here, D̃α is a dimensionless diffusion coefficient. It should be noticed that the Ca in eq.(1.56) is different
from the usual capillary number Ca ( Ca ≡ ηU/γ, U : the magnitude of a characteristic flow). It is also
necessary to notice that the number Re is different from the usual Reynolds number. This Re has usually
very small value in the polymer system, so the inertia of a fluid can be ignored. Therefore, the equations
which should be solved are finally as follows.

4When the diffusion coefficient is Dcoop = 1.0 × 10−9 ∼ 10−11 cm2/sec, the interface width ξ ∼ 5 nm, the interfacial tension
10.0 mN/m, and viscosity 1.0 Pa · sec, τD ∼ 10−3 sec and τH ∼ 10−6 sec.
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Basic dimensionless equations 1 : when the inertia of fluid can be ignored

∂ψα

∂t̃
= −∇̃ · (ṽψα)− D̃α∇̃ · K̃α (1.57)

0 = −∇̃p̃+ ∇̃ ·
(
η̃D̃

)
+Ca−1K̃ ∇̃ · ṽ = 0 (1.58)

D̃α ≡ Dα|∆χ|
τ

ξ2
, Ca−1 =

kBT

vo

∆χξ

ηmaxUo
(1.59)

1.3.2 Dimensionless expression of interaction term in the free energy

Here, we consider non-dimensional expressions for the parameters which appear in the interaction energy
density except for the term related to the χ-parameter. We write terms other than the χ-parameter terms

of equation (1.23) as f
(ex)
int

f
(ex)
int = ρe(r)Φ(r)−

ϵ(r)

2
E2(r). (1.60)

As a unit of the electric field, we use Eo=1kV/mm. We can get a dimensionless scalar potential Φ̃(r̃) =
Φ(r)/ϕo using ϕo ≡ Eoξ. The dielectric constant ϵ(r) is scaled by the maximum value ϵmax among dielectric
constants of each component. Using the scales defined so far, the interaction free energy density is turned
into dimensionless one

f̃int(r̃) =
M−1∑
α

ρ̃eαψα(r̃)Φ̃(r̃)−
1

2
B

M−1∑
α

ϵ̃αψα(r̃)Ẽ
2
(r̃), (1.61)

ρ̃eα ≡ eναZαϕo
kBT

· 1

|∆χ|
, B ≡ ϵmaxE

2
ovo

kBT
· 1

|∆χ|
, (1.62)

where the coefficient B is the ratio between the characteristic electromagnetic energy in a volume element
vo and the interaction free energy between monomers. The electromagnetic effect becomes dominant as B
becomes larger. The ρ̃eα in eq.(1.62) expresses the ratio of the Coulomb energy and the interaction free
energy between monomers. The Coulomb interaction becomes dominant as ρeα becomes larger.

1.3.3 Dimensionless Poisson equation

When the dielectric constant is scaled by the maximum dielectric constant ϵmax, the electric field is scaled
by Eo and the equation (1.20) (1.25) are used, a dimensionless Maxwell equation is obtained as

∇̃ ·
[
ϵ̃(r̃)∇̃Φ̃(r̃)

]
= −

M−1∑
α=0

ρ̃eαB
−1ψα(r̃). (1.63)
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1.3.4 Actual and dimensionless parameters required for input

To get a value of a dimensionless parameter, at first you have to input the following basic parameters (actual
value with a unit) .
[basic parameters (actual value with a unit)]
Notation Meanings
M number of components
a monomer size
Nα the degree of polymerization of each component(α = 0, · · ·M − 1)
χαα′ χ-parameter (MC2 combinations)
ηα viscosity of each component
Dα diffusion coefficient of each component
T temperature
ψα The preparation volume fraction of each component(α = 0, · · ·M − 1)

Using the above values, the spatial unit ξ and the time unit τ can be derived.

[space unit and time unit]
Meanings Notation Expression

ξ = Min
<α,α′>

√
1

∆χαα′
· a2

9ψ̄αψ̄α

space unit ξ ∆χαα′ ≡ χαα′ − χ
(c)
αα′

χ
(c)
αα′ ≡

(
√
Nα +

√
Nα′)2

2NαNα′
: critical value

τ =
a2ξηmin√
2kBT

χ2
c

√
NβNβ′ ψ̄βψ̄β′

(∆χ)3/2

time unit τ
When ξ is given for a combination (β, β′), ∆χ is ∆χββ′ .
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[Conversion from an actual to a dimensionless parameter]

Dimensionless meanings input and dimensionless input parameter
parameter parameter in MUFFIN

η̃α viscosity of each components η̃α = ηα/ηmax VISCOSITY

ηmax ≡ Max
α

ηα

D̃α diffusion coefficient D̃α = Dα|∆χ|
τ

ξ2
DIFFUSION_COEFFICIENT

˜̇γ shear rate ˜̇γ = γ̇τ SHEAR_RATE

R̃i radius of a droplet R̃i = Ri/ξ RADIUS_OF_DROPLET

ρ̃eα charge density ρ̃eα =
ρeαa

3Eoξ

kBT
· 1

∆χ
CHARGE_DENSITY

Eo ≡ 1.0 kV/mm

B electric energy B =
a3 ϵmax E

2
o

kBT
· 1

|∆χ|
B

ϵ̃α relative dielectric const. ϵ̃α = ϵα/ϵmax DIELECTRIC_CONSTANT

ϵmax ≡ Max
α

ηα

Ca – Ca= kBT
vo

∆χξ
ηmaxUo

CA
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[What to do before performing simulation by MUFFIN]

1. Survey the values of the basic input variables(parameters) of a system to Simulate

2. Calculate the dimensionless spatial and time units of the simulation from basic variables using a
tool for conversion to dimensionless parameters.

3. Estimate Re using a calculation tool from the values of basic input variables, and judge whether
the inertia term of the fluid equation is important for the system or not. It serves as a guide to
judge whether you should use a module including the inertia term, or that without the inertia
term.

4. Consider boundary conditions:
System size
Periodic, pseudo-periodic
Existence of wall(s)
Lees-Edwards condition

5. Determine fields to be considered.

6. Determine initialization modules to be used for each field.

7. Determine boundary condition modules to be used for each field according to the consideration in
4.

8. Determine time-evolution modules to be used for each field.

9. Determine analysis modules to be used for each field, and a time interval for the simulation.

10. You will get a list of parameters necessary for the simulation, and you can get dimensionless
parameters by using, for example, a tool ”MuffinMujigen.py” included in the MUFFIN system.
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1.4 FDM phase separation simulator PhaseSeparation FDM

The PhaseSeparation FDM is a phase separation simulator of multicomponent fluid systems using the finite
difference method. The characteristic feature of this simulator are as follows.

• The finite difference method of a three-dimensional Euler picture is used as the calculation method.

• A slow viscous flow (Stokes flow) can be dealt with.

• The target is a multicomponent polymer fluid which is described by the volume fractions of each
component.

• Boundary conditions can be given on the six boundaries of a rectangular geometry.

List of selectable fields

Selectable fields notation

Volume fraction field ψα

Chemical potential field µα

Flux field (without hydrodynamics effect) Jiα (i = x, y or z)
Velocity field Vi (i = x, y or z)
Pressure field P
Scalar electric potential field Φ

The greek index α expresses a component which takes a value of α = 0, · · ·Nc − 1 (Nc: the number of
components).

1.4.1 Calculation model

The following set of equations is used as a basic model of a multicomponent fluid.

∂ψα

∂t
= −∇ · (vψα)−∇ · Jα, (1.64)

Jα = −Lαψα∇µα, (1.65)

−∇p+∇(η{∇v + (∇v)t}) +K = 0, (1.66)

K = −
∑
α

ψα∇µα, (1.67)

∇ · v = 0, (1.68)

where ψα(r) is the volume fraction of component α, Lα is the Onsager coefficient and µα is the chemical
potential. v is fluid velocity field, p is pressure field and η is viscosity coefficient. K is the body force which
works as the driving force of a fluid field. The Stokes equation is used for the equation of fluid velocity field.
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1.4.2 The boundary conditions on the wall surfaces for each field

In the multiphase fluid simulator using the finite difference method, the shape of a system is rectangular.
Therefore, each field must have boundary conditions for the following six boundaries.

Boundary conditions of volume fraction field ψα

Possible boundary conditions for the volume fraction field are as follows.

• Periodic boundary condition
When a periodic boundary condition is applied in x-direction,

ψα(x, y, z) = ψα(x+ Lx, y, z).

The similar condition can be applied for y-direction and z-direction.

• Biased periodic boundary condition
A biased periodic condition is similar to the periodic boundary condition, but at two facing boundaries
the value of the field may have a non-zero gap. When this condition is applied for x-direction,

ψα(x, y, z) = ψα(x+ Lx, y, z) +Ax,

where Ax is a value of gap for the x-direction.

• Wall boundary condition
At each of six boundaries of rectangular geometry, a gradient of the field along the direction perpen-
dicular to the boundary can be set to zero.

n · ∇ψα(x, y, z)|wall = 0,

where |wall denotes the value on the wall.

• Bulk boundary condition
At each of six boundaries of rectangular geometry, a constant value can be given for the field. It means
that the value of the volume fraction is constant outside of the boundary (bulk).

ψα(x, y, z)|Boundary = Constantα.

Boundary conditions for chemical potential field µα

Possible boundary conditions for the chemical potential field are as follows.

• Periodic boundary condition
When the periodic boundary condition is applied in x-direction,

µα(x, y, z) = µα(x+ Lx, y, z).

The similar condition can be applied for y-direction and z-direction.

• Wall boundary condition
At each of six boundaries of rectangular geometry, a gradient of the field along the direction perpen-
dicular to the boundary can be set to zero.

n · ∇µα(x, y, z)|wall = 0,

where |wall denotes the value on the wall.

• Lees Edwards boundary condition
The Lees Edwards boundary condition can be used if a shear is applied to the system. This boundary
condition is only applicable for z-direction boundaries in this simulator.
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Figure 1.2: two XY plane boundaries perpendicular to Z-axis
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Figure 1.3: two Y Z plane boundaries perpendicular to X-axis
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Figure 1.4: two ZX plane boundaries perpendicular to Y -axis
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Boundary conditions for flux field Kα

Possible boundary conditions for the flux field are as follows.

• Periodic boundary condition
When a periodic boundary condition is applied in x-direction,

Kαx(x, y, z) = Kαx(x+ Lx, y, z).

The similar condition can be applied for y-direction and z-direction.

• Wall boundary condition
At each of six boundaries of rectangular geometry, the flux can be set to zero. It means that the flux
by diffusion is zero on the boundary wall.

Kα(x, y, z)|wall = 0,

where |wall denotes the value on the wall.

• Bulk boundary condition
At each of six boundaries of rectangular geometry, the gradient of the flux in the direction perpendicular
to the boundary can be set to zero. It means that the gradient of the flux is zero because of a constant
value of the volume fraction field outside of the boundary (bulk).

(n · ∇)Kα(x, y, z)|Boundary = 0.

• Lees Edwards boundary condition
The Lees Edwards boundary condition can be used if a shear is applied to the system. This boundary
condition is only applicable for z-direction boundaries in this simulator.

Boundary conditions for velocity field v

Possible boundary conditions for the velocity field are as follows.

• Periodic boundary condition
When a periodic boundary condition is applied in x-direction,

v(x, y, z) = v(x+ Lx, y, z).

The similar condition can be applied for y-direction and z-direction.

• Constant velocity boundary condition
At each of six boundaries of rectangular geometry, the velocity can be set to a constant vector vo.
This means that the boundary wall is moving with the constant velocity:

v(x, y, z)|wall = vo,

where, |wall denotes the value on the wall, and vo ⊥ n.

• When a constant pressure boundary condition is applied
The gradient of the velocity should be set to zero on the boundary:

(n · ∇)v(x, y, z)|wall = 0.

• Lees Edwards boundary condition
The Lees Edwards boundary condition can be used if a shear is applied to the system. This boundary
condition is only applicable for z-direction boundaries in this simulator.
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Boundary conditions for pressure field P

Possible boundary conditions for the pressure field are as follows.

• Periodic boundary condition
When a periodic boundary condition is applied in x-direction,

P (x, y, z) = P (x+ Lx, y, z).

The similar condition can be applied for y-direction and z-direction.

• Biased periodic boundary condition
A biased periodic condition is similar to the periodic boundary condition, but at two facing boundaries
the value of the field may have a non-zero gap. When this condition is applied for x-direction,

P (x, y, z) = P (x+ Lx, y, z) +Ax,

where Ax is a value of gap for the x-direction.

• When a constant velocity boundary condition is applied
The gradient of the pressure should be set to zero on the boundary.

n · ∇P (x, y, z)|Boundary = 0.

• Constant pressure boundary condition
At each of six boundaries of rectangular geometry, the value of the pressure can be set to a constant
value Po.

P (x, y, z)|Boundary = Po.

• Oscillating pressure on a boundary
The pressure oscillates with a constant frequency on the boundary.

P (x, y, z)|Boundary = Po + δP · sin(ωt),

where, Po is a constant pressure, δP is a oscillation amplitude, ω is a frequency and t is the time.

• Lees Edwards boundary condition
The Lees Edwards boundary condition can be used if a shear is applied to the system. This boundary
condition is only applicable for z-direction boundaries in this simulator.

Boundary conditions for electric potential field

Possible boundary conditions for the electric potential field are as follows.

• Periodic boundary condition
When a periodic boundary condition is applied in x-direction,

ϕ(x, y, z) = ϕ(x+ Lx, y, z).

The similar condition can be applied for y-direction and z-direction.

• Biased periodic boundary condition
A biased periodic condition is similar to the periodic boundary condition, but at two facing boundaries
the value of the field may have a non-zero gap. When this condition is applied for x-direction,

ϕ(x, y, z) = ϕ(x+ Lx, y, z) +Ax,

where Ax is a value gap for the x-direction.
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• A surface charge density is given on a boundary(Neumann boundary condition)
A constant surface charge on a boundary can be given by the gradient of the electric potential.

n · ∇ϕ(x, y, z)|Boundary = −σ/ϵrϵo.

In a dimensionless form,
n · ∇ϕ(x, y, z)|Boundary = −q/R,

where the definition of dimensionless parameters are given by equations (??), and (??).

• Constant potential on a boundary (Dirichlet boundary condition)
At each of six boundaries of rectangular geometry, the electric potential can be set to a constant value
ϕo.

ϕ(x, y, z)|Boundary = ϕo (= Constant).

• Oscillating electric potential on a boundary
The electric potential oscillates with a constant frequency on the boundary.

ϕ(x, y, z)|Boundary = ϕo + δϕ · sin(ωt),

where ϕo is a constant potential, δP is a oscillation amplitude, ω is a frequency, and t is the time.

• Lees Edwards boundary condition
The Lees Edwards boundary condition can be used if a shear is applied to the system. This boundary
condition is only applicable for z-direction boundaries in this simulator.
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1.5 FEM phase separation simulator PhaseSeparation FEM

The PhaseSeparation FEM is a phase separation simulator of multicomponent fluid systems using the finite
element method. The characteristic feature of this simulator are as follows.

• The finite element method of a three-dimensional Euler picture is used as the calculation method. The
supported element type is tetrahedral element with a linear interpolation shape function.

• A slow viscous flow (Stokes flow) can be dealt with.

• The target is multicomponent polymer fluid which is described by the volume fractions of each com-
ponent.

• The Dirichlet condition, the Neumann condition and a periodic boundary condition can be used as a
boundary condition (periodic boundary condition is available only for rectangular geometry).

Compared with the simulator using the finite difference method, this FEM simulator has more flexibility
in geometry, and, in general, boundary condition treatment is easier. On the other hand, it requires a longer
computation time and a larger memory compared to the FDM simulator.

List of selectable fields

Selectable fields notation

Volume fraction field ψα

Chemical potential field µα

Flux field (without hydrodynamics effect) Jiα (i = x, y or z)
Velocity field Vi (i = x, y or z)
Pressure field P
Scalar electric potential field Φ

The greek index α expresses a component which takes a value of α = 0, · · ·Nc − 1 (Nc : the number of
components).

1.5.1 Calculation model

The basic calculation model of this simulator is almost similar to that of the FDM simulator. The following
set of equations is used as a basic model of a multicomponent fluid,

∂ψα

∂t
= −∇ · (vψα)−∇ · LαKα, (1.69)

Kα = −ψα∇µα, (1.70)

Jα ≡ LαKα, (1.71)

Reρ
∂v

∂t
= −∇p+∇(η{∇v + (∇v)t}) +K, (1.72)

K =
∑
α

Kα + F ext, (1.73)

∇ · v = 0. (1.74)

where ψα(r) shows the volume fraction of each component α, Lα is the Onsager coefficient, and µα is the
chemical potential of each component. v is the fluid flow velocity, p is the pressure field, η is the the viscosity
coefficient, and K is the driving force of a fluid flow composed of Kα which comes from a gradient of the
volume fraction and the chemical potential of each component, and F ext is an external force. The equation
for the flow field is the Navier Stokes equation without the convection term. In this simulator, we use mainly
the Stokes approximation ignoring inertia term ∂v/∂t = 0. Please refer to the chapter 1 about the detail of
meanings of the equations. Dimensionless equations are the same as those of FDM simulator described in
section 1.3.
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1.5.2 Flow field calculation method in FEM simulator

As a calculation method for the fluid flow by FEM, many methods have been developed . We adopted
for MUFFIN’s FEM simulators a method called “velocity correction method” which is a kind of multi-
step method and considered to be suited to large scale three-dimensional simulations. In this method, we
discretize the Navier-Stokes equation in time, as follows (consider a dimensionless equation of ρ = 1)

v(n+1) − v(n)

∆t/Re
= −∇p(n+1) +∇η(∇v(n) + (∇v(n))t) +K(n+1), (1.75)

where variables with (n) is for the current time step (known value) and those with (n+ 1) are for the next
step to be calculated. We write ∆t/Re as ∆t in the following.

By applying the divergence operator to this equation and considering an incompressibility condition
∇ · v = 0, we get a Poisson equation for the pressure.

v∗ = v(n) +∆t
{
∇η(∇v(n) + (∇v(n))t) +K(n+1)

}
, (1.76)

∇2p(n+1) =
1

∆t
∇ · v∗. (1.77)

The variable v∗ in these equations can be called as an “intermediate velocity”. The pressure field is calculated
using this intermediate velocity. Substituting the calculated pressure to equation (1.75), we get the velocity
of the next time step as

v(n+1) = v∗ −∆t∇p(n+1). (1.78)

This method is called as “velocity correction method” because the intermediate velocity is corrected by the
gradient of the pressure in eq.(1.78).

We perform FEM discretization in space by applying the weighted residual method for equations (1.76),(1.77)
and (1.78). In our FEM program, the velocity, the pressure and the force fields are approximated by trial
functions which are linear combinations of a first order interpolation function LI(r) whose value on the FEM
nodes I are unity and zero on nodes other than node I:

v(r) =
∑
I

LI(r)vI , (1.79)

p(r) =
∑
I

LI(r)pI , (1.80)

K(r) =
∑
I

LI(r)KI . (1.81)

We use a lumped mass matrix on each node for the intermediate velocity calculation (1.76) and the
velocity correction (1.78) to enable an explicit time evolution scheme. On the other hand, the calculation of
the Poisson equation (1.77) for the pressure needs an implicit method.

As a calculation method of fluid flow, there are “direct” methods which solve velocity field and pressure
field equations at once with an implicit solution procedure. In such methods, however, we must solve linear
equations of a degree of freedom at least four times of the number of FEM nodes. Moreover, to get solution
in such methods, we actually need to add more nodes for velocity field. In the velocity correction method,
the implicitly solved variable is only a scalar field p, so we can expect that in large scale problems the velocity
correction method requires less memory and calculation time compared to the direct methods.

A demerit of the velocity correction method is that we must use a fine time mesh to avoid a divergence
of the calculation, because we are using an explicit time evolution other than for the pressure field. In the
fluid flow calculation, a generally required condition for the time mesh value for the calculation stability is
the CFL (Courant, Friedrich, Levy) condition as

∆t ≤ h

3U
, (1.82)

where h is the minimum spatial mesh width and U is the absolute value of the velocity. This condition must
be satisfied on all calculation nodes.

The CFL condition is, however, necessary when the convection term is dominant. Because our model
neglects the convection term, a more important condition for time step is given by the following equation
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which is determined by viscosity coefficient relating to the diffusion of momentum of flow field (viscosity
stress):

∆t ≤ h2

9η
. (1.83)

1.5.3 The Stokes flow calculation

In the Stokes flow, the inertia term ∂v/∂t is zero. We use the time evolution procedure iteratively until
the velocity field converges so that the Stokes flow is attained. In this case the time step ∆t is the one
for ”imaginary” time for iterations to get a stationary state and it is not the physical one. In our FEM
simulator, the time interval for the Stokes flow calculation is given as UDF input parameter ”DT FOR V”
and the real time step which is used for time evolution of fields other than the velocity and the pressure is
given as input parameter ”DT”.

1.5.4 Relationship between the FEM discretization and a boundary condition

The finite element method has a characteristic feature in the treatment of the Neumann boundary condition
which gives a component of a gradient of a physical quantity normal to a boundary: n · ∇f where n is the
outward normal vector of a boundary surface. The feature is;

Neumann condition

No need to explicitly give the Neumann condition of a type n · ∇f = 0 (natural boundary condition).

For example, we consider the Poisson equation which appears in the calculation of the pressure and the
calculation of the electric potential:

∇2f = σ. (1.84)

In the discretization by the weighted residual method adopted by this simulator, we impose a condition that
the residual of equation which is integrated with arbitrary weight function W (r) becomes zero (solution by
weak form): ∫

dr(∇2f(r)− σ(r))W (r) = 0. (1.85)

In the weighted residual method by Galerkin-Ritz type, the weight function W (r) is interpolated by the
same interpolation function LI(r) as that for physical quantity f(r):

f(r) =
∑
I

LI(r)fI , (1.86)

W (r) =
∑
I

LI(r)WI . (1.87)

The Laplacian term for f in eq. (1.85) is decomposed by partial integration into a volume and a surface
integration terms as∫

dr(∇2f(r)− σ(r))W (r) = −
∫
dr∇f∇W −

∫
drσ(r)W (r) +

∫
dSW (n · ∇f) = 0. (1.88)

When we express terms including f in the equation above using the interpolation equation in each FEM
element e, we get:∫

e

dr(∇2f(r))W (r) = −
∫
e

dr(
∑
J

fJ∇LJ )(
∑
I

WI∇LI) +

∫
e

dS(
∑
I

LI(r)WI)(n · ∇f). (1.89)

From the continuity of the weighting function W , surface integration terms on element surfaces for adjacent
elements cancel out in eq.(1.88), so the surface integration term in eq.(1.89) remains only on the system
boundary. Requiring that eq.(1.89) should be fulfilled for any value of WI on all nodes I, we get a linear
equation fI as ∑

J

fJ

[∫
e

dr∇LJ∇LI

]
= −

∫
e

drσLI +

∫
e

dSLI(n · ∇f). (1.90)
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The complete linear equation is obtained by a summation of both sides of eq.(1.90) for all elements including
node I.

The explanation so far shows that the treatment of the Neumann condition is to calculate the surface
integration term. So, in the case that n · ∇f = 0 is required, apparently we need not calculate the surface
integration term because it should be zero. For some field variables in our FEM programs, only the Neumann
boundary condition of type n · ∇f = 0 is possible, and for such a variable, the default boundary condition
is the Neumann condition of this type automatically.

The Neumann boundary condition can also be applied for equations other than Poisson equations. Refer
to the detailed explanation for boundary conditions of each field in the following subsection.

1.5.5 Boundary condition specification by the partial region condition

In FEM simulators, we can calculate in any geometry which can be expressed by FEM mesh. So, except for
the mesh type ”UNSTRUCTURED RECT”, we can not take a way to give a pair of X,Y or Z boundaries
and a pair of boundary conditions as used in FDM simulator. In the FEM simulators, boundary conditions
are specified by ”partial region condition”s defined in input UDF of MUFFIN (UDF data path name is
”region condition[]”).

A partial region condition is a combination of ”partial region” which expresses a part of space, and a
condition for a field defined in the region. For example, when you want to give a boundary condition of
a constant velocity 1.0 in the X-direction on the Y-direction boundary, you should give a partial region
condition as follows.

• Name of partial region : BOUNDARY VERTEX YMAX

• Name of field : Velocity

• Symbol of condition: D VX (make X-component of a vector field to a constant value – Dirichlet
condition)

• Array of values corresponding to the condition: Here a numerical value string is given.

An UDF data for this partial region condition are as follows,

{ "YMAX_Vx" "BOUNDARY_VERTEX_YMAX" "Velocity" "D_VX" [ "1.0" ] }

{ "YMAX_Vy" "BOUNDARY_VERTEX_YMAX" "Velocity" "D_VY" [ "0" ] }

{ "YMAX_Vz" "BOUNDARY_VERTEX_YMAX" "Velocity" "D_VZ" [ "0" ] }

The string ”YMAX Vx” etc. is a KEY data of a partial region condition, and it can be specified arbitrarily
by users.

“BOUNDARY VERTEX YMAX” is a partial region name. In this case a partial region created automatically
when mesh type (UDF data path name is parameter.mesh parameter.type) is “UNSTRUCTURED RECT” (un-
structured rectangular-shaped region), and it is one of a Y-direction boundaries (boundary having larger
y-coordinate value). Other than internally defined partial regions, user can make partial regions by them-
selves (UDF data path name is mesh.partial region[]).

“Velocity” is the name of the velocity field. “D VX”,“D VY” and “D VZ” mean Dirichlet conditions for
X,Y and Z component of the velocity. This condition fixes the value of the field at nodes (vertices) on the
specified partial region. In our FEM simulator, condition symbols starting with “D” are Dirichlet conditions,
and those starting with “N” are Neumann conditions.

The last input items “["1.0"]” and “["0"]” set values for Dirichlet conditions for each velocity compo-
nent. Some other conditions need more string data to give the additional information.

You should take care that you can give the boundary condition for each of X,Y,Z component of velocity
separately. The reason why we have not provided a partial region condition for a vector is to make it
possible to set only a component perpendicular to a wall to zero without imposing any constraints for other
components (”slipping” flow on a wall). In the region conditions above, if you want to give slipping flow on
”YMAX” boundary, you must give only the following condition, and do not give any conditions for X and Z
components:

{ "YMAX_Vy" "BOUNDARY_VERTEX_YMAX" "Velocity" "D_VY" [ "0" ] }



24 CHAPTER 1. THEORETICAL BACKGROUND OF PHASESEPARATION

1.5.6 Application of a partial region condition other than a boundary condition

Although the main purpose of a partial region condition is to give a boundary condition on a boundary
surface, it can also be used to setup a condition as the original purpose – ”setting a condition to a specified
space region.” – as described in this section.
[Set an initial value in a part of space]

You can use a partial region condition to set a constant value on node groups specified as a partial region.
For example, you can give to the volume fraction field (VolumeFraction) in a partial region
“I CONSTANT VALUE FOR A COMPONENT”:

{ "phi1" "partial_region_A" "VolumeFraction"

"I_CONSTANT_VALUE_FOR_A_COMPONENT" [ "1" "0.65" ] }

For this partial region condition data, the value of the filed ”VolumeFraction” of a specified component
is set to a specified one in a partial region whose KEY is ”partial region A”. “[ "1" "0.65" ]” means the
value of component 1 is set to 0.65.

In general, the condition name starting with “I” is used for initialization of a field, and used only in the
procedures used for initialization. In the case of VolumeFraction,
“INITIALIZE BY PARTIAL REGION CONDITION” is an example of a procedure (command) for initialization.

[Set a constant value to be fixed in a part of space]
The Dirichlet boundary condition fixes a field value to a specified one anytime on a boundary. It is

possible, however, to set a value for internal points to be constant in time. Conditions whose names start
with “D” can be used on a partial region condition including internal points.

A typical application of such a condition is to put an ”obstacle” in a flow field by setting the value of
velocity to zero in an internal partial region.
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1.5.7 Boundary conditions in PhaseSeparation FEM

You can use the following type of boundary conditions (partial region conditions) in the PhaseSepara-
tion FEM simulator.

• Periodic boundary condition:

This condition is possible only when an ”UNSTRUCTURED RECT” type of mesh is specified with
geometrical periodic boundary. In this case periodic boundaries are treated ”geometrically” for all
fields, so that the fields must satisfy the periodic boundary condition. So you need not specify the
periodic condition explicitly as the partial region conditions in input UDF, or, in other word, you can’t
use boundary conditions other than the periodic condition on geometrical periodic boundaries.

• Dirichlet condition:

Set a constant value in time for a partial region.

• Neumann condition:

A component of the gradient vector of a field, or a vector field itself, normal to a boundary surface is
given as a constant value. As explained in the section 1.5.4, when the value of the normal component
is zero, you need not specify any boundary conditions in input UDF for some fields.

The FEM simulator does not support the ”biased periodic condition” and the Lees Edwards boundary
condition supported in the FDM simulators.

Boundary conditions of volume fraction field ψα

Possible boundary conditions for the volume fraction field are as follows.

• Periodic boundary condition
This condition is applied when the mesh type is ”UNSTRUCTURED RECT” and the mesh has a
periodic boundary. When a periodic boundary is set in X direction, the condition requires:

ψα(x, y, z) = ψα(x+ Lx, y, z).

When a periodic condition is used for Y or Z direction, the similar condition is applied for each
direction. In our FEM simulator, a periodic boundary condition is required by geometry, so you need
not, or cannot, specify any periodic boundary condition as a partial region condition in input UDF.

• Wall boundary condition (Neumann condition)
This condition sets the normal component of the diffusion flux Jα to zero.

n · Jα(x, y, z)|wall = 0.

It also means;

n · ∇ψα(x, y, z)|wall = 0,

where |wall indicates a field value on the wall. When the boundary is not a geometrical periodic
boundary, and if no boundary condition is given for ψα, this wall condition is applied as default.

• Bulk boundary condition (Dirichlet condition)
This condition means that the value of the volume fraction is constant outside of the boundary (bulk).
A constant value is given for the field on a boundary surface.

ψα(x, y, z)|Boundary = Constant.
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Boundary conditions for chemical potential field

Possible boundary conditions for the chemical potential field are as follows.

• Periodic boundary condition
This condition is applied when the mesh type is ”UNSTRUCTURED RECT” and the mesh has a
periodic boundary. When a periodic boundary condition is set in X direction, the condition requires:

µα(x, y, z) = µα(x+ Lx, y, z).

When a periodic condition is used for Y or Z direction, the similar condition is applied for each
direction. The periodic boundary condition is required by geometry, so you need not, or cannot,
specify any periodic boundary condition as a partial region condition in input UDF.

Boundary conditions for flux field Kα

Possible boundary conditions for the flux field are as follows.

• Periodic boundary condition
This condition is applied when the mesh type is ”UNSTRUCTURED RECT” and the mesh has a
periodic boundary. When a periodic boundary is set in X direction, the condition requires:

Kα(x, y, z) = Kα(x+ Lx, y, z).

When a periodic condition is used for Y or Z direction, the similar condition is applied for each
direction. The periodic boundary condition is required by geometry, so you need not, or cannot,
specify any periodic boundary condition as a partial region condition in input UDF.

• Wall boundary condition
This condition sets the normal component of the flux Jα to be zero.

n · Jα(x, y, z)|wall = 0,

where |wall indicates a field value on the wall. This condition is identical to the wall boundary condition
for ψα.

When the boundary is not a geometrical periodic boundary, and if no boundary condition is given for
Kα, this wall condition is applied as default.

Boundary conditions for velocity field v

Possible boundary conditions for the velocity field are as follows.

• Periodic boundary condition
This condition is applied when the mesh type is ”UNSTRUCTURED RECT” and the mesh has a
periodic boundary. When a periodic boundary is set in X direction, the condition requires:

v(x, y, z) = v(x+ Lx, y, z).

When a periodic condition is used for Y or Z direction, the similar condition is applied for each
direction. The periodic boundary condition is required by geometry, so you need not, or cannot,
specify any periodic boundary condition as a partial region condition in input UDF.

• Constant velocity boundary condition
On a boundary (or generally in a partial region), the velocity can be set to a constant value vo.

v(x, y, z)|wall = vo,

where |wall denotes the value on the wall.

It can be used for a case that the boundary wall is moving with a constant velocity (including the case
of fixed boundary vo = 0). As described in the section 1.5.5, it is possible to make ”obstacle” in a flow
by imposing the velocity to be a constant value for an internal partial region.
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Boundary conditions for pressure field p

Possible boundary conditions for the pressure field are as follows.

• Periodic boundary condition
This condition is applied when the mesh type is ”UNSTRUCTURED RECT” and the mesh has a
periodic boundary. When a periodic boundary is set in X direction, the condition requires:

P (x, y, z) = P (x+ Lx, y, z).

When a periodic condition is used for Y or Z direction, the similar condition is applied for each
direction. The periodic boundary condition is required by geometry, so you need not, or cannot,
specify any periodic boundary condition as a partial region condition in input UDF.

• Constant pressure boundary condition(Dirichlet condition)
On a boundary surface (or generally in a partial region), the pressure can be set to a constant value
Po.

P (x, y, z)|Boundary = Po.

Boundary conditions for electric potential field

Possible boundary conditions for the electric potential field are as follows.

• Periodic boundary condition
Applied when the mesh type is ”UNSTRUCTURED RECT” and the mesh has a periodic boundary.
When a periodic boundary is set in the X direction, the condition requires:

ϕ(x, y, z) = ϕ(x+ Lx, y, z).

When a periodic condition is used for Y or Z direction, the similar condition is applied for each
direction. The periodic boundary condition is required by geometry, so you need not, or cannot,
specify any periodic boundary condition as a partial region condition in input UDF.

• A surface charge density is given on a boundary (Neumann boundary condition)
A constant surface charge on a boundary can be given by the gradient of electric potential.

n · ∇ϕ(x, y, z)|Boundary = −σ/ϵrϵo.

In dimensionless expression,
n · ∇ϕ(x, y, z)|Boundary = −q/R,

where definition of dimensionless parameters are given by equations (??), and (??).

• Constant potential on a boundary (Dirichlet boundary condition)
On a boundary surface (or generally in a partial region), the electric potential can be set to a constant
value ϕo.

ϕ(x, y, z)|Boundary = ϕo (= Constant).





Chapter 2

Sample problems of PhaseSeparation

2.1 Sample problems of PhaseSeparation FDM

This section shows the applications for phase separation dynamics simulator - PhaseSeparation FDM - using
the finite difference method.

Input UDF files and output files corresponding to these applications are prepared in a directory of the
Muffin distribution as a sub-directory according to the problem.

2.1.1 Application 0: Flory-Huggins model phase separation(1)

This is a two-dimensional phase separation simulation with 32x32 mesh (xz-plane), using the Flory-Huggins
model equation. The simulation does not include the effect of hydrodynamics. Periodic boundary conditions
are applied for all directions.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”.
In order to create two-dimensional 32x32 meshes input
parameter.mesh parameter.axes[] as follows

axes[] values[] Input

[0] [0] 0.0
[0] [1] 31.0
[0] [2] 31.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 31.0
[2] [2] 31.0

2. Periodic boundary condition:
In our FDM simulators, mesh data do not include periodic condition, so
parameter.mesh parameter.periodic[] must be input values 0 and, and periodic condition should
be specified for each field.

3. Structured mesh: In order to use structured mesh in the FDM program, give
parameter.mesh parameter.index rule[] values 2, 1 and 0.

4. Solver parameter: It is not necessary to input this parameter for this case.

5. Common physical parameter:
Input DT=1.0e-3, FINAL STEP=100000,
INTERVAL OF MONITORING=10 and INTERVAL OF UDF OUTPUT=5000.

29
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6. Physical parameter: Input physical constants shown as follows.

Parameter input value

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
AVERAGED VOLUME FRACTION 0.5, 0.5
DEVIATION FROM AVERAGED VOLUME FRACTION 0.01
SEED OF RANDOM NUMBER 715
DIFFUSION COEFFICIENT 1.0, 1.0
CHI 01 3.0

7. Field: Remain as a blank.

8. region condition[]: For each field, input the boundary conditions as follows,

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field PERIODIC
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction PERIODIC
YZ BOUNDARY PLANE XM AND XP ChemicalPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ChemicalPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ChemicalPotential PERIODIC

9. Field[]: Register fields as follows.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 0
Pressure Scalar ALL VERTEX 1 0
Velocity Vector ALL EDGE 3 0

10. procedures table for initialization[]:
Set an initialization procedure group name to be ”SINGLE PHASE”.
Apply a command ”CONSTANT VOLUME FRACTION WITH NOISE” for the field VolumeFrac-
tion.

11. procedures table for evolution[]:
Set an evolution procedure name to ”PHASE SEPARATION 01”.
Apply commands for fields as,
”FLORY HUGGINS” for the field ChemicalPotential,
”GRADIENT CHEMICAL POTENTIAL” for the field K Field, and
”SOLVE EQUATION OF CONTINUITY WITHOUT FLOW” for the field VolumeFraction.

12. Calculation.

13. After a calculation, read the output UDF into GOURMET, show the VolumeFraction, and observe the
phase separation process.
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2.1.2 Application 1: Flory-Huggins model phase separation(2)

This example has similar conditions with Ex.00, but in this case there are ”walls” in Z-direction boundaries,
and periodic boundary conditions are applied in X-direction

1. Mesh parameters: Set the same as Ex.00.

2. Periodic boundary condition: Set the same as Ex.00.
All elements of parameter.mesh parameter.periodic[] should be set to zero.

3. Structured mesh: Set the same as Ex.00.

4. Solver parameters: Set the same as Ex.00.

5. Common physical parameters: Set the same as Ex.00.

6. Physical parameters: Set the same as Ex.00.

7. Field: Set the same as Ex.00.

8. region condition[]: For each field, input boundary conditions as follows.

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP ChemicalPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ChemicalPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ChemicalPotential ZM WALL ZP WALL

9. The procedures table for initialization[] and procedures table for evolution[] are set the same as Ex.00.

10. Calculation.

11. After a calculation, read the output UDF into GOURMET, show the VolumeFraction, and compare
the phase separation process with that of EX.00.

2.1.3 Application 2: Flory-Huggins model phase separation(3)

This example almost has the same conditions with example Ex.01. The difference is that we apply a
wettability on Z-direction walls.

1. Mesh parameters: Set the same as Ex.00.

2. Periodic boundary condition: Set the same as Ex.00.
All elements of parameter.mesh parameter.periodic[] should be set to zero.

3. Structured mesh: Set the same as Ex.00.

4. Solver parameters: Set the same as Ex.00.

5. Common physical parameters: Set the same as Ex.00.

6. Physical parameters: Input physical constants shown as follows. They are almost the same as Ex.00,
but an important parameter is GAMMA S which gives a wettability to a wall.
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Parameter input value

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
AVERAGED VOLUME FRACTION 0.5, 0.5
DEVIATION FROM AVERAGED VOLUME FRACTION 0.01
SEED OF RANDOM NUMBER 715
DIFFUSION COEFFICIENT 1.0, 1.0
CHI 01 3.0
GAMMA S 1.0, 0.0

7. Field: Set the same as Ex.00.

8. region condition[]: Set the same as Ex.01

9. Field[]: Register the same fields as Ex.00.

10. procedures table for initialization[]: Set the same as Ex.00.

11. procedures table for evolution[]:
Add a field “ChemicalPotential” with name of func;
“ADD EFFECT OF WETTING FOR UNIFORM Z WALL”

12. Calculation.

13. After a calculation, the output UDF into GOURMET, show the VolumeFraction, and compare the
phase separation process with those of Ex.00 and Ex.01.

2.1.4 Application 3: Uniform electric field

A uniform electric field under two-dimensional 64x64 mesh geometry in XZ plane can be realized as follows.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to generate a two-
dimensional 64x64 meshes, input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Structured mesh:
In order to use a structured mesh, set the parameter.mesh parameter.index rule[] to 2, 1 and 0.

3. Solver parameter: Input parameters for electric field solver.

Solver parameter input

ACCELERATION VALUE FOR E-POTENTIAL 1.8
MAX ITERATION FOR E-POTENTIAL SOLVER 1.0e5
CONVERGENCE CRITERION FOR E-POTENTIAL 1.0e-6
MONITORING INTERVAL OF E-POTENTIAL SOLVER 1000
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4. Common physical parameter:
Since a result can be obtained by one step calculation, there is no meaning of DT, but you have to set
the value (e.g. DT=1.0). Input FINAL STEP=1 and INTERVAL OF UDF OUTPUT=1.

5. Physical parameter:
Input physical constants shown as follows. All parameters other than
ELECTRIC POTENTIAL AT XY PLANE ZM and ELECTRIC POTENTIAL AT XY PLANE ZP
have no meanings for this electric field calculation.

Parameter input

NUMBER OF COMPONENTS 2
AVERAGED VOLUME FRACTION 0.5, 0.5
CHARGE DENSITY 0.0, 0.0
DIELECTRIC CONSTANT 1.0, 1.0
B 1.0
ELECTRIC POTENTIAL AT XY PLANE ZM 0.0
ELECTRIC POTENTIAL AT XY PLANE ZP 1.0

6. region condition[]: For each field, input boundary conditions as follows.
“XY BOUNDARY PLANE ZM AND ZP” for the ElectricPotential makes electric field uniform.

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP ElectricPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ElectricPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ElectricPotential ZM DIRICHLET

ZP DIRICHLET

7. Field[]: Register fields. Only the ElectricField and the VolumeFraction are the actual working fields.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 1
Pressure Scalar ALL VERTEX 1 0
Velocity Vector ALL EDGE 3 0

8. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply a command ”CONSTANT VOLUME FRACTION” for the field ”VolumeFraction” .

9. procedures table for evolution[]:
Set an evolution procedure name to ”TEST 03”.
Apply a command “ELECTRIC POTENTIAL SOLVER” for the ElectricPotential field.

10. Calculation.

11. After a calculation, read an output UDF into GOURMET, view or plot the ElectricPotential filed, and
you can see a constant gradient for the ElectricPotential, i.e. constant electric field.



34 CHAPTER 2. SAMPLE PROBLEMS OF PHASESEPARATION

2.1.5 Application 4: Electric field change by dielectric constant distribution(1)

A simulation of electric field depending on a spatial distribution of materials having different dielectric
constant is performed under two-dimensional 128x128 meshes on XZ plane.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to create a two-
dimensional 128x128 meshes, input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 127.0
[0] [2] 127.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 127.0
[2] [2] 127.0

2. Solver parameter: Input parameters for the electric field solver.

Solver parameter input

ACCELERATION VALUE FOR E-POTENTIAL 1.8
MAX ITERATION FOR E-POTENTIAL SOLVER 1.0e5
CONVERGENCE CRITERION FOR E-POTENTIAL 1.0e-5
MONITORING INTERVAL OF E-POTENTIAL SOLVER 1000

3. Common physical parameter:
This is a one step calculation. Input DT=1.0e-3(no meanings here), FINAL STEP=1
INTERVAL OF MONITORING=1, and INTERVAL OF UDF OUTPUT=1.

4. Physical parameter:
Input physical constants shown as follows. Important parameters are DIELECTRIC CONSTANT
(dielectric constant for each component), ELECTRIC POTENTIAL * (boundary electric potential
value to create electric field) and a position and size of a droplet.

Parameter input

NUMBER OF COMPONENTS 2
CHARGE DENSITY 0.0, 0.0
DIELECTRIC CONSTANT 1.0, 2.0
B 1.0
ELECTRIC POTENTIAL AT XY PLANE ZM 0.0
ELECTRIC POTENTIAL AT XY PLANE ZP 1.0
NUMBER OF DROPLETS 1
RADIUS OF DROPLETS 20.0
X COORDINATE OF DROPLET 64
Y COORDINATE OF DROPLET 1
Z COORDINATE OF DROPLET 64

5. region condition[]: For each field, input boundary conditions as follows.
“XY BOUNDARY PLANE ZM AND ZP” for ElectricPotential makes a uniform electric field.
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name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP ChemicalPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ChemicalPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ChemicalPotential ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP ElectricPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ElectricPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ElectricPotential ZM DIRICHLET

ZP DIRICHLET

6. Field[]: Register fields as EX.03. Only the “ElectricField” and the “VolumeFraction” are the actual
working fields.

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply a command ”SET DROPLETS” for the field ”VolumeFraction”.

8. procedures table for evolution[]:
Set an evolution procedure name to be ”TEST 04”.
Apply a command “ELECTRIC POTENTIAL SOLVER” for the ElectricPotential field.

9. Calculation.

2.1.6 Application 5: Electric field change by dielectric constant distribution(2)

In this sample a system similar to the sample EX.04 (mesh size is reduced to 64x64) is simulated, but the a
droplet evolves in time and effect of electric field is taken in the time evolution.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”.
In order to create a two-dimensional 64x64 meshes input the parameter.mesh parameter.axes[] as fol-
lows;

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Solver parameter: Input the same parameters for the electric field solver as EX.04.

3. Common physical parameter: Input DT=1.0e-3, FINAL STEP=100000,
INTERVAL OF MONITORING=10, and INTERVAL OF UDF OUTPUT=10000.

4. Physical parameter: Input physical constants shown as follows. All parameters are necessary for this
simulation.
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Parameter input

NUMBER OF COMPONENTS 2
CHARGE DENSITY 0.0, 0.0
DIELECTRIC CONSTANT 1.0, 2.0
B 1.0
ELECTRIC POTENTIAL AT XY PLANE ZM 0.0
ELECTRIC POTENTIAL AT XY PLANE ZP 64.0
NUMBER OF DROPLETS 1
RADIUS OF DROPLETS 15.0
X COORDINATE OF DROPLET 32
Y COORDINATE OF DROPLET 1
Z COORDINATE OF DROPLET 32

5. region condition[]: Set the same as EX.04.

6. Field[]: Set the same as EX.04.

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply a command ”SET DROPLETS” for the field ”VolumeFraction”.

8. procedures table for evolution[]:
Set an evolution procedure name to ”TEST 05”.
Apply commands for fields as,
“ELECTRIC POTENTIAL SOLVER” for the ElectricPotential,
“FLORY HUGGINS” and “ADD ELECTRIC EFFECT OF DIELECTRIC MEDIUM”
for the ChemicalPotential, and
“GRADIENT CHEMICAL POTENTIAL” for the field K Field and
“SOLVE EQUATION OF CONTINUITY WITHOUT FLOW” for the VolumeFraction.

9. Calculation.

2.1.7 Application 6: Poiseuille flow

This is a simulation of a flow of a two-dimensional(XZ) fluid bounded by two Z-walls, and a pressure gap
(difference) is applied in X-direction.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to create a two-
dimensional 64x64 meshes input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Solver parameter: Input parameters as follows for a pressure and velocity field solver.
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Solver parameter input

ACCELERATION VALUE FOR PRESSURE SOLVER 1.5
MAX ITERATION FOR PRESSURE SOLVER 1.0e6
CONVERGENCE CRITERION FOR RRESSURE SOLVER 1.0e-4
MONITORING INTERVAL OF PRESSURE SOLVER 100
ACCELERATION VALUE FOR VELOCITY SOLVER 1.5
MAX ITERATION FOR VELOCITY SOLVER 1.0e6
CONVERGENCE CRITERION FOR VELOCITY SOLVER 1.0e-4
MONITORING INTERVAL OF VELOCITY SOLVER 100
SKIP INTERVAL VELOCITY CALCULATION 1

3. Common physical parameter:
Input DT=1.0e-3, FINAL STEP=10,
INTERVAL OF MONITORING=10, and INTERVAL OF UDF OUTPUT=5.

4. Physical parameter: Input physical constants as follows.

Parameter input

NUMBER OF COMPONENTS 1
CA 1
PRESSURE GRADIENT -0.01
VISCOSITY 1, 1

5. region condition[]: For each field, input boundary conditions as follows.

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Pressure BIASED PERIODIC
ZX BOUNDARY PLANE YM AND YP Pressure PERIODIC
XY BOUNDARY PLANE ZM AND ZP Pressure ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Velocity PERIODIC
ZX BOUNDARY PLANE YM AND YP Velocity PERIODIC
XY BOUNDARY PLANE ZM AND ZP Velocity ZM WALL ZP WALL

6. Field[]: Register fields. Only the “Velocity”, “Pressure” and “VolumeFraction” are the actual working
fields.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 1
Pressure Scalar ALL VERTEX 1 1
Velocity Vector ALL EDGE 3 1

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply a command ”CONSTANT VOLUME FRACTION” for the field ”VolumeFraction”.
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8. procedures table for evolution[]:
Set an evolution procedure name to ”POISEUILLE FLOW”.
Apply a command “SOLVE STOKES EQUATION AND PRESSURE” for the Velocity field.

9. Calculation.

2.1.8 Application 7: Shear induced flow(1)

This is a simulation of a flow in a two-dimensional(XZ) fluid bounded by two Z-walls. The flow is induced
by a movement of walls.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to make a two-
dimensional 64x64 meshes, input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Solver parameter: Input parameters for a pressure and velocity field solver as follows.

Solver parameter input

LEES EDWARDS BC 0
ACCELERATION VALUE FOR PRESSURE SOLVER 1.5
MAX ITERATION FOR PRESSURE SOLVER 1.0e6
CONVERGENCE CRITERION FOR RRESSURE SOLVER 1.0e-4
MONITORING INTERVAL OF PRESSURE SOLVER 100
ACCELERATION VALUE FOR VELOCITY SOLVER 1.5
MAX ITERATION FOR VELOCITY SOLVER 1.0e6
CONVERGENCE CRITERION FOR VELOCITY SOLVER 1.0e-4
MONITORING INTERVAL OF VELOCITY SOLVER 100
SKIP INTERVAL VELOCITY CALCULATION 1

3. Common physical parameter:
Input DT=1.0e-3, FINAL STEP=10,
INTERVAL OF MONITORING=1, and INTERVAL OF UDF OUTPUT=5.

4. Physical parameter: Input physical constants as follows.

Parameter input

NUMBER OF COMPONENTS 1
CA 1
VISCOSITY 1, 1
VX AT XY PLANE ZM -1
VX AT XY PLANE ZP 1
VY AT XY PLANE ZM 0
VY AT XY PLANE ZP 0
VZ AT XY PLANE ZM 0
VZ AT XY PLANE ZP 0
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5. region condition[]: For each field, input boundary condition as follows.

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Pressure PERIODIC
ZX BOUNDARY PLANE YM AND YP Pressure PERIODIC
XY BOUNDARY PLANE ZM AND ZP Pressure ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Velocity PERIODIC
ZX BOUNDARY PLANE YM AND YP Velocity PERIODIC
XY BOUNDARY PLANE ZM AND ZP Velocity ZM VELOCITY SET

ZP VELOCITY SET

6. Field[]: Register fields. Only the “Velocity”, “Pressure” and “VolumeFraction” are the actual working
fields.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 1
Pressure Scalar ALL VERTEX 1 1
Velocity Vector ALL EDGE 3 1

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply a command ”CONSTANT VOLUME FRACTION” for the field ”VolumeFraction”.

8. procedures table for evolution[]:
Set an evolution procedure name to ”SHEAR FLOW”.
Apply a command “SOLVE STOKES EQUATION AND PRESSURE”
for the Velocity field.

9. Calculation

2.1.9 Application 8: Shear induced flow(2)

This is a simulation of a flow in a two-dimensional(XZ) fluid bounded by two Z-walls. A shear flow condition
is given by the Lees-Edwards boundary condition.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to create a two-
dimensional 64x64 meshes, input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0
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2. Solver parameter: Input parameters for the pressure and velocity field solver.
A parameter “LEES EDWARDS BC” is set to “1” in order to use the Lees-Edwards boundary condi-
tion.

Solver parameter input

LEES EDWARDS BC 1
ACCELERATION VALUE FOR PRESSURE SOLVER 1.5
MAX ITERATION FOR PRESSURE SOLVER 1.0e6
CONVERGENCE CRITERION FOR RRESSURE SOLVER 1.0e-4
MONITORING INTERVAL OF PRESSURE SOLVER 100
ACCELERATION VALUE FOR VELOCITY SOLVER 1.5
MAX ITERATION FOR VELOCITY SOLVER 1.0e6
CONVERGENCE CRITERION FOR VELOCITY SOLVER 1.0e-4
MONITORING INTERVAL OF VELOCITY SOLVER 100
SKIP INTERVAL VELOCITY CALCULATION 1

3. Common physical parameter:
Input DT=1.0e-3, FINAL STEP=10,
INTERVAL OF MONITORING=1, and INTERVAL OF UDF OUTPUT=5.

4. Physical parameter:
Input physical constants as follows. A parameter “SHEAR RATE XZ” is an important one which
gives shear rate (shear and flow are in z- and x-direction, respectively).

Parameter input

NUMBER OF COMPONENTS 1
CA 1
VISCOSITY 1, 1
SHEAR RATE XZ 0.1

5. region condition[]: For each field, input boundary conditions as follows.

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Pressure PERIODIC
ZX BOUNDARY PLANE YM AND YP Pressure PERIODIC
XY BOUNDARY PLANE ZM AND ZP Pressure LEES EDWARDS BC
YZ BOUNDARY PLANE XM AND XP Velocity PERIODIC
ZX BOUNDARY PLANE YM AND YP Velocity PERIODIC
XY BOUNDARY PLANE ZM AND ZP Velocity LEES EDWARDS BC

6. Field[]: Register fields. Only the “Velocity”, “Pressure” and “VolumeFraction” are the actual working
fields.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 0
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 0
Pressure Scalar ALL VERTEX 1 1
Velocity Vector ALL EDGE 3 1



2.1. SAMPLE PROBLEMS OF PHASESEPARATION FDM 41

7. procedures table for initialization[]:
Set an initialization procedure group name to be ”SINGLE PHASE”.
Apply a command ”CONSTANT VOLUME FRACTION” for the field ”VolumeFraction”.

8. procedures table for evolution[]:
Set an evolution procedure name to be ”SHEAR FLOW”. Apply a command
“SOLVE STOKES EQUATION AND PRESSURE” for the field ”Velocity”.

9. Calculation.

2.1.10 Application 9: Droplet in a flow

This is a simulation of a flow in a two-dimensional(XZ) fluid bounded by two Z-walls and a pressure gap
(difference) is applied in X-direction like the Poiseuille flow. In the fluid, a droplet having different viscosity
is put and moves with a deformation in the “Poiseuille flow”.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to create a two-
dimensional 64x64 meshes, input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Solver parameter: Input parameters for a pressure and velocity field solver as follows.

Solver parameter input

LEES EDWARDS BC 0
ACCELERATION VALUE FOR PRESSURE SOLVER 1.5
MAX ITERATION FOR PRESSURE SOLVER 1.0e6
CONVERGENCE CRITERION FOR RRESSURE SOLVER 1.0e-4
MONITORING INTERVAL OF PRESSURE SOLVER 100
ACCELERATION VALUE FOR VELOCITY SOLVER 1.5
MAX ITERATION FOR VELOCITY SOLVER 1.0e6
CONVERGENCE CRITERION FOR VELOCITY SOLVER 1.0e-4
MONITORING INTERVAL OF VELOCITY SOLVER 100
SKIP INTERVAL VELOCITY CALCULATION 100

3. Common physical parameter:
Input DT=1.0e-3, FINAL STEP=1000,
INTERVAL OF MONITORING=1, and INTERVAL OF UDF OUTPUT=1000.

4. Physical parameter: Input physical constants as follows.
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Parameter input

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
DIFFUSION COEFFICIENT 1.0, 1.0
CHI 01 3.0
CA 1
PRESSURE GRADIENT -1.0e-3
VISCOSITY 1.0, 0.1
NUMBER OF DROPLET 1
RADIUS OF DROPLET 10.0
X COORDINATE DROPLET 32
Y COORDINATE DROPLET 1
Z COORDINATE DROPLET 32

5. region condition[]: For each field, input boundary conditions as follows.

name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP ChemicalPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ChemicalPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ChemicalPotential ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Pressure BIASED PERIODIC
ZX BOUNDARY PLANE YM AND YP Pressure PERIODIC
XY BOUNDARY PLANE ZM AND ZP Pressure ZM WALL ZP WALL
YZ BOUNDARY PLANE XM AND XP Velocity PERIODIC
ZX BOUNDARY PLANE YM AND YP Velocity PERIODIC
XY BOUNDARY PLANE ZM AND ZP Velocity ZM WALL ZP WALL

6. Field[]: Register fields as follows.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 1
Pressure Scalar ALL VERTEX 1 1
Velocity Vector ALL EDGE 3 1

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply commands for fields as,
“SET DROPLET” for the field VolumeFraction,
“FLORY HUGGINS” for the field ChemicalPotential, and
“GRADIENT CHEMICAL POTENTIAL” for the field K Field.

8. procedures table for evolution[]:
Set an evolution procedure name to ”POISEUILLE FLOW”.
Apply commands for fields as,
“FLORY HUGGINS” for the field ChemicalPotential,
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“GRADIENT CHEMICAL POTENTIAL” for the field K Field,
“SOLVE EQUATION OF CONTINUITY WITH FLOW” for the field VolumeFraction,
and “SOLVE STOKES EQUATION AND PRESSURE” for the field Velocity.

2.1.11 Application 10: Flory-Huggins model phase separation(4)

This is a two-dimensional fluid phase separation simulation with 64x64 meshes (xz-plane), using the Flory-
Huggins model and taking the effect of flow into account.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to make two-dimensional
64x64 meshes, input the parameter.mesh parameter.axes[] as follows.

axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Solver parameter: Input parameters for the velocity and pressure field solver.

Solver parameter input

ACCELERATION VALUE FOR PRESSURE SOLVER 1.5
MAX ITERATION FOR PRESSURE SOLVER 1.0e6
CONVERGENCE CRITERION FOR RRESSURE SOLVER 1.0e-4
MONITORING INTERVAL OF PRESSURE SOLVER 100
ACCELERATION VALUE FOR VELOCITY SOLVER 1.5
MAX ITERATION FOR VELOCITY SOLVER 1.0e6
CONVERGENCE CRITERION FOR VELOCITY SOLVER 1.0e-4
MONITORING INTERVAL OF VELOCITY SOLVER 100
SKIP INTERVAL VELOCITY CALCULATION 100

3. Common physical parameter: Input DT=1.0e-3, FINAL STEP=100000,
INTERVAL OF MONITORING=10, and INTERVAL OF UDF OUTPUT=5000.

4. Physical parameter: Input physical constants as follows.

Parameter input

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
AVERAGED VOLUME FRACTION 0.5, 0.5
DEVIATION FROM AVERAGED VOLUME FRACTION 0.01
SEED OF RANDOM NUMBER 715
DIFFUSION COEFFICIENT 1.0, 1.0
CHI 01 3.0
CA 1
VISCOSITY 1, 1

5. region condition[]: For each field, input boundary conditions as follows.
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name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field PERIODIC
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction PERIODIC
YZ BOUNDARY PLANE XM AND XP ChemicalPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ChemicalPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ChemicalPotential PERIODIC
YZ BOUNDARY PLANE XM AND XP Pressure PERIODIC
ZX BOUNDARY PLANE YM AND YP Pressure PERIODIC
XY BOUNDARY PLANE ZM AND ZP Pressure PERIODIC
YZ BOUNDARY PLANE XM AND XP Velocity PERIODIC
ZX BOUNDARY PLANE YM AND YP Velocity PERIODIC
XY BOUNDARY PLANE ZM AND ZP Velocity PERIODIC

6. Field[]: Register fields as follows.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 1
Pressure Scalar ALL VERTEX 1 1
Velocity Vector ALL EDGE 3 1

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply commands for fields as,
“CONSTANT VOLUME FRACTION WITH NOISE” for the field VolumeFraction,
“FLORY HUGGINS” for the field ChemicalPotential,
and “GRADIENT CHEMICAL POTENTIAL” for the field K Field,

8. procedures table for evolution[]:
Set an evolution procedure name to ”TEST MODEL H”.
Apply commands for fields as,
“FLORY HUGGINS” for the field ChemicalPotential,
“GRADIENT CHEMICAL POTENTIAL” for the field K Field,
“SOLVE EQUATION OF CONTINUITY WITH FLOW” for the field VolumeFraction,
and “SOLVE STOKES EQUATION AND PRESSURE” for the field Velocity.

9. Calculation: It may take several or more hours.

2.1.12 Application 11: Coagulation of droplets

This is a two-dimensional simulation of coagulation of droplets in a two-dimensional 64x64 meshes (xz-plane)
using the Flory-Huggins model and taking the effect of flow into account.

1. Mesh parameters:
Set the parameter.mesh parameter.type to “SIMPLERECTANGULAR”. In order to make a two-
dimensional 64x64 meshes, input the parameter.mesh parameter.axes[] as follows.
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axes[] values[] input

[0] [0] 0.0
[0] [1] 63.0
[0] [2] 63.0
[1] [0] 0.0
[1] [1] 0.0
[1] [2] 0.0
[2] [0] 0.0
[2] [1] 63.0
[2] [2] 63.0

2. Solver parameter: Input parameters for a velocity and pressure field solver.

Solver parameter input

ACCELERATION VALUE FOR PRESSURE SOLVER 1.5
MAX ITERATION FOR PRESSURE SOLVER 1.0e6
CONVERGENCE CRITERION FOR RRESSURE SOLVER 1.0e-4
MONITORING INTERVAL OF PRESSURE SOLVER 100
ACCELERATION VALUE FOR VELOCITY SOLVER 1.5
MAX ITERATION FOR VELOCITY SOLVER 1.0e6
CONVERGENCE CRITERION FOR VELOCITY SOLVER 1.0e-4
MONITORING INTERVAL OF VELOCITY SOLVER 100
SKIP INTERVAL VELOCITY CALCULATION 100

3. Common physical parameter:
Input DT=1.0e-3, FINAL STEP=100000,
INTERVAL OF MONITORING=100, and INTERVAL OF UDF OUTPUT=10000.

4. Physical parameter: Input physical constants as follows.

Parameter input

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
DIFFUSION COEFFICIENT 1.0, 1.0
CHI 01 3.0
CA 1
VISCOSITY 1.0, 1.0
NUMBER OF DROPLET 2
RADIUS OF DROPLET 10.0, 10.0
X COORDINATE DROPLET 20, 44
Y COORDINATE DROPLET 0, 0
Z COORDINATE DROPLET 32, 32

5. region condition[]:
For each field, input boundary conditions as follows.
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name of region name of target name of condition

YZ BOUNDARY PLANE XM AND XP K Field PERIODIC
ZX BOUNDARY PLANE YM AND YP K Field PERIODIC
XY BOUNDARY PLANE ZM AND ZP K Field PERIODIC
YZ BOUNDARY PLANE XM AND XP VolumeFraction PERIODIC
ZX BOUNDARY PLANE YM AND YP VolumeFraction PERIODIC
XY BOUNDARY PLANE ZM AND ZP VolumeFraction PERIODIC
YZ BOUNDARY PLANE XM AND XP ChemicalPotential PERIODIC
ZX BOUNDARY PLANE YM AND YP ChemicalPotential PERIODIC
XY BOUNDARY PLANE ZM AND ZP ChemicalPotential PERIODIC
YZ BOUNDARY PLANE XM AND XP Pressure PERIODIC
ZX BOUNDARY PLANE YM AND YP Pressure PERIODIC
XY BOUNDARY PLANE ZM AND ZP Pressure PERIODIC
YZ BOUNDARY PLANE XM AND XP Velocity PERIODIC
ZX BOUNDARY PLANE YM AND YP Velocity PERIODIC
XY BOUNDARY PLANE ZM AND ZP Velocity PERIODIC

6. Field[]: Register fields as follows.

registered field type name of region num of component io flag

VolumeFraction Scalar ALL VERTEX $(Number of Components) 1
ChemicalPotential Scalar ALL VERTEX $(Number of Components) 0
K Field Vector ALL EDGE $(Number of Components) 0

$(*)$(3)
ElectricPotential Scalar ALL VERTEX 1 1
Pressure Scalar ALL VERTEX 1 1
Velocity Vector ALL EDGE 3 1

7. procedures table for initialization[]:
Set an initialization procedure group name to ”SINGLE PHASE”.
Apply commands for fields as,
“SET DROPLET” for the field VolumeFraction,
“FLORY HUGGINS” for the field ChemicalPotential,
and “GRADIENT CHEMICAL POTENTIAL” for the field K Field.

8. procedures table for evolution[]:
Set an evolution procedure name to ”TWO DROPLET COAGULATION”.
Apply commands for fields as,
“FLORY HUGGINS” for the field ChemicalPotential,
“GRADIENT CHEMICAL POTENTIAL” for the field K Field,
“SOLVE EQUATION OF CONTINUITY WITH FLOW” for the field VolumeFraction,
and “SOLVE STOKES EQUATION AND PRESSURE” for the field Velocity.

9. Calculation: It may take several or more hours.
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2.2 Sample problems of PhaseSeparation FEM

This section shows the applications for phase separation dynamics simulator - PhaseSeparation FEM - using
the finite element method.

Input UDF files and output files corresponding to these applications are prepared in a directory of the
Muffin distribution as a sub-directory according to the problem.

2.2.1 Application 1: Shear flow (Couette flow)

This sample simulates a fluid flow in an infinite slab bounded by two walls(Y-direction boundaries), and the
upper wall moves in a constant velocity and the lower wall does not move. A constant X direction velocity
gradient in Y-direction will be realized (Couette flow).

Figure 2.1: PhaseSeparation FEM Application: Shear flow in a finite slab (Couette flow)

[Input UDF file]

MUFFIN5/sample/muffin5ebeta/PhaseSeparation/EX01/EX01_in.udf

[Explanation for input UDF]

• parameter.mesh parameter:

Mesh shape is “UNSTRUCTURED RECT”, and 8x8x3 mesh division. A periodic boundary condition
is applied in X direction.

• parameter.physical parameter[] :

Set viscosity coefficient (“VISCOSITY”) to 20.

• region.condition[]

Boundary conditions are given as partial region conditions as follows.

name partial region field condition name value

YMIN P BOUNDARY VERTEX YMIN Pressure D 1
YMIN Vx BOUNDARY VERTEX YMIN Velocity D VX 0
YMIN Vy BOUNDARY VERTEX YMIN Velocity D VY 0
YMIN Vz BOUNDARY VERTEX YMIN Velocity D VZ 0
YMAX Vx BOUNDARY VERTEX YMAX Velocity D VX $(YMAX Vx)
YMAX Vy BOUNDARY VERTEX YMAX Velocity D VY 0
YMAX Vz BOUNDARY VERTEX YMAX Velocity D VZ 0
ZMIN Vz BOUNDARY VERTEX ZMIN Velocity D VZ 0
ZMAX Vz BOUNDARY VERTEX ZMAX Velocity D VZ 0

– Set a pressure on the bottom wall in Y direction (BOUNDARY VERTEX YMIN) to 1.

– Set a zero velocity on the bottom wall in Y .
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– The velocity in X-direction on the Y upper boundary is given by a user defined parameter
“YMAX Vx” in physical parameter 1.

– Impose a two-dimensional flow in XY plane by setting Z-component of velocity to zero on Z-
direction boundaries (BOUNDARY VERTEX ZMIN, BOUNDARY VERTEX ZMAX).

• dynamics manager.registered field[]

Only 3 fields – Velocity, Pressure and Viscosity – are registered.

2.2.2 Application 2: Poiseuille flow

This is a simulation of a flow in a two-dimensional(XY) fluid bounded by two Y-walls and a pressure gap
(difference) is applied in X-direction. The result will be a Poiseuille flow.

Figure 2.2: PhaseSeparation FEM Application: Poiseuille flow.

[Input UDF file]

MUFFIN5/sample/muffin5ebeta/PhaseSeparation/EX02/EX02_in.udf

[Explanation for input UDF]

• parameter.mesh parameter:

Mesh type is “UNSTRUCTURED RECT”, and 16x16x3 mesh division.

• parameter.physical parameter[] :

Set the viscosity coefficient (“VISCOSITY”) to 10.

• region.condition[]

Boundary conditions are given as partial region conditions as follows.

1Users can use an arbitrary name of parameter which does not written in this manual as “physical parameter” ’s, and use
it as an ordinary parameter to define values of other parameters, or values for partial region conditions etc.
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name partial region field condition name value

XMIN p BOUNDARY VERTEX XMIN Pressure D 1
XMAX p BOUNDARY VERTEX XMAX Pressure D 0
XMIN Vy BOUNDARY VERTEX XMIN Velocity D VY 0
XMIN Vz BOUNDARY VERTEX XMIN Velocity D VZ 0
XMAX Vy BOUNDARY VERTEX XMAX Velocity D VY 0
XMAX Vz BOUNDARY VERTEX XMAX Velocity D VZ 0
YMIN Vx BOUNDARY VERTEX YMIN Velocity D VX 0
YMIN Vy BOUNDARY VERTEX YMIN Velocity D VY 0
YMIN Vz BOUNDARY VERTEX YMIN Velocity D VZ 0
YMAX Vx BOUNDARY VERTEX YMAX Velocity D VX 0
YMAX Vy BOUNDARY VERTEX YMAX Velocity D VY 0
YMAX Vz BOUNDARY VERTEX YMAX Velocity D VZ 0
ZMIN Vz BOUNDARY VERTEX ZMIN Velocity D VZ 0
ZMAX Vz BOUNDARY VERTEX ZMAX Velocity D VZ 0

– Set a pressure difference on X direction boundaries (BOUNDARY VERTEX XMIN, BOUND-
ARY VERTEX XMAX) to 8.

– On X-direction boundaries (BOUNDARY VERTEX XMIN), make Y and Z components of ve-
locity to zero.

– On Y-direction boundaries (BOUNDARY VERTEX YMIN, BOUNDARY VERTEX YMAX) ve-
locity is set to zero.

– Impose a two-dimensional flow in XY plane by setting Z-component of the velocity to zero on
Z-direction boundaries (BOUNDARY VERTEX ZMIN, BOUNDARY VERTEX ZMAX).

• dynamics manager.registered field[]

Only 3 fields – Velocity, Pressure and Viscosity – are registered.

[Note]

The FEM simulator doesn’t have the biased periodic condition supported in the FDM simulator, so instead
of setting periodic condition in X direction, here we are set Y- and Z-components of velocity to zero to make
Poiseuille flow.

2.2.3 Application 3: Phase separation by Flory-Huggins model of free energy(1)

This is a simulation of phase separation of a two component system (without flow effect) using the Flory-
Huggins free energy.

[Input UDF file]

MUFFIN5/sample/muffin5ebeta/PhaseSeparation/EX03/EX03_in.udf

[Explanation for input UDF]

• parameter.mesh parameter:

The geometry type is “UNSTRUCTURED RECT”, and 32x32x4 mesh division. Set periodic boundary
conditions for X,Y and Z directions.

• parameter.physical parameter[] :
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Parameter name(KEY) value

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
AVERAGED VOLUME FRACTION 0.5, 0.5
DEVIATION FROM AVERAGED VOLUME FRACTION 0.01
SEED OF RANDOM NUMBER 1
Ca 1.0
DIFFUSION COEFFICIENT 1.0
Chi 01 3.0
MODE COUPLING CONSTANT G0 1.0

• region.condition[]

No boundary condition is given because all directions are periodic.

• dynamics manager.registered field[]

Register the VolumeFraction, ChecmicalPotential and K Field.

• dynamics manager.procedures table for initialization[].command list[]

Initialize the VolumeFraction field by a command
“CONSTANT VOLUME FRACTION WITH NOISE”.

• dynamics manager.procedures table for evolution[].command list[]

Time evolution procedure is given as follows;

field name command name

ChemicalPotential FLORY HUGGINS
K Field GRADIENT CHEMICAL POTENTIAL
VolumeFraction SOLVE EQUATION OF CONTINUITY WITHOUT FLOW

2.2.4 Application 4: Phase separation by Flory-Huggins model of free energy(2)

This is a similar calcualtion as the application 3, but the effect of fluid flow field is applied.

[Input UDF file]

MUFFIN5/sample/muffin5ebeta/PhaseSeparation/EX04/EX04_in.udf

[Explanation for input UDF]

• parameter.mesh parameter:

Mesh shape is “UNSTRUCTURED RECT”, and 32x32x3 mesh division. Set periodic boundary con-
ditions for X,Y and Z directions.

• parameter.solver parameter[] :

Perform a Stokes flow calculation by a pressure and velocity solver. The following parameters control
the solver.

Parameter name(KEY) value

MATRIX SOLVER ICCG
DT FOR V 0.05
MAX ITERATION FOR VELOCITY SOLVER 500
CONVERGENCE CRITERION FOR $(DT FOR V)$(*)$(0.01)
VELOCITY SOLVER

SKIP INTERVAL VELOCITY CALCULATION 50

– DT FOR V is a time mesh for the Stokes flow solver, and the time is not the physical time but
only for the iterative flow solver. It is selected to satisfy the condition of eq.(1.83) in section 1.5.2.
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– CONVERGENCE CRITERION FOR VELOCITY SOLVER is calculated using the parameter
DT FOR V so that relative change of the velocity less than 0.01 becomes the convergence condi-
tion.

– SKIP INTERVAL VELOCITY CALCULATION=50 means that the velocity pressure solver is
activated for every 50 time step. This is to save calculation time by skipping the flow field
calculation for most of time steps assuming that the velocity field should chang slowly for time
steps.

• parameter.common physical parameter:

Input DT=1.0e-2, FINAL STEP=2000, INTERVAL OF MONITORING=1,
and INTERVAL OF UDF OUTPUT=500.

• parameter.physical parameter[] :

Parameter name(KEY) value

NUMBER OF COMPONENTS 2
POLYMERIZATION INDEX N 1, 1
AVERAGED VOLUME FRACTION 0.5, 0.5
DEVIATION FROM AVERAGED VOLUME FRACTION 0.01
SEED OF RANDOM NUMBER 1
Ca 1.0
DIFFUSION COEFFICIENT 1.0
VISCOSITY 1.0
Chi 01 3.0

• region.condition[]

No boundary condition is given because all directions are periodic.

• dynamics manager.registered field[]

Register not only the VolumeFraction, ChecmicalPotential and K Field, but also the Velocity, Viscosity
and Pressure fields for flow calculation.

• dynamics manager.procedures table for initialization[].command list[]

Initializing the VolumeFraction field by a command
“CONSTANT VOLUME FRACTION WITH NOISE”.

• dynamics manager.procedures table for evolution[].command list[]

Time evolution procedure is given as follows.

field name command name

ChemicalPotential FLORY HUGGINS
K Field GRADIENT CHEMICAL POTENTIAL
VolumeFraction SOLVE EQUATION OF CONTINUITY WITH FLOW
Velocity SOLVE STOKES EQUATION AND PRESSURE





Chapter 3

Operation guide of PhaseSeparation

3.1 Commands and parameters for fields of PhaseSeparation FDM

3.1.1 Input parameters of PhaseSeparation FDM

Name of Parameters Meanings and notations in theory

NUMBER OF COMPONENTS number of components
B dimensionless electric energy B
DIELECTRIC CONSTANT relative dielectric constants ϵα

give for each component
CHARGE DENSITY charge density of each component ρα
GAMMA S surface energy of each component showing

the wettability of a wall γsα
GAMMA S REGION surface energy of each component showing

the wettability of a wall γsα
rectangle region with following parameters(delimiter is space)
component-id potential xmin ymin zmin xmax ymax zmax

ACCELERATION VALUE acceleration factor for electric potential calculation
FOR E-POTENTIAL

MAX ITERATION maximum number of iterations for electric potential
FOR E-POTENTIAL SOLVER calculation

CONVERGENCE CRITERION FOR convergence criterion of electric potential calculation
E-POTENTIAL

MONITORING INTERVAL OF convergence monitoring interval of electric potential
E-POTENTIAL SOLVER calculation

ELECTRIC POTENTIAL GRADIENT initial value of an electric potential gradient
ELECTRIC POTENTIAL boundary value of electric potential(Y Z plane −X side)
AT YZ PLANE XM

ELECTRIC POTENTIAL boundary value of electric potential(Y Zplane +X side)
AT YZ PLANE XP

ELECTRIC POTENTIAL boundary value of electric potential(ZXplane −Y side)
AT ZX PLANE YM

ELECTRIC POTENTIAL boundary value of electric potential(ZXplane +Y side)
AT ZX PLANE YP

ELECTRIC POTENTIAL boundary value of electric potential(XY plane −Z side)
AT XY PLANE ZM

ELECTRIC POTENTIAL boundary value of electric potential(XY plane +Z side)
AT XY PLANE ZP

CONSTANT TERM OF ϕo of oscillating boundary electric potential;
ELECTRIC POTENTIAL ϕ(x, y, z)|Boundary = ϕo + δϕ · sin(ωt)
OSCILLATION AT YZ PLANE XP (Y Z plane, +X side )

53
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AMPLITUDE OF ELECTRIC POTENTIAL δϕ of oscillating boundary electric potential
OSCILLATION AT YZ PLANE XP (Y Zplane +X side)

FREQUENCY OF ELECTRIC POTENTIAL ω of oscillating boundary electric potential
OSCILLATION AT YZ PLANE XP (Y Zplane, +X side)

GRADIENT OF E-POTENTIAL boundary value of electric potential gradient
AT YZ PLANE XM (Y Zplane, −X side)

GRADIENT OF E-POTENTIAL boundary value of electric potential gradient
AT YZ PLANE XP (Y Zplane, +X side)

GRADIENT OF E-POTENTIAL boundary value of electric potential gradient
AT ZX PLANE YM (ZXplane, −Y side)

GRADIENT OF E-POTENTIAL boundary value of electric potential gradient
AT ZX PLANE YP (ZXplane, +Y side)

GRADIENT OF E-POTENTIAL boundary value of electric potential gradient
AT XY PLANE ZM (XY plane, −Z side)

GRADIENT OF E-POTENTIAL boundary value of electric potential gradient
AT XY PLANE ZP (XY plane, +Z side)

SEED OF RANDOM CURRENT initial random number for random initialization of
flux field K(J)

STRENGTH OF NOISE deviation for random initialization of
flux field K(J)

CA Capillary number
MONITORING INTERVAL OF convergence monitoring interval of pressure calculation
PRESSURE SOLVER

ACCELERATION VALUE FOR acceleration factor for pressure calculation
PRESSURE SOLVER

MAX ITERATION FOR maximum number of iterations for pressure calculation
PRESSURE SOLVER

CONVERGENCE CRITERION convergence criterion of pressure calculation
FOR PRESSURE SOLVER

VISCOSITY viscosity coefficient of each component ηα
PRESSURE GRADIENT boundary pressure gap for biased periodic condition

of pressure
PRESSURE AT YZ PLANE XM boundary pressure (Y Z plane, −X side)
PRESSURE AT YZ PLANE XP boundary pressure (Y Z plane, +X side)
PRESSURE AT ZX PLANE YM boundary pressure (ZX plane, −Y side)
PRESSURE AT ZX PLANE YP boundary pressure (ZX plane, +Y side)
PRESSURE AT XY PLANE ZM boundary pressure (XY plane, −Z side)
PRESSURE AT XY PLANE ZP boundary pressure (XY plane, +Z side)
CONSTANT VALUE OF P Po of oscillating boundary pressure ;
OSCILLATION AT P (x, y, z)|Boundary = Po + δP · sin(ωt)
YZ PLANE XP (Y Zplane, +X side)

AMPLITUDE OF P δP of oscillating boundary pressure (Y Zplane, +X side)
OSCILLATION AT YZ PLANE XP

FREQUENCY OF P ω of oscillating boundary pressure (Y Zplane, +X side)
OSCILLATION AT YZ PLANE XP

VELOCITY RAW DATA FILE input file name for initialization of velocity
by file input.

SKIP INTERVAL time step interval for velocity calculation
VELOCITY CALCULATION

VX AT YZ PLANE XM X component of boundary velocity(Y Z plane, −X side)
VY AT YZ PLANE XM Y component of boundary velocity(Y Z plane, −X side)
VZ AT YZ PLANE XM Z component of boundary velocity(Y Z plane, −X side)
VX AT YZ PLANE XP X component of boundary velocity(Y Z plane, +X side)
VY AT YZ PLANE XP Y component of boundary velocity(Y Z plane, +X side)
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VZ AT YZ PLANE XP Z component of boundary velocity(Y Z plane, +X side)
VX AT ZX PLANE YM X component of boundary velocity(ZX plane, −Y side)
VY AT ZX PLANE YM Y component of boundary velocity(ZX plane, −Y side)
VZ AT ZX PLANE YM Z component of boundary velocity(ZX plane, −Y side)
VX AT ZX PLANE YP X component of boundary velocity(ZX plane, +Y side)
VY AT ZX PLANE YP Y component of boundary velocity(ZX plane, +Y side)
VZ AT ZX PLANE YP Z component of boundary velocity(ZX plane, +Y side)
VX AT XY PLANE ZM X component of boundary velocity(XY plane, −Z side)
VY AT XY PLANE ZM Y component of boundary velocity(XY plane, −Z side)
VZ AT XY PLANE ZM Z component of boundary velocity(XY plane, −Z side)
VX AT XY PLANE ZP X component of boundary velocity(XY plane, +Z side)
VY AT XY PLANE ZP Y component of boundary velocity(XY plane, +Z side)
VZ AT XY PLANE ZP Z component of boundary velocity(XY plane, +Z side)
SHEAR RATE XZ shear rate for Lees Edwards boundary condition

(XZ direction)
MONITORING INTERVAL OF convergence monitoring interval of velocity calculation
VELOCITY SOLVER

ACCELERATION VALUE FOR acceleration factor for velocity calculation
VELOCITY SOLVER

CONVERGENCE CRITERION FOR convergence criterion of velocity calculation
VELOCITY SOLVER

MAX ITERATION FOR maximum number of iterations for velocity calculation
VELOCITY SOLVER

CHI mn χ-parameter of components n,m (only for m < n)
POLYMERIZATION INDEX N polymerization index of each component Nα

AVS DATA FILE NAME file name for initialization of volume fraction
by AVS format file input.

AVERAGED VOLUME FRACTION averaged volume fraction as initial value ψα0

DEVIATION FROM magnitude of noise given to initial value of
AVERAGED VOLUME FRACTION volume fraction

SEED OF RANDOM NUMBER initial random number for random
initialization of volume fraction field.

VOLUME FRACTION GRADIENT X-direction gradient of volume fraction ψα

ALONG X for Biased Periodic Condition
VOLUME FRACTION GRADIENT Y -direction gradient of volume fraction ψα

ALONG Y for Biased Periodic Condition
VOLUME FRACTION GRADIENT Z-direction gradient of volume fraction ψα

ALONG Z for Biased Periodic Condition
BULK VOLUME FRACTION volume fraction of each component ψα

for bulk boundary condition
REMOVE FRACTION OF SOLVENT rate of solvent removal from boundary
INITIAL SHEAR STRAIN ZX strain for initialization of volume fraction

by Affine transformation
NUMBER OF DROPLETS number of droplets placed in initialization of

volume fraction.
RADIUS OF DROPLET radius of each droplet placed in

initialization of volume fraction.
X COORDINATE OF DROPLET X coordinate of each droplet placed in

initialization of volume fraction.
Y COORDINATE OF DROPLET Y coordinate of each droplet placed in

initialization of volume fraction.
Z COORDINATE OF DROPLET Z coordinate of each droplet placed in

initialization of volume fraction.
NUMBER OF LAMELLAE number of lamellae placed in
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initialization of volume fraction.
DIRECTION OF LAMELLAE direction of lamella placed in

initialization of volume fraction(“X”|”Y”|”Z”)
PHASE OF LAMELLAE phase of lamella placed in

initialization of volume fraction(“0”|”1”)
DIFFUSION COEFFICIENT 1. diffusion coefficient of each component Lα

2. diffusion on the phase separated structure：
diffusion coefficient for each region

ALPHA OHTA KAWASAKI Ohta-Kawasaki model’s coefficient α
XI OHTA KAWASAKI Ohta-Kawasaki model’s coefficient ξ
G OHTA KAWASAKI Ohta-Kawasaki model’s coefficient g
OBSTACLE DATA FILE file name storing position of obstacle meshes
INITIAL DIFFUSION FIELD diffusion on the phase separated structure：

intial value for all region
DF AT YZ PLANE XM diffusion on the phase separated structure：

component of boundary value(Y Z plane, −X side)
DF AT YZ PLANE XP diffusion on the phase separated structure：

component of boundary value(Y Z plane, +X side)
DF AT ZX PLANE YM diffusion on the phase separated structure：

component of boundary value(ZX plane, −Y side)
DF AT ZX PLANE YP diffusion on the phase separated structure：

component of boundary value(ZX plane, +Y side)
DF AT XY PLANE ZM diffusion on the phase separated structure：

component of boundary value(XY plane, −Z side)
DF AT XY PLANE ZP diffusion on the phase separated structure：

component of boundary value(XY plane, +Z side)

3.1.2 PhaseSeparation FDM - list of fields

Field name meanings and notation in theory

ChemicalPotential Chemical potential field µα

ElectricPotential Electric potential field Φ
K Field Flux field Jα(K)
Pressure Pressure field P
Velocity Velocity field v
VolumeFraction Volume fraction field ψα

Obstacle Obstacle field
Diffusion Field Diffusion field on the phase separated structure
Diffusion Flux Diffusion flux on the phase separated structure

K Field α = 0 component of K Field may be used to store volume force field K in fluid equation.

3.1.3 PhaseSeparation FDM - commands of fields

ChemicalPotential : chemical potential field - commands

ChemicalPotential Name

Time evolution ”SET ZERO”
Time evolution ”SYMMETRIC GL”
Time evolution ”FLORY HUGGINS”
Time evolution ”OHTA KAWASAKI 2”
Time evolution ”ADD ELECTRIC EFFECT OF DIELECTRIC MEDIUM”
Time evolution ”ADD ELECTROSTATIC EFFECT USING CHARGE DENSITY”
Time evolution ”ADD EFFECT OF WETTING FOR UNIFORM Z WALL”
Time evolution ”ADD EFFECT OF WETTING REGION”
Evaluation ”RETURN TRUE FUNC”
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1. ChemicalPotential - time evolution commands

Name ”SET ZERO”
Function set field values to zero.

Name ”SYMMETRIC GL”
Function 2-component Ginzburg-Landau model µ = −ψ + ψ3 −∆ψ(ψ ≡ ψ1 − ψ0)
Dependent filed VolumeFraction

Name ”FLORY HUGGINS”
Function Flory-Huggins free energy.
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter CHI mn
Dependent parameter POLYMERIZATION INDEX N

Name ”OHTA KAWASAKI 2”
Function 2 components Ohta-Kawasaki model(Proc. of SPIE, 8680, 86801I

(2013))
µ = − 1

ξ2 η + gη3 −∇2η , where η = 2ψ0 − 1

K Field command should be
”GRADIENT CHEMICAL POTENTIAL ORDER PARAMETER”,
VolumeFraction command should be ”SOLVE OHTA KAWASAKI 2”.
length is scaled by Rg(= a

√
N/2, where a is Kuhn length).

1
ξ2 = 2f(1−f)(2χN − s(f)

2f2(1−f)2 ), f is number fraction of component 0

in diblock-copolymer, N is number of polymerization, χ is interaction
parameter. s(f) is empirical parameter, e.g. s(f) = 0.9 for f = 0.5

Dependent filed VolumeFraction
Dependent parameter XI OHTA KAWASAKI
Dependent parameter G OHTA KAWASAKI

Name ”ADD ELECTRIC EFFECT OF DIELECTRIC MEDIUM”
Function By using dielectric constants depending on volume fraction field and

electric potential field Φ, take an effect of dielectric fluid under electric
field into chemical potential.

Dependent filed ElectricPotential
Dependent parameter B
Dependent parameter DIELECTRIC CONSTANT

Name ”ADD ELECTROSTATIC EFFECT USING
CHARGE DENSITY”

Function add effect of charge distribution and electric potential field to chemical
potential;
(∂ρe/∂ψ)Φ

Dependent filed ElectricPotential
Dependent parameter CHARGE DENSITY

Name ”ADD EFFECT OF WETTING FOR UNIFORM Z WALL”
Function Add wettability effect on wall to chemical potential.

This effect exists only when walls are on Z = 0, Z = Lz,
so, if there are no such a wall boundary, this command does not affect
anything on simulation results.

Dependent parameter GAMMA S

Name ”ADD EFFECT OF WETTING REGION”
Function Add wettability effect on designated region.
Dependent parameter GAMMA S REGION

2. ChemicalPotential - boundary condition (partial condition) commands
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Partial region condition treatment

PERIODIC periodic boundary condition
XM WALL XP WALL Wall boundary condition n · ∇µα = 0 on both −X and +X bound-

aries
YM WALL YP WALL Wall boundary condition n·∇µα = 0 on both−Y and +Y boundaries
ZM WALL ZP WALL Wall boundary condition n·∇µα = 0 on both −Z and +Z boundaries
LEES EDWARDS BC Lees-Edwards boundary condition

3. ChemicalPotential - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

ElectricPotential : electric potential field - commands

ElectricPotential Name

Time evolution ”ELECTRIC POTENTIAL SOLVER”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. ElectricPotential - time evolution commands

Name ”ELECTRIC POTENTIAL SOLVER”
Function Calculate electric potential by solving Poisson equation

with iterative method (SOR).
Dependent parameter ACCELERATION VALUE FOR E-POTENTIAL
Dependent parameter MAX ITERATION FOR E-POTENTIAL SOLVER
Dependent parameter CONVERGENCE CRITERION FOR E-POTENTIAL
Dependent parameter B
Dependent parameter MONITORING INTERVAL OF E-POTENTIAL SOLVER
Dependent parameter ELECTRIC POTENTIAL GRADIENT
Dependent parameter ELECTRIC POTENTIAL AT YZ PLANE XM
Dependent parameter ELECTRIC POTENTIAL AT YZ PLANE XP
Dependent parameter ELECTRIC POTENTIAL AT ZX PLANE YM
Dependent parameter ELECTRIC POTENTIAL AT ZX PLANE YP
Dependent parameter ELECTRIC POTENTIAL AT XY PLANE ZM
Dependent parameter ELECTRIC POTENTIAL AT XY PLANE ZP
Dependent parameter CONSTANT TERM OF ELECTRIC POTENTIAL OSCILLATION

AT YZ PLANE XP
Dependent parameter AMPLITUDE OF ELECTRIC POTENTIAL OSCILLATION

AT YZ PLANE XP
Dependent parameter FREQUENCY OF ELECTRIC POTENTIAL OSCILLATION

AT YZ PLANE XP
Dependent parameter GRADIENT OF E-POTENTIAL AT YZ PLANE XM
Dependent parameter GRADIENT OF E-POTENTIAL AT YZ PLANE XP
Dependent parameter GRADIENT OF E-POTENTIAL AT ZX PLANE YM
Dependent parameter GRADIENT OF E-POTENTIAL AT ZX PLANE YP
Dependent parameter GRADIENT OF E-POTENTIAL AT XY PLANE ZM
Dependent parameter GRADIENT OF E-POTENTIAL AT XY PLANE ZP
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2. ElectricPotential - boundary condition (partial condition) commands

Partial region condition treatment

PERIODIC periodic boundary condition
BIASED PERIODIC Biased Periodic boundary condition
XM NEUMANN XP NEUMANN Neumann condition on both −X and +X boundaries
XM NEUMANN XP DIRICHLET Neumann condition on −X, and Dirichlet condition on

+X
XM DIRICHLET XP NEUMANN Dirichlet condition on −X, Neumann condition on +X
XM DIRICHLET XP DIRICHLET Dirichlet condition on both −X and +X boundaries
OSCILLATORY oscillation potential boundary condition

ϕ(x, y, z)|Boundary = ϕo + δϕ · sin(ωt)
YM NEUMANN YP NEUMANN Neumann condition on both −Y and +Y boundaries
YM NEUMANN YP DIRICHLET Neumann condition on −Y , and Dirichlet condition on

+Y
YM DIRICHLET YP NEUMANN Dirichlet condition on −Y , Neumann condition on +Y
YM DIRICHLET YP DIRICHLET Dirichlet condition on both −Y and +Y boundaries
ZM NEUMANN ZP NEUMANN Neumann condition on both −Z and +Z boundaries
ZM NEUMANN ZP DIRICHLET Neumann condition on −Z, and Dirichlet condition on

+Z
ZM DIRICHLET ZP NEUMANN Dirichlet condition on −Z, Neumann condition on +Z
ZM DIRICHLET ZP DIRICHLET Dirichlet condition on both −Z and +Z boundaries

3. ElectricPotential- analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function output calculation results on an AVS format file(field-data).

4. ElectricPotential - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

K Field : flux field - commands

K Field Name

Initialization ”SET ZERO”
Time evolution ”GRADIENT CHEMICAL POTENTIAL”
Time evolution ”GRADIENT CHEMICAL POTENTIAL ORDER PARAMETER”
Time evolution ”ADD RANDOM CURRENT”

1. K Field - initialization commands

Name ”SET ZERO”
Function Set field values to zero.

2. K Field - time evolution commands

Name ”GRADIENT CHEMICAL POTENTIAL”
Function Calculate flux from volume fraction and chemical potential; Kα = −ψα∇µα
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Name ”GRADIENT CHEMICAL POTENTIAL ORDER PARAMETER”
Function This command should be used when OHTA KAWASAKI 2 command is used for

Chemical Potential. calculate flux from chemical potential. K = −∇µ

Name ”ADD RANDOM CURRENT”
Function add random noise on flux field.
Dependent parameter SEED OF RANDOM CURRENT
Dependent parameter STRENGTH OF NOISE

3. K Field - boundary condition (partial condition) commands

Partial region condition treatment

PERIODIC periodic boundary condition
XM WALL XP WALL wall boundary condition on both −X and +X boundaries.
XM WALL XP BULK wall boundary condition on −X, bulk boundary condition on +X.
XM BULK XP WALL bulk boundary condition on −X, wall boundary condition on +X.
XM BULK XP BULK bulk boundary condition on both −X and +X boundaries.
YM WALL YP WALL wall boundary condition on both −Y and +Y boundaries.
YM WALL YP BULK wall boundary condition on −Y , bulk boundary condition on +Y .
YM BULK YP WALL bulk boundary condition on −Y , wall boundary condition on +Y .
YM BULK YP BULK bulk boundary condition on both −Y and +Y boundaries.
ZM WALL ZP WALL wall boundary condition on both −Z and +Z boundaries.
ZM WALL ZP BULK wall boundary condition on −Z, bulk boundary condition on +Z.
ZM BULK ZP WALL bulk boundary condition on −Z, wall boundary condition on +Z.
ZM BULK ZP BULK bulk boundary condition on both −Z and +Z boundaries.

Pressure : pressure field - commands

Pressure Name

Initialization ”SET ZERO”
Time evolution ”SOLVE PRESSURE”
Time evolution ”CALCULATION OF SOURCE FIELD”
Time evolution ”ONE ITERATION”
Time evolution ”CALCULATION OF VISCOSITY”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. Pressure - initialization commands

Name ”SET ZERO”
Function Set field values to zero.

2. Pressure - time evolution commands
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Name ”SOLVE PRESSURE”
Function Solve pressure field by iterative solution of Poisson equation;

∇2p = ∇ · [∇(η{∇v + (∇v)t})] +∇ ·K
Dependent filed Velocity
Dependent filed K Field
Dependent parameter ACCELERATION VALUE FOR PRESSURE SOLVER
Dependent parameter MAX ITERATION FOR PRESSURE SOLVER
Dependent parameter CONVERGENCE CRITERION PRESSURE SOLVER
Dependent parameter MONITORING INTERVAL OF PRESSURE SOLVER
Dependent parameter VISCOSITY
Dependent parameter PRESSURE GRADIENT
Dependent parameter PRESSURE AT YZ PLANE XM
Dependent parameter PRESSURE AT YZ PLANE XP
Dependent parameter PRESSURE AT ZX PLANE YM
Dependent parameter PRESSURE AT ZX PLANE YP
Dependent parameter PRESSURE AT XY PLANE ZM
Dependent parameter PRESSURE AT XY PLANE ZP
Dependent parameter CONSTANT TERM OF PRESSURE OSCILLATION

AT YZ PLANE XP
Dependent parameter AMPLITUDE OF PRESSURE OSCILLATION

AT YZ PLANE XP
Dependent parameter FREQUENCY OF PRESSURE OSCILLATION

AT YZ PLANE XP

Name ”CALCULATION OF SOURCE FIELD”
Function Calculate source term of Poisson equation of pressure field.
Dependent filed Velocity
Dependent filed K Field
Dependent parameter CA

Name ”ONE ITERATION”
Function One iteration of solution for Poisson equation of pressure field.
Dependent parameter MONITORING INTERVAL OF PRESSURE SOLVER
Dependent parameter ACCELERATION VALUE FOR PRESSURE SOLVER
Dependent parameter MAX ITERATION FOR PRESSURE SOLVER
Dependent parameter CONVERGENCE CRITERION FOR PRESSURE SOLVER

Name ”CALCULATION OF VISCOSITY”
Function Calculate viscosity coefficient η =

∑
α ηαψα

Dependent filed VolumeFraction
Dependent parameter VISCOSITY

3. Pressure - boundary condition (partial condition) commands
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Partial region condition treatment

PERIODIC periodic boundary condition
BIASED PERIODIC Biased Periodic boundary condition
XM WALL XP WALL set pressure to make ψ field satisfy wall bound-

ary condition on both −X, and +X boundaries.
(called ”wall boundary condition” in this table)

XM WALL XP PRESSURE SET wall boundary condition on−X, constant pressure
on +X

XM WALL XP VELOCITY SET wall boundary condition on −X, constant velocity
on +X

XM PRESSURE SET XP WALL constant pressure on−X, wall boundary condition
on +X

XM PRESSURE SET XP PRESSURE SET constant pressure on both −X and +X bound-
aries.

XM PRESSURE SET XP VELOCITY SET constant pressure on −X, constant velocity on
+X

XM VELOCITY SET XP WALL constant velocity on −X, wall boundary condition
on +X

XM VELOCITY SET XP PRESSURE SET constant velocity on −X, constant pressure on
+X

XM VELOCITY SET XP VELOCITY SET constant velocity on both −X and +X boundaries
OSCILLATORY BIASED PERIODIC oscillating pressure condition on +X, P = 0 on

−X
YM WALL YP WALL wall boundary condition on both −Y , and +Y

boundaries.
YM WALL YP PRESSURE SET wall boundary condition on −Y , constant pressure

on +Y
YM WALL YP VELOCITY SET wall boundary condition on −Y , constant velocity

on +Y
YM PRESSURE SET YP WALL constant pressure on −Y , wall boundary condition

on +Y
YM PRESSURE SET YP PRESSURE SET constant pressure on both −Y and +Y bound-

aries.
YM PRESSURE SET YP VELOCITY SET constant pressure on −Y , constant velocity on +Y
YM VELOCITY SET YP WALL constant velocity on −Y , wall boundary condition

on +Y
YM VELOCITY SET YP PRESSURE SET constant velocity on −Y , constant pressure on +Y
YM VELOCITY SET YP VELOCITY SET constant velocity on both −Y and +Y boundaries
ZM WALL ZP WALL wall boundary condition on both −Z, and +Z

boundaries.
ZM WALL ZP PRESSURE SET wall boundary condition on −Z, constant pressure

on +Z
ZM WALL ZP VELOCITY SET wall boundary condition on −Z, constant velocity

on +Z
ZM PRESSURE SET ZP WALL constant pressure on −Z, wall boundary condition

on +Z
ZM PRESSURE SET ZP PRESSURE SET constant pressure on both−Z and +Z boundaries.
ZM PRESSURE SET ZP VELOCITY SET constant pressure on −Z, constant velocity on +Z
ZM VELOCITY SET ZP WALL constant velocity on −Z, wall boundary condition

on +Z
ZM VELOCITY SET ZP PRESSURE SET constant velocity on −Z, constant pressure on +Z
ZM VELOCITY SET ZP VELOCITY SET constant velocity on both −Z and +Z boundaries
LEES EDWARDS BC Lees-Edwards boundary condition

4. Pressure- analysis commands
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Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(field-data).

5. Pressure - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

Velocity : velocity field - commands

Velocity Name

Initialization ”SET ZERO”
Initialization ”READ VELOCITY RAWDATA”
Time evolution ”SOLVE STOKES EQUATION AND PRESSURE”
Analysis ”OUTPUT SNAPSHOT IN RAW FORMAT”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. Velocity - initialization commands

Name ”SET ZERO”
Function Set velocity to zero.

Name ”READ VELOCITY RAWDATA”
Function Input initial value of velocity from a file. (”OUT-

PUT SNAPSHOT IN RAW FORMAT”)
Dependent parameter VELOCITY RAW DATA FILE

2. Velocity - time evolution commands
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Name ”SOLVE STOKES EQUATION AND PRESSURE”
Function Solve Stokes flow equation for velocity and pressure;

−∇p+∇(η{∇v + (∇v)t}) +K = 0
Dependent filed Pressure
Dependent parameter SKIP INTERVAL VELOCITY CALCULATION
Dependent parameter VX AT YZ PLANE XM
Dependent parameter VY AT YZ PLANE XM
Dependent parameter VZ AT YZ PLANE XM
Dependent parameter VX AT YZ PLANE XP
Dependent parameter VY AT YZ PLANE XP
Dependent parameter VZ AT YZ PLANE XP
Dependent parameter VX AT ZX PLANE YM
Dependent parameter VY AT ZX PLANE YM
Dependent parameter VZ AT ZX PLANE YM
Dependent parameter VX AT ZX PLANE YP
Dependent parameter VY AT ZX PLANE YP
Dependent parameter VZ AT ZX PLANE YP
Dependent parameter VX AT XY PLANE ZM
Dependent parameter VY AT XY PLANE ZM
Dependent parameter VZ AT XY PLANE ZM
Dependent parameter VX AT XY PLANE ZP
Dependent parameter VY AT XY PLANE ZP
Dependent parameter VZ AT XY PLANE ZP
Dependent parameter SHEAR RATE XZ
Dependent parameter MONITORING INTERVAL OF VELOCITY SOLVER
Dependent parameter ACCELERATION VALUE FOR VELOCITY SOLVER
Dependent parameter CONVERGENCE CRITERION FOR VELOCITY SOLVER
Dependent parameter MAX ITERATION FOR VELOCITY SOLVER

3. Velocity - boundary condition (partial condition) commands
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Partial region condition treatment

PERIODIC periodic boundary condition
XM WALL XP WALL set pressure to make ψ field satisfy wall bound-

ary condition on both −X, and +X boundaries.
(called ”wall boundary condition” in this table)

XM WALL XP PRESSURE SET wall boundary condition on−X, constant pressure
on +X

XM WALL XP VELOCITY SET wall boundary condition on −X, constant velocity
on +X

XM PRESSURE SET XP WALL constant pressure on−X, wall boundary condition
on +X

XM PRESSURE SET XP PRESSURE SET constant pressure on both −X and +X bound-
aries.

XM PRESSURE SET XP VELOCITY SET constant pressure on −X, constant velocity on
+X

XM VELOCITY SET XP WALL constant velocity on −X, wall boundary condition
on +X

XM VELOCITY SET XP PRESSURE SET constant velocity on −X, constant pressure on
+X

XM VELOCITY SET XP VELOCITY SET constant velocity on both −X and +X boundaries
YM WALL YP WALL wall boundary condition on both −Y , and +Y

boundaries.
YM WALL YP PRESSURE SET wall boundary condition on −Y , constant pressure

on +Y
YM WALL YP VELOCITY SET wall boundary condition on −Y , constant velocity

on +Y
YM PRESSURE SET YP WALL constant pressure on −Y , wall boundary condition

on +Y
YM PRESSURE SET YP PRESSURE SET constant pressure on both −Y and +Y bound-

aries.
YM PRESSURE SET YP VELOCITY SET constant pressure on −Y , constant velocity on +Y
YM VELOCITY SET YP WALL constant velocity on −Y , wall boundary condition

on +Y
YM VELOCITY SET YP PRESSURE SET constant velocity on −Y , constant pressure on +Y
YM VELOCITY SET YP VELOCITY SET constant velocity on both −Y and +Y boundaries
ZM WALL ZP WALL wall boundary condition on both −Z, and +Z

boundaries.
ZM WALL ZP PRESSURE SET wall boundary condition on −Z, constant pressure

on +Z
ZM WALL ZP VELOCITY SET wall boundary condition on −Z, constant velocity

on +Z
ZM PRESSURE SET ZP WALL constant pressure on −Z, wall boundary condition

on +Z
ZM PRESSURE SET ZP PRESSURE SET constant pressure on both−Z and +Z boundaries.
ZM PRESSURE SET ZP VELOCITY SET constant pressure on −Z, constant velocity on +Z
ZM VELOCITY SET ZP WALL constant velocity on −Z, wall boundary condition

on +Z
ZM VELOCITY SET ZP PRESSURE SET constant velocity on −Z, constant pressure on +Z
ZM VELOCITY SET ZP VELOCITY SET constant velocity on both −Z and +Z boundaries
LEES EDWARDS BC Lees-Edwards boundary condition

4. Velocity - analysis commands

Name ”OUTPUT SNAPSHOT IN RAW FORMAT”
Function Output calculation results on a file.
Dependent parameter VELOCITY RAW DATA FILE
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Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(field-data).

5. Velocity - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

VolumeFraction : volume fraction field - commands

VolumeFraction Name

Initialization ”READ AVS DATA”
Initialization ”ADD NOISE”
Initialization ”CONSTANT VOLUME FRACTION”
Initialization ”CONSTANT VOLUME FRACTION WITH NOISE”
Initialization ”LINEAR ALONG X DIRECTION”
Initialization ”LINEAR ALONG Y DIRECTION”
Initialization ”LINEAR ALONG Z DIRECTION”
Initialization ”SET DROPLETS”
Initialization ”ADD AFFINE DEFORMATION:SHEAR”
Initialization ”SET LAMELLAE”
Time evolution ”SOLVE EQUATION OF CONTINUITY WITH FLOW”
Time evolution ”SOLVE EQUATION OF CONTINUITY WITHOUT FLOW”
Time evolution ”SOLVE OHTA KAWASAKI 2”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”
Evaluation ”TRUE AT A CONSTANT TIME INTERVAL”

1. VolumeFraction - initialization commands

Name ”READ AVS DATA”
Function Read initial value from a file in AVS format.
Dependent parameter AVS DATA FILE NAME

Name ”ADD NOISE”
Function Add random noise.
Dependent parameter DEVIATION FROM AVERAGED VOLUME FRACTION
Dependent parameter SEED OF RANDOM NUMBER

Name ”CONSTANT VOLUME FRACTION”
Function Initialize volume fraction of each component to a constant value.

Boundary values are set according to boundary conditions.
Dependent parameter AVERAGED VOLUME FRACTION
Dependent parameter VOLUME FRACTION GRADIENT ALONG X
Dependent parameter VOLUME FRACTION GRADIENT ALONG Y
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter BULK VOLUME FRACTION
Dependent parameter REMOVE FRACTION OF SOLVENT
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Name ”CONSTANT VOLUME FRACTION WITH NOISE”
Function Initialize volume fraction of each component to a constant value, and

add noise.
Boundary values are set according to boundary conditions.

Dependent parameter VOLUME FRACTION GRADIENT ALONG X
Dependent parameter VOLUME FRACTION GRADIENT ALONG Y
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter BULK VOLUME FRACTION
Dependent parameter REMOVE FRACTION OF SOLVENT
Dependent parameter DEVIATION FROM AVERAGED VOLUME FRACTION
Dependent parameter SEED OF RANDOM NUMBER
Dependent parameter AVERAGED VOLUME FRACTION

Name ”LINEAR ALONG X DIRECTION”
Function Initialize to have a constant gradient in X direction.
Dependent parameter VOLUME FRACTION GRADIENT ALONG X
Dependent parameter AVERAGED VOLUME FRACTION

Name ”LINEAR ALONG Y DIRECTION”
Function Initialize to have a constant gradient in Y direction.
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter AVERAGED VOLUME FRACTION

Name ”LINEAR ALONG Z DIRECTION”
Function Initialize to have a constant gradient in Z direction.
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter AVERAGED VOLUME FRACTION

Name ”SET DROPLETS”
Function Put droplets with specified positions and radii

(2-component system only)
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter NUMBER OF DROPLETS
Dependent parameter RADIUS OF DROPLET
Dependent parameter X COORDINATE OF DROPLET
Dependent parameter Y COORDINATE OF DROPLET
Dependent parameter Z COORDINATE OF DROPLET

Name ”ADD AFFINE DEFORMATION:SHEAR”
Function Add shear deformation for current distribution.

(in XY plane , add shear in X direction)
Boundary values are set according to boundary conditions.

Dependent parameter INITIAL SHEAR STRAIN ZX
Dependent parameter VOLUME FRACTION GRADIENT ALONG X
Dependent parameter VOLUME FRACTION GRADIENT ALONG Y
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter BULK VOLUME FRACTION
Dependent parameter REMOVE FRACTION OF SOLVENT

Name ”SET LAMELLAE”
Function Initialize with lamellae structure (2-component system only)
Dependent parameter NUMBER OF LAMELLAE
Dependent parameter DIRECTION OF LAMELLAE
Dependent parameter PHASE OF LAMELLAE

2. VolumeFraction - time evolution commands
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Name ”SOLVE EQUATION OF CONTINUITY WITH FLOW”
Function One step time integration of equation for volume fraction

∂ψα/∂t = −g0∇ · (ψαv)−∇ · Jα

Dependent filed Velocity
Dependent filed K Field
Dependent parameter DT
Dependent parameter VOLUME FRACTION GRADIENT ALONG X
Dependent parameter VOLUME FRACTION GRADIENT ALONG Y
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter BULK VOLUME FRACTION
Dependent parameter REMOVE FRACTION OF SOLVENT

Name ”SOLVE EQUATION OF CONTINUITY WITHOUT FLOW”
Function One step time integration of equation for volume fraction

∂ψα/∂t = −∇ · Jα

Dependent filed K Field
Dependent parameter DT
Dependent parameter VOLUME FRACTION GRADIENT ALONG X
Dependent parameter VOLUME FRACTION GRADIENT ALONG Y
Dependent parameter VOLUME FRACTION GRADIENT ALONG Z
Dependent parameter BULK VOLUME FRACTION
Dependent parameter REMOVE FRACTION OF SOLVENT

Name ”SOLVE OHTA KAWASAKI 2”
Function 2 compontents Ohta-Kawasaki model(Proc. of SPIE, 8680, 86801I

(2013)). One step time integration of equation for volume fraction
∂η/∂t = −∇ · J − αη , where η = 2ψ0 − 1
”GRADIENT CHEMICAL POTENTIAL ORDER PARAMETER”
should be used for K Field command.
”OHTA KAWASAKI 2” should be used for ChemicalPotential com-
mand.
Diffusion coefficient parameter L is not nocessary in physical parameter
because definition of parameter DT is L∆t. α = 3

f(1−f) , where f is

number fraction of component 0 in diblock-copolymer.
Dependent filed VolumeFraction
Dependent filed K Field
Dependent parameter DT
Dependent parameter ALPHA OHTA KAWASAKI

3. VolumeFraction - boundary condition (partial condition) commands

Partial region condition treatment

PERIODIC periodic boundary condition
BIASED PERIODIC biased Periodic boundary condition
XM WALL XP WALL wall boundary condition on both −X and +X boundaries.
XM WALL XP BULK wall boundary condition on −X, bulk boundary condition on +X.
XM BULK XP WALL bulk boundary condition on −X, wall boundary condition on +X.
XM BULK XP BULK bulk boundary condition on both −X and +X boundaries.
YM WALL YP WALL wall boundary condition on both −Y and +Y boundaries.
YM WALL YP BULK wall boundary condition on −Y , bulk boundary condition on +Y .
YM BULK YP WALL bulk boundary condition on −Y , wall boundary condition on +Y .
YM BULK YP BULK bulk boundary condition on both −Y and +Y boundaries.
ZM WALL ZP WALL wall boundary condition on both −Z and +Z boundaries.
ZM WALL ZP BULK wall boundary condition on −Z, bulk boundary condition on +Z.
ZM BULK ZP WALL bulk boundary condition on −Z, wall boundary condition on +Z.
ZM BULK ZP BULK bulk boundary condition on both −Z and +Z boundaries.
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4. VolumeFraction- analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(field-data).

5. VolumeFraction - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

Name ”TRUE AT A CONSTANT TIME INTERVAL”
Function Return ”true” flag at a constant time interval.
Dependent parameter FINAL STEP
Dependent parameter DIVISION NUM1

Obstacle : obstacle field - commands

Obstacle Name

Initialization ”READ OBSTACLE DATA”
Initialization ”SET BOUNDARY CONDITION”

1. Obstacle - initialization commands

Name ”READ OBSTACLE DATA”
Function Initialize Obstacle field by reading a file.
Dependent parameter OBSTACLE DATA FILE

Name ”SET BOUNDARY CONDITION”
Function Set periodic boundary condition for Obstacle. This command is necessary when a

part of surface of obstacle is on a boundary.

2. Obstacle - boundary condition (partial condition) commands

Partial region condition treatment

PERIODIC periodic boundary condition

Diffuion Flux : Diffusion flux on the phase separated strucure - commands

This field is used for diffusion calculation on the phase separated structure (e.g. heat conduction). The
phase separated structure can be imported by using Action functuin and the strucrure is fixed during the
calculation.

Diffusion Flux Name

Time evolution 0 ”GRADIENT DIFFUSION FIELD”

1. Diffusion Flux - time evolution commands
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Name ”GRADIENT DIFFUSION FIELD”
Function Calculation of the diffusion flux by the gradient of the diffusion field.

For the temperature, J = −D∇T , where D is the local diffusion coef-
ficient.

Dependent parameter DIFFUSION COEFFICIENT
When starting the calculation, automatically,
local diffusion coefficient is calculated by using the volume fraction
distribution. D(x) =

∑
α ψα(x)Dα

2. Diffusion Flux - boundary condition (partial condition) commands

Partial region condition treatment

PERIODIC periodic boundary condition
XM WALL XP WALL wall boundary condition on both −X and +X boundaries.
YM WALL YP WALL wall boundary condition on both −Y and +Y boundaries.
ZM WALL ZP WALL wall boundary condition on both −Z and +Z boundaries.

Diffuion Field : Diffusion field on the phase separated strucure - commands

This field is used for diffusion calculation on the phase separated structure (e.g. heat conduction). The
phase separated structure can be imported by using Action functuin and the strucrure is fixed during the
calculation.

Diffusion Field Name

Initialization 0 ”CONSTANT DIFFUSION FIELD”
Time evolution 0 ”SOLVE DIFFUSION”

1. Diffusion Field - initialization commands

Name ”CONSTANT DIFFUSION FIELD”
Function Initialize the diffusion field to a constant value.
Dependent parameter INITIAL DIFFUSION FIELD

2. Diffusion Field - time evolution commands

Name ”SOLVE DIFFUSION”
Function Time evolution of the diffusion field by using the diffusion flux.

For the temperature, ∂T/∂t = −∇ · J

3. Diffusion Field - boundary condition (partial condition) commands

Partial region condition treatment

PERIODIC periodic boundary condition
XM WALL XP WALL wall boundary condition on both −X and +X boundaries.
YM WALL YP WALL wall boundary condition on both −Y and +Y boundaries.
ZM WALL ZP WALL wall boundary condition on both −Z and +Z boundaries.
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3.2 Commands and parameters for fields of PhaseSeparation FEM

3.2.1 Input parameters of PhaseSeparation FEM

Name of Parameters Meanings and notations in theory

NUMBER OF COMPONENTS number of components
VALENCY valence of each ion component Zα

Z valence of each ion component Zα

POLYMERIZATION INDEX N polymerization index of each component Nα

CHI mn χ-parameter of components n,m (only for m < n)
DIELECTRIC CONSTANT relative dielectric constants ϵα

Give for each component.
B dimensionless electric energy B
CHARGE DENSITY charge density of each component ρα
MATRIX SOLVER matrix solver name to be used in pressure solution.

Either “ICCG” or ”CG” Default is “ICCG”.
MATRIX SOLVER matrix solver name to be used for electric field
FOR ELECTRIC FIELD Either “ICCG” or ”CG” Default is “ICCG”.

PENALTY NUMBER FOR DIRICHLET BC A penalty number to handle Dirichlet condition
(a very large number). The default value is 1013.

GRAVITY X X component of external force on fluid.
GRAVITY Y Y component of external force on fluid.
GRAVITY Z Z component of external force on fluid.
DIMENSIONLESS GRAVITY gravitational acceleration g.
DIMENSIONLESS DENSITY mass density of each component ρα.
REYNOLDS Reynolds number.
DT FOR V time step interval for Stokes flow calculation.
CA Capillary number
MAX ITERATION FOR maximum number of iterations for
VELOCITY SOLVER Stokes flow calculation

CONVERGENCE CRITERION FOR convergence criterion for Stokes flow calculation
VELOCITY SOLVER > 0 : monitor relative change of velocity (default:1.0−3)

< 0 : monitor absolute change of velocity (default:1.0−3)
VISCOSITY viscosity coefficient of each component ηα
SKIP INTERVAL time step interval for velocity calculation
VELOCITY CALCULATION

AVERAGED VOLUME FRACTION averaged volume fraction as initial value ψα0

DEVIATION FROM AVERAGED magnitude of noise given to initial value of
VOLUME FRACTION volume fraction

SEED OF RANDOM NUMBER initial random number for random
initialization of volume fraction field.

NUMBER OF DROPLETS number of droplets placed in initialization of
volume fraction.

RADIUS OF DROPLET radius of each droplet placed in
initialization of volume fraction.

X COORDINATE OF DROPLET X coordinate of each droplet placed in
initialization of volume fraction.

Y COORDINATE OF DROPLET Y coordinate of each droplet placed in
initialization of volume fraction.

Z COORDINATE OF DROPLET Z coordinate of each droplet placed in
initialization of volume fraction.

DIFFUSION COEFFICIENT diffusion coefficient of each component Lα
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3.2.2 PhaseSeparation FEM - list of fields

Name of Parameters Meanings and notations in theory

VolumeFraction Volume fraction field ψα

ChemicalPotential Chemical potential field µα

Velocity Velocity field v
K Field Flux field Jα(K)
Viscosity Viscosity field η
Pressure Pressure field P
ElectricPotential Electric potential field Φ
Obstacle Obstacle filed (defined on FEM cells)

The Obstacle filed is defined on FEM cells, and all other fields are defined on vertex.
K Field α = 0 component of K Field may be used to store volume force field K in fluid equation.

3.2.3 PhaseSeparation FEM - commands

ChemicalPotential : chemical potential field - commands

ChemicalPotential Name

Time evolution ”SET ZERO”
Time evolution ”SYMMETRIC GL”
Time evolution ”FLORY HUGGINS”
Time evolution ”ADD ELECTRIC EFFECT OF DIELECTRIC MEDIUM”
Time evolution ”ADD ELECTROSTATIC EFFECT USING CHARGE DENSITY”
Time evolution ”ADD EFFECT OF GRAVITY”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. ChemicalPotential - time evolution commands

Name ”SET ZERO”
Function Set field values to zero.
Dependent parameter NUMBER OF COMPONENTS

Name ”SYMMETRIC GL”
Function Two-component Ginzburg-Landau model µ = −ψ + ψ3 −∆ψ

(ψ ≡ ψ1 − ψ0)
Dependent field VolumeFraction
Dependent parameter NUMBER OF COMPONENTS

Name ”FLORY HUGGINS”
Function Flory-Huggins free energy.
Dependent field VolumeFraction
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter CHI mn
Dependent parameter POLYMERIZATION INDEX N

Name ”ADD ELECTRIC EFFECT OF DIELECTRIC MEDIUM”
Function By using dielectric constants depending on volume fraction field and

electric potential field Φ, take an effect of dielectric fluid under electric
field into chemical potential.

Dependent field ElectricPotential
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter DIELECTRIC CONSTANT
Dependent parameter B
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Name ”ADD ELECTROSTATIC EFFECT USING
CHARGE DENSITY”

Function Add effect of charge distribution and electric potential field to chemical
potential;
(∂ρe/∂ψ)Φ

Dependent field ElectricPotential
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter CHARGE DENSITY

Name ”ADD EFFECT OF GRAVITY”
Function Add effect of gravity g(ρα − ρ0)z
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter DIMENSIONLESS GRAVITY
Dependent parameter DIMENSIONLESS DENSITY

2. ChemicalPotential - analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(ucd-data).

3. ChemicalPotential - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

ElectricPotential : electric potential field - commands

ElectricPotential Name

Time evolution ”ELECTRIC POTENTIAL SOLVER”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. ElectricPotential - time evolution commands

Name ”ELECTRIC POTENTIAL SOLVER”
Function Solve Poisson equation for electric potential ∇ · (ϵ∇Φ) = −ρe
Dependent field VolumeFraction
Dependent parameter CHARGE DENSITY
Dependent parameter DIELECTRIC CONSTANT
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter PENALTY NUMBER
Dependent parameter MATRIX SOLVER FOR ELECTRIC FIELD
Dependent parameter MATRIX SOLVER

2. ElectricPotential - partial region condition (boundary condition) commands

Partial region condition treatment

I CONSTANT VALUE initialize to a constant value.
D set to a constant value (Dirichlet condition)
N n · (ϵ∇Φ) = D̄ ·n : give surface charge density (Neumann condition)
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3. ElectricPotential - analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(ucd-data).

4. ElectricPotential - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

K Field : flux field - commands

K Field Name

Initialization ”SET ZERO”
Initialization ”SET CONSTANT FORCE”
Time evolution ”SET ZERO”
Time evolution ”GRADIENT CHEMICAL POTENTIAL”
Time evolution ”APPLY PARTIAL REGION CONDITION”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. K Field - initialization commands

Name ”SET ZERO”
Function Set field values to zero.
Dependent parameter NUMBER OF COMPONENTS

Name ”SET CONSTANT FORCE”
Function Apply a constant external force.
Dependent parameter DIMENSION OF SPACE
Dependent parameter GRAVITY X
Dependent parameter GRAVITY Y
Dependent parameter GRAVITY Z

2. K Field - time evolution commands

Name ”SET ZERO”
Function Set field values to zero.
Dependent parameter NUMBER OF COMPONENTS

Name ”GRADIENT CHEMICAL POTENTIAL”
Function Calculate flux for each component from volume fraction and chemical

potential Kα = −ψα∇µα

Dependent field VolumeFraction
Dependent field ChemicalPotential
Dependent parameter NUMBER OF COMPONENTS

Name ”APPLY PARTIAL REGION CONDITION”
Function Apply partial region conditions.
Dependent parameter NUMBER OF COMPONENTS
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3. K Field - partial region condition (boundary condition) commands

Partial region condition treatment

D CONSTANT VALUE FOR A COMPONENT set flux of a component to a constant value
(Dirichlet condition)
give component index α, Jαx, Jαy and Jαz

as data part.

4. K Field - analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(ucd-data).

5. K Field - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

Pressure : pressure field - commands

Pressure Name

Initialization ”SET ZERO”
Time evolution ”SOLVE PRESSURE”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. Pressure - initialization commands

Name ”SET ZERO”
Function Set field values to zero.

2. Pressure - time evolution commands

Name ”SOLVE PRESSURE”
Function Solve Poisson equation for pressure, ∇2p = 1

∆t∇ · v∗

Dependent field Pressure
Dependent field Velocity
Dependent parameter DT FOR V
Dependent parameter DIMENSION OF SPACE
Dependent parameter PENALTY NUMBER
Dependent parameter MATRIX SOLVER

3. Pressure - partial region condition (boundary condition) commands

Partial region condition treatment

I CONSTANT VALUE initialize to a constant value.
D set to a constant value (Dirichlet condition)
N n · ∇P = P̄n (Neumann condition)
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4. Pressure - analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(ucd-data).

5. Pressure - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

Velocity : velocity field - commands

Velocity Name

Initialization ”SET ZERO”
Initialization ”SET DIRICHLET CONDITION”
Time evolution ”SOLVE VELOCITY AND PRESSURE”
Time evolution ”SOLVE STOKES EQUATION AND PRESSURE”
Boundary condition ”SET DIRICHLET CONDITION”
Evaluation ”RETURN TRUE FUNC”

1. Velocity - initialization commands

Name ”SET ZERO”
Function Set field values to zero.

Name ”SET DIRICHLET CONDITION”
Function Initialize using Dirichlet boundary conditions in partial region conditions.
Dependent field Velocity

2. Velocity - time evolution commands

Name ”SOLVE VELOCITY AND PRESSURE”
Function One time step evolution of velocity by Navier Stokes equation,

Re∂v∂t = −∇p+∇(η{∇v + (∇v)t}) + C−1
a K

Default value of Re is 1.0.
Dependent field Pressure
Dependent field K Field
Dependent field Viscosity
Dependent parameter DT
Dependent parameter REYNOLDS
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter CA
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Name ”SOLVE STOKES EQUATION AND PRESSURE”
Function Solve Stokes flow equation for velocity and pressure;

∇p = ∇(η{∇v + (∇v)t}) + C−1
a K

Dependent field Pressure
Dependent field Velocity
Dependent field K Field
Dependent field Viscosity
Dependent parameter DT
Dependent parameter DT FOR V
Dependent parameter SKIP INTERVAL VELOCITY CALCULATION
Dependent parameter MAX ITERATION FOR VELOCITY SOLVER
Dependent parameter CONVERGENCE CRITERION FOR VELOCITY SOLVER
Dependent parameter DIMENSION OF SPACE
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter CA

3. Velocity - partial region condition (boundary condition) commands

Name ”SET DIRICHLET CONDITION”
Function Apply Dirichlet boundary conditions in partial region conditions. When

your are using command ”SOLVE VELOCITY AND PRESSURE” or
”SOLVE STOKES EQUATION AND PRESSURE”, partial region conditions
are applied automatically, so you may not need to use this command explicitly.

4. Velocity - partial region condition (boundary condition) commands

Partial region condition treatment

D VX set vx to a constant value (Dirichlet condition)
D VY set vy to a constant value (Dirichlet condition)
D VZ set vz to a constant value (Dirichlet condition)

5. Velocity - analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(ucd-data).

6. Velocity - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.

Viscosity : viscosity field - commands

Viscosity Name

Time evolution ”CONSTANT VISCOSITY”
Time evolution ”VISCOSITY DEPENDING ON VOLUME FRACTION”

1. Viscosity - initialization commands
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2. Viscosity - time evolution commands

Name ”CONSTANT VISCOSITY”
Function Set uniform viscosity coefficient with η0 (component 0).
Dependent parameter VISCOSITY

Name ”VISCOSITY DEPENDING ON VOLUME FRACTION”
Function calculate viscosity coefficient from that of each component weighting

by volume fraction η =
∑

α ηαψα

Dependent field VolumeFraction
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter VISCOSITY

VolumeFraction : volume fraction field - commands

VolumeFraction Name

Initialization ”INITIALIZE BY PARTIAL REGION CONDITION”
Initialization ”CONSTANT VOLUME FRACTION”
Initialization ”ADD NOISE”
Initialization ”CONSTANT VOLUME FRACTION WITH NOISE”
Initialization ”UNIFORM CONCENTRATION”
Initialization ”SET DROPLETS”
Time evolution ”APPLY PARTIAL REGION CONDITION”
Time evolution ”SOLVE EQUATION OF CONTINUITY WITH FLOW”
Time evolution ”SOLVE EQUATION OF CONTINUITY WITHOUT FLOW”
Analysis ”OUTPUT SNAPSHOT IN AVS FORMAT”
Evaluation ”RETURN TRUE FUNC”

1. VolumeFraction - initialization commands

Name ”INITIALIZE BY PARTIAL REGION CONDITION”
Function Initialize field using initialization partial region conditions (”I xxx”).
Dependent parameter NUMBER OF COMPONENTS

Name ”CONSTANT VOLUME FRACTION”
Function Initialize volume fraction of each component to a constant value.
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter AVERAGED VOLUME FRACTION

Name ”ADD NOISE”
Function Add random noise.
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter DEVIATION FROM AVERAGED VOLUME FRACTION
Dependent parameter SEED OF RANDOM NUMBER

Name ”CONSTANT VOLUME FRACTION WITH NOISE”
Function Initialize volume fraction of each component to a constant value, and

add noise.
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter AVERAGED VOLUME FRACTION
Dependent parameter DEVIATION FROM AVERAGED VOLUME FRACTION
Dependent parameter SEED OF RANDOM NUMBER

Name ”UNIFORM CONCENTRATION”
Function Initialize concentration of each ion component to a constant value.
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter AVERAGED ION CONCENTRATION
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Name ”SET DROPLETS”
Function Put droplets with specified positions and radii

(2-component system only).
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter NUMBER OF DROPLETS
Dependent parameter RADIUS OF DROPLET
Dependent parameter X COORDINATE OF DROPLET
Dependent parameter Y COORDINATE OF DROPLET
Dependent parameter Z COORDINATE OF DROPLET

2. VolumeFraction - time evolution commands

Name ”APPLY PARTIAL REGION CONDITION”
Function Apply partial region conditions.
Dependent parameter NUMBER OF COMPONENTS

Name ”SOLVE EQUATION OF CONTINUITY WITH FLOW”
Function One step time integration of equation for volume fraction

∂ψα/∂t = −g0∇ · (ψαv)−∇ · Jα

Dependent field K Field
Dependent field Velocity
Dependent parameter DT
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter DIFFUSION COEFFICIENT

Name ”SOLVE EQUATION OF CONTINUITY WITHOUT FLOW”
Function One step time integration of equation for volume fraction

∂ψα/∂t = −∇ · Jα

Dependent field K Field
Dependent parameter DT
Dependent parameter NUMBER OF COMPONENTS
Dependent parameter DIFFUSION COEFFICIENT

3. VolumeFraction - partial region condition (boundary condition) commands

Partial region condition treatment

I CONSTANT VALUE FOR A COMPONENT initialize ψα to a constant value.
Give component index α and ψα as data
part.

D CONSTANT VALUE FOR A COMPONENT set ψα to a constant value (Dirichlet condi-
tion).
Give component index α and ψα as data
part.

4. VolumeFraction - analysis commands

Name ”OUTPUT SNAPSHOT IN AVS FORMAT”
Function Output calculation results on an AVS format file(ucd-data).

5. VolumeFraction - evaluation commands

Name ”RETURN TRUE FUNC”
Function Always return ”true” flag.

This function is used to perform an analysis command with a constant time step
interval.


