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Chapter 1

What is GelDyn?

The Gel Dynamics Simulator named GelDyn is the finite-element-method (FEM) simulator treating the
large deformation dynamics of gels, accompanying the change of external stimuli, such as, temperature,
pressure, e.t.c., and the load of body forces, such as gravity, and surface forces.
The main features are listed below.

1. Target

• Swelling, deswelling and deformation of polymeric gels.

• Solvent flow (diffusion) in polymeric gels with both permeable and impermeable surfaces.

• Both 2D and 3D shapes are supported.

2. Dynamics

• The stress-diffusion coupling model of polymer gels.

• The collective diffusion model of gel networks. (for comparison)

3. Simulation Scheme
The finite element method using the linear triangle (2D) and/or tetrahedron (3D) interpolation.

• The explicit time evolution using non-linear elasticity minimizer. (explicit solvers)

• The implicit time evolution for linearized gel models using matrix solver. (implicit solvers)

4. Solvers

• The explicit stress-diffusion coupling solver. (for both 2D and 3D system)

• The explicit collective diffusion solver. (for both 2D and 3D system)

• The implicit stress-diffusion coupling solver. (for 3D system)

• The implicit collective diffusion solver. (for 3D system)

• The elasticity dynamics solver. (for 3D system)

5. Design of gels

• Design of shapes.

• Design of morphology. . . . concentration of polymer, χ-parameter,
moduli (the crosslinking number density), concentration of counter ions

6. Stimuli for the volume phase transition and deformation

• Change of temperature

• Change of χ-parameter

• Change of solvent (water) pressure on permeable surfaces

• Change of volume forces (gravity) and surface forces

1
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7. Boundary Conditions

• Pressure of pure solvent (water)

– Permeable surfaces (dirichlet)
– Impermeable surfaces (neumann)

• Displacement (velocity) of polymer network

– Fixed surfaces or surfaces moving with constant velocity (dirichlet)
– Load of surface forces

8. Applications

• Disposable diapers and sanitary napkins (super-water absorbents)

• Temperature sensitive gels

• Drug delivery systems (DDS)

• Actuators, sensors and switching devices



Chapter 2

Theoretical Background of GelDyn

2.1 Dynamics of Gels

2.1.1 Overview

Gels are cross-linked networks of polymers swollen with a liquid and have both the liquid-like and solid-like
properties, because a gel has a shear modulus though the major constituent is a liquid. The dynamics of
gels has been described by the collective diffusion model of gel networks, [1, 2] which well reproduces the
swelling phenomena in one axis, such as spherical gels. But the collective diffusion model of gel networks
can’t reproduce the swelling phenomena in two or three axes and the non-liner deswelling phenomena, such
as surface skin formation and stagnation of deswelling.

Recently, several models, which are based on the two fluids model, [3] have been proposed as dynamics of
gels. [3, 4] Here we have constructed the simulation scheme for large deformation of gels and developed the
gel dynamics simulator using the stress-diffusion coupling model of gels, [5] in which the general deformation
of polymer networks, the continuity of solvent and the coupling between solvent diffusion and network stress
are considered. We have also developed the gel dynamics simulator using the collective diffusion model of
gel networks for comparison.

2.1.2 Notation of parameters and definitioin of variables

Notation of symbols for Geldyn simulator are as follows:

3
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Notation of parameters Meaning of parameters
d Dimension of system (2 or 3)
v1 Volume of a monomar unit (ex. v1 = 3.0× 10−29m3 for standard NIPA gels)
kBT Thermal energy per 1 particle. ( 1kBT = 4.12× 10−21 J at T = 298K(25oC) )
ηs Viscosity of solvent ( = 0.89× 10−3 Pa · sec = 0.89× 10−2 Poise for water )
ν Exponent (1/2 for theta-solvent and 3/5 for good-solvent)
ξb Blob size of gels
ρs Mass density of pure solvent
ρp Mass density of pure polymer
g Gravity acceleration
B Magnitude of elastic logarithmic term
Notation of variables Meaning of variables
x Coordinate of material point of polymer
x0 Coordinate of material point of polymer in the reference state
u(x) Displacement of polymer
φ(x) Volume fraction of polymer
φ0(x) Volume fraction of polymer in the reference state

(0.07 for std NIPA)
vs(x) Velocity of solvent
vp(x) Velocity of polymer (≡= u̇)
p(x) Pressure of solvent
F{x} Free energy of gels
σij(x) Cauchy stress tensor of polymer network
Wij(x) Finger strain tensor of polymer network
ρ(x) Mass density of gels (≡ ρpφ + ρs(1− φ))
J(x) Flux of solvent
χ(x) Polymer-solvent interaction parameter
ν0(x) Crosslinking number density in the reference state
νi0(x) Counter ion number density in the reference state
ζ(φ) Friction coefficient between polymer and solvent
K(x) Isotropic bulk modulus of gels
µ(x) Isotropic shear modulus of gels

2.1.3 Dimensionless expression for parameters and variables

In this section, we describe units for Geldyn and dimensionless expressions by the units. We will use the
MKSA unit system throughout this section.

Units for dimensionless physical quantities

Physical quantity unit meaning
length x l system size (ex. = 1.0mm = 1.0× 10−3m )

crosslinking number density ν0 v1 0.036 (ex. ν0 = 1.2× 1027m−3 for std NIPA)
ion number density νi0 v1 0.072 (ex. νi0 = 2.4× 1027m−3 for std NIPA)

energy density and stress ldkBT/v1

friction coefficient ζ(φ) ζ0 ≡ ζ(φ0) ζ/ζ0 ≈ (φ/φ0)2ν/(3ν−1), (ζ ≈ 6πηsξ
−2
b ∝ φ2ν/(3ν−1))

time t τ τ = ζ0l
(2− d)v1/kBT

velocity v v∗ v∗ = l/τ
pressure p p∗ p∗ = ηw/τ

mass density ρ ρ∗ (ex. mass density of water ρ = 1.0g/cm3 = 1.0× 103kg/m3)

2.1.4 Collective diffusion model of gel networks

The dynamics of polymer gels should be discussed from the stand point of the dynamics of polymer solutions.
However, since the polymer gels have elastic properties due to crosslinking by chemical bonds (chemical gels)
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and/or some kinds of interaction (physical gels), such as hydrogen bonding or hydrophobic interaction, the
dynamics of polymer gels is well described in terms of the theory of elasticity. [6] T.Tanaka, et. al. first
developed a theory of the collective diffusion dynamics of gel networks, named ”Tanaka-Fillmore’s theory”.
[2]

The equation of motion of elastic gel networks is described as

ρ
∂2u

∂t
= ∇ · σ + ρg − ζ

∂u

∂t
(2.1)

Here, the first term of the right-hand side represent the elastic term and the last term of the right-hand side
the contribution of the friction between the network and solvent molecules. In most cases, the acceleration
term is much smaller than the other terms and the equation of the collective diffusion dynamics of gel
networks is rewritten as follows.

∂u

∂t
= ζ−1∇ · σ + ρg (2.2)

2.1.5 Stress-diffusion coupling model of gels

The dynamics of polymer gels has to be discussed from the stand point of the dynamics of polymer solutions.
Recently, several models, which are based on the two fluids model and consider the dynamic coupling between
polymer network stress and solvent diffusion, [3] have been proposed as dynamics of gels. [3, 4]

Here, we explain the stress-diffusion coupling dynamics of gels based on two fluids model. The equations
of motion of gels are described as follows.

ζ(vp − vs) = −φ∇p + ∇ · σ + ρpφg (2.3)
ζ(vs − vp) = −(1− φ)∇p + ρs(1− φ)g (2.4)

The incompressibility of gels are written as

∇ · (φvp + (1− φ)vs) = 0. (2.5)

eq.(2.3) and eq.(2.4) makes the mechanical balance equation between the pressure of solvent and the stress
of polymer network.

∇p = ∇ · σ + ρg (2.6)

Here, ρ is the average mass dencity of gels and defined by

ρ ≡ ρpφ + ρs(1− φ)

.

2.2 Free Energy and Stress Tensor of Gels

The general free energy of gels includes three terms as follows.

F = Fmix + Fion + Fel (2.7)

Here, Fmix is the mixing free energy of solvent and polymer networks.

Fmix =
∫

V

ddxfm(φ) (2.8)

Definite expression of the mixing free energy density fm(φ) is Flory-Huggins type or Ginzburg-Landau type:

• Flory-Huggins type
fm = (1− φ) ln(1− φ) + χφ(1− φ) (2.9)
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• Ginzburg-Landau type

fm = (
1
2
− χ)φ2 +

1
6
φ3 +

1
12

φ4 (2.10)

Fion is the translational entropy of counter ions of polyelectrolytes. Here, νi0 denotes the density of counter
ions in the reference state.

Fion =
∫

V

ddxνi0

( φ

φ0

)
ln

( φ

φ0

)
(2.11)

Fel is the elastic energy term for general network deformation.

Fel =
∫

V0

ddx0
ν0

2
(trW − 2B ln

φ

φ0
) (2.12)

=
∫

V

ddx
φ

φ0

ν0

2
(trW − 2B ln

φ

φ0
) (2.13)

=
∫

V

ddx
ν

2
(trW − 2B ln

φ

φ0
) (2.14)

In this term, Wij is the finger strain tensor defined as follows.

Wij =
dxi

dx0k
· dxj

dx0k
(2.15)

Here, x0 denotes the cartesian coordinates in the reference state, ν the crosslinking number density, ν0

the crosslinking number density in the reference state, B the magnitude of elastic logarithmic term, φ the
network volume fraction and φ0 the network volume fraction in the reference state. Volume fraction of the
polymer network is related to the finger strain tensor as φ = φ0detW− 1

2 .
We deform the gel infinitesimally as x → x + u. Then the change of the free energy may be expressed

in the term of the Cauchy stress of polymer network σ in the form,

δF =
∫

dd−1xnj(σij)ui −
∫

ddx∇jσijui =
∫

ddxσij
∂ui

∂xj
(2.16)

Therefore, the stress tensor of polymer network is described as follows.

−σij =
[

φf ′m − fm

]
δij − ν0

φ

φ0
(Wij − (B +

νi0

ν0
)δij) (2.17)

Isotropic bulk modulus K and shear modulus µ of gels, which are needed in the implicit scheme of gels, are
described as follows.

K = φ2f ′′m + ν0

[
(
2
d
− 1)(

φ

φ0
)1−2/d − (B +

νi0

ν0
)

φ

φ0

]
(2.18)

µ = ν0(
φ

φ0
)1−2/d (2.19)

2.3 Boundary Conditions of Geldyn

There are the following in the boundary condition (partial region conditions) which can be imposed on a
field in Geldyn.

2.3.1 Overview of boundary conditions

• Periodic boundary condition :

Possible only in the mesh of the UNSTRUCTURED RECT type. In Geldyn, since the periodic bound-
ary is treated geometrically and a periodic boundary condition will be automatically applied to all
physical quantity if a mesh is made into a periodic, it is not necessary to specify clearly in Input UDF.
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• Dirichlet condition :

The conditions which impose a fixed value to a subregion.

We use the large penalty number method for dirichlet boundary conditions in the implicit solvers. [7]

• Neumann condition :

Give the direction component of a normal of the surface of the gradient vector of physical quantity. It is
not necessary to give clearly the Neumann conditions (natural boundary conditions) whose component
of a normal direction at the border plane of the form of n · ∇f = 0 is zero in the discretization by the
finite element method.

2.3.2 Boundary conditions of Pressure p

The boundary conditions which can be applied to a pressure field are as follows.

• Periodic boundary condition
It can be applied, only when a mesh configuration type is UNSTRUCTURED RECT. The following
equation is imposed when a periodic boundary condition is imposed in the x directions.

p(x, y, z) = p(x + Lx, y, z)

Imposing a periodic boundary condition also in the direction of y, or the direction of z, the same
equation is imposed to each direction.

• Permeable surfaces (Dirichlet condition)
Apply value p0 of a pressure of solvent for a permeable surface.

p(x)|Boundary = p0

In order to give such a Dirichlet boundary condition to a pressure field, input ”D PERMEABLE” into
a condition name and the value of the pressure field on a boundary into the head data of the value of
conditions.

This boundary condition is applied in a method of Polymer Stress field for the explicit stress-diffusion
coupling solver and in a method of Displacement field for the implicit stress-diffusion coupling solver.

• Impermeable surfaces (Neumann condition)
Apply zero pressure gradient for a impermeable surface.

n · ∇p(x)|Boundary = 0

In order to give such a Neumann boundary condition to a pressure field, input ”N” into a condition
name (“N IMPERMEABLE” for impermeable surfaces) and the value of the gradient of pressure field
on a boundary into the head data of the value of conditions.

This boundary condition is applied in a method of Flux field for the explicit stress-diffusion coupling
solver and in a method of Displacement field for the implicit stress-diffusion coupling solver.

2.3.3 Boundary conditions of Displacement u (Polymer Velocity vp)

The boundary conditions which can be set up to a displacement field are as follows.

• Periodic boundary condition
It can be applied, only when a mesh configuration type is UNSTRUCTURED RECT. The following
equation is imposed when a periodic boundary condition is imposed in the x directions.

u(x, y, z) = u(x + Lx, y, z)

When a periodic boundary condition is also imposed in the direction of y, or the direction of z, the
same equation is imposed to each direction.
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• Fixed surfaces or surfaces moving with constant velocity (Dirichlet condition)
The boundary fixed or moved by constant velocity vp0 can be expressed with the following Dirichlet
boundary conditions.

vp(x, y, z)|wall = vp0

For specifying the velocity of the boundary, input “D VX”(Specify X component), “D VY”(Specify
Y component) or “D VZ”(Specify Z component) into a condition name, and input a velocity into the
value of conditions. Or input ”D VEC” into a condition name and input three values, X, Y, and Z
component of a velocity into a value in an array.

This boundary condition is applied in a method of Displacement field for any solver.

• Load of surface forces (Neumann condition)
The load of surface force on gels can be expressed with the following Neumann boundary conditions.

n · (σ − pI)|Boundary = T

For specifying the load of the boundary, input “N LOAD” into a condition name, and input three
values, X, Y, and Z component of a force into the value of conditions.

This boundary condition is applied in a method of Polymer Stress field for the explicit stress-diffusion
coupling solver and in a method of Displacement field for the implicit stress-diffusion coupling solver.

2.4 Simulation Scheme for Dynamics of Gels

The two simulation schemes for the stress-diffusion coupling model are expected as follows.

1. Separation of time scale of the diffusion of solvent and elastic deformation. [4]
→ The explicit scheme (solver) for the stress-diffusion coupling model.

2. Minimize Rayleighian based on two fluid model by Onsager’s theorem for energy dissipation. [3, 8]
→ The implicit scheme (solver) for the stress-diffusion coupling model.

2.4.1 Explicit scheme for collective diffusion model of gel networks

The collective diffusion model of gel networks described as eq.(2.2) is simple relaxation process of free energy
of gels. Therefore eq.(2.2) is rewritten as the follow interal equation.

∂x

∂t
= −ζ−1 δ

δx

[
F −

∫

V

ddxρg · δx−
∫

S

dd−1xT · δx
]

(2.20)

From eq.(2.7), using the linear interpolation of the finite element method and the explicit time evolution,
eq.(2.20) is rewritten as follows.

ẋJ
i = uJ

i /δt

= −
∑

e(3J)

[
− 1

V 0
e

δVe

δxJ
i

∫
e
ddx0(φf ′m(φ)− fm(φ)) + ( δ

δxJ
i
trW )

∑
I(∈e)

νI
0
2

∫
e
ddx0LI(x0)

]

∑
e(3J)

Ve

d+1

+

∑
e(∈V )

∑
I(∈e) ρIgi

∫
e
ddxLI(x)LJ(x)

∑
e(3J)

Ve

d+1

+

∑
e(∈S)

∑
I(∈e) T I

i

∫
e
dd−1xLI(x)LJ(x)

∑
e(3J)

Ve

d+1

(2.21)

Here, I and J denote the vertex number and Ve a volume (3D) or an area (2D) of a finite element.
Using eq.(2.21), we have developed the explicit solver for the collective diffusion of gel networks.

(ref. application examples 01, 02 and 03)
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2.4.2 Implicit scheme for collective diffusion model of gel networks

The Rayleighian for the collective diffusion model of gel networks eq.(2.2) is described as follows.

R{vp(t),x(t)} =
∫

V

ddx[
1
2
ζv2

p + σ : D]−
∫

V

ddxρg · vp −
∫

S

dd−1xT · vp (2.22)

Here, the first term of right hand side denotes the energy dissipation by friction between polymer and solvent,
the second term the change of free energy, the third term the energy change by the volume force (gravity)
and the forth term the energy change by the surface force. D is deformation rate tensor of polymer and
defined as

Dij ≡ 1
2
(
∂vpi

∂xj
+

∂vpj

∂xi
) (2.23)

For the semi-implicit time evolution, polymer stress tensor σij is written as follows.

σij(t + δt) = σij(t) + δt[2µ(t)Dij + (K(t)− 2
d
µ(t))Dllδij ] (2.24)

Here, K, µ and K − 2/dµ express the bulk modulus, shear modulus and lame number of gels at time t.
From eq.(2.22) and eq.(2.24), the Rayleighian for the semi-implicit collective diffusion model linearized for
displacement of polymer u in time t + δt is described as follows.

R{u,x(t), δt}δt =
∫

V

ddx
[1
2

ζ

δt
u2 +µ(eij − 1

d
δijell)2− K

2
e2
ll

]
−

∫

V

ddx(∇σ + ρg) ·u−
∫

S

dd−1xT ·u (2.25)

Here, e is strain tensor for linear elasticity and defined as follows.

eij ≡ 1
2
(
∂ui

∂xj
+

∂uj

∂xi
) (2.26)

Using the linear elasticity (matrix) solver for FEM, we can minimize above functional and solve u and shape
in δt. Therefore, we have developed the semi-implicit solver for the collective diffusion of gel networks.
(ref. application examples 02)

2.4.3 Explicit scheme for stress-diffusion coupling model of gels

Here, by separating the time scale of diffusion of solvent and elastic deformation, [4] we have physically
reduced two fluid model eqs.(2.3,2.4, 2.5) and constructed the simple non-linear simulation scheme for large
deformation of gels using the stress-diffusion coupling model of gels as the follows. [5]

From eq.(2.4), the solvent velocity related to the polymer velocity in gels is proportional to the gradient
of the solvent pressure from the Darcy’s law:

vs − vp = −ζ−1(1− φ)∇p (2.27)

Here, from the mechanical balance between solvent and polymer, the next equation is satisfied.

∇ip = ∇jσij (2.28)

The flux of solvent J related to the polymer is described as follows.

Ji = (φvpi + (1− φ)vsi)− vpi

= −ζ−1(1− φ)2∇jσij (2.29)

Therefore, the time-evolution of volume fraction of the polymer network is calculated by the following
continuity equation using the euler picture:

∂

∂t
φ = −∇iLij(φ)∇kσjk =

∫

V

ddxL(φ)(∇jσji)
δ

δσik
(∇lσkl) +

∫

S

dd−1xJini (2.30)

where Lij(φ) = L(φ)δij is the isotropic Onsager coefficient.
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The deformation of the network at each time is determined by the elastic force balance while keeping a
local volume fraction of gel in the moment, since the elastic force balance are satisfied instantaneously, on
the other hand the diffusion process is so slow. This procedure for the elastic force balance is realized by
minimizing the following elastic free energy using the langrange picture with the constraint term:

D

Dt′
xi(x0, t

′) = −ζ−1 δF ′

δxi
(2.31)

F ′(x) =
∫

V

ddx′
[
α(φ′ − φ)2 +

ν0

2
φ′

φ0
trW

]
(2.32)

Here, φ′, t′ denotes the virtual volume fraction of the polymer network and the virtual time for the elastic
force balance calculation process. The first term of the right hand side is the constraint term for keeping a
local volume fraction φ(x0, t) of gel, when the coefficient α is large.

We formulate the explicit time evolution solver for eqs.(2.30, 2.31, 2.29) using the linear interpolation of
the finite element method.

eq.(2.31) using FEM is similarly described as eq.(2.21), therefore, we describe, here, the FEM formulation
of eq.(2.30) as follows.

φ̇J
∑

e(3J)

Ve

d + 1
=

∑

e(3J)

∑

I(∈e)

∑

i,j

(∇jLI)(∇iLJ)σI
ij

∑

K(∈e)

L(φK)
∫

e

ddxLK

+
∑

e(∈S)

∑

I(∈e)

∑

i

JI
i ni

∫

S

dd−1xLI (2.33)

Here, I and J denote the vertex number and Ve a volume (3D) or an area (2D) of a finite element.
Using above equations, we have developed the explicit solver for the stress-diffusion coupling of gels.

(ref. application examples 03)

2.4.4 Implicit scheme for stress-diffusion coupling model of gels

Here, we have constructed the Rayleighian for the stress-diffusion coupling model of gels described as
eqs.(2.3,2.4, 2.5) [3] and have developed the semi-implicit solver for the stress-diffusion coupling dynam-
ics of gels.

vp· eq.(2.3) +vs· eq.(2.4) leads the Rayleighian for the stress-diffusion coupling dynamics of gels as
follows.

R{ṗ(x(t)),vp(t), p(x(t)),x(t)} =
∫

V

ddx
[1
2
ζ(vp − vs)2 − p∇ · (φvp + (1− φ)vs) + σ : D

]

−
∫

V

ddx(ρpφvp + ρs(1− φ)vs) · g

+
∫

S

dd−1x[p(φvp + (1− φ)vs) · n− (σ · n) · vp] (2.34)

Here, the first term of right hand side denotes the energy dissipation by friction between polymer and solvent,
the second term the incompressibility condition, the third term the change of free energy. D is deformation
rate tensor of polymer and defined as eq.(2.23). Using the boundary condition between polymer stress,
solvent pressure and surface forces described as

(σ − pI) · n = T

, eq.(2.34) is rewritten as follows.

R{ṗ(x(t)),vp(t), p(x(t)),x(t)} =
∫

V

ddx
[
− 1

2ζ
(1− φ)2(∇p− ρsg)2 − p∇ · vp + σ : D

]

−
∫

V

ddx(ρpφ + ρs(1− φ))g · vp

−
∫

S

dd−1xT · vp (2.35)
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For the semi-implicit time evolution, polymer stress tensor σij is written as follows.

σij(t + δt) = σij(t) + δt[2µ(t)Dij + (K(t)− 2
d
µ(t))Dllδij ] (2.36)

Here, K, µ and K − 2/dµ express the bulk modulus, shear modulus and lame number of gels at time t.
Therefore, Rayleighian for the semi-implicit stress-diffusion coupling dynamics linearized for pressure of
solvent p and displacement of polymer u in time t + δt is described as follows.

R{ṗ(x(t)),vp(t), p(x(t)),x(t)} =
∫

V

ddx
[
− 1

2ζ
(1− φ)2(∇p)2 +

1
ζ
(1− φ)2(∇p) · (ρsg)− p∇ · u/δt + σ : e/δt

]

+
∫

V

ddx
{
µ(eij − 1

d
δijell)2 − K

2
e2
ll

}
/δt

−
∫

V

ddx(ρpφ + ρs(1− φ))g · u/δt

−
∫

S

dd−1xT · u/δt (2.37)

Here, e is strain tensor for linear elasticity and defined as eq.(2.26). Using the linear (matrix) solver for FEM,
we can minimize above functional and solve p, u and shape in time t+ δt. Therefore, we have developed the
semi-implicit solver for the stress-diffusion coupling of gels.
(ref. application examples 04 and 05)





Chapter 3

Sample problems of GelDyn

3.1 Sample Problems for Swelling Dynamics of Geldyn

This chapter shows the applications of gel dynamics simulator - Geldyn - by the finite element method for
deformation dynamics of polymer gels. Input and output UDF files corresponding to these applications
are dedicated to the directory MUFFIN/sample/Geldyn/EX01,EX02,.. according to the problem, below the
directory MUFFIN/sample/Geldyn of the distribution version of MUFFIN.

3.1.1 Application 01: Swelling of 2-dimensional slab gels and surface folding

Input UDF file:

MUFFIN/sample/Geldyn/EX01/EX01_in.udf

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

• Mesh . . . type : UNSTRUCTURED RECT, dimension : 2D, size : 64x8, division : 64x16, X-Periodicity.

• Parameters for swelling

Name of Parameters(KEY) Values
NOIZE OF INITIAL DEFORMATION 1.0e− 2
UNIFORM CROSSLINKING DENSITY IN REFERENCE STATE 0.025
UNIFORM VOLUME FRACTION IN REFERENCE STATE 0.5
TYPE OF MIXING FREE ENERGY FLORY HUGGINS
UNIFORM CHI PARAMETER IN INITIAL STATE −20.0

• Boundary conditions

Fix the lower boundary “BOUNDARY VERTEX YMIN”.

partial region field condition values
BOUNDARY VERTEX YMIN Displacement D VEC 0.0, 0.0

• Fields to be used

Chi, Concentration, DerivedFreeEnergy, Displacement, FingerTensor, FreeEnergy, Moduli, and Vol-
umeFraction

• Dynamics and Method . . . Collective Diffusion Model of Gel Networks using Explicit Solver.

Initialization procedure”INITIALIZE:COLLECTIVE DIFFUSION OF GEL NETWORKS” is defined
as follows.

13
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field command for initialization
Chi INITIALIZE:CHI PARAMETER
Concentration INITIALIZE:ION CONCENTRATION
Moduli INITIALIZE:MODULI
VolumeFraction INITIALIZE:VOLUME FRACTION
FingerTensor INITIALIZE:FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
Displacement MOVE:POSITION OF VERTEX BY RANDOM

Time evolution procedure”EVOLVE:COLLECTIVE DIFFUSION OF GEL NETWORKS” is defined
as follows.

field command for evolution
FingerTensor SOLVE:FINGER STRAIN TENSOR
VolumeFraction SOLVE:BY FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
DerivedFreeEnergy SOLVE:DERIVED TOTAL ENERGY
Displacement MOVE:BY COLLECTIVE DIFFUSION

Results of simulation

The example which displays the volume fraction field by the view function of GOURMET is shown in
Fig.3.1.1. From the left figure in time t = 0.0, 120.0, 140.0, and 160.0 are displayed. Action named
“SHOW SWELLING RATIO” on GOURMET is used for a display.

Figure 3.1: Application 01 of Geldyn : Swelling of 2-dimensional slab gels and folding pattern formations on
surface

3.1.2 Application 02: Swelling of 3D plate gels and pattern formation compar-
ison with implicit solver

Input UDF file:

For the explicit solver, MUFFIN/sample/Geldyn/EX02/EX02-1_in.udf.
For the implicit (matrix) solver, MUFFIN/sample/Geldyn/EX02/EX02-2_in.udf.

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

• Mesh . . . type : UNSTRUCTURED RECT, dimension : 3D, size : 16x16x8, division : 16x16x4, XY-
Periodicity.

• Parameters for swelling
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Name of Parameters(KEY) Values
NOIZE OF INITIAL DEFORMATION 1.0e− 2
UNIFORM CROSSLINKING DENSITY IN REFERENCE STATE 0.025
UNIFORM VOLUME FRACTION IN REFERENCE STATE 0.5
TYPE OF MIXING FREE ENERGY FLORY HUGGINS
UNIFORM CHI PARAMETER IN INITIAL STATE −20.0

• Boundary conditions

For “Explicit Solver”, fix the lower boundary “BOUNDARY VERTEX ZMIN”.

partial region field condition values
BOUNDARY VERTEX ZMIN Displacement D VEC 0.0, 0.0, 0.0

For “Implicit Solver”, fix the lower boundary “BOUNDARY VERTEX ZMIN” and set permeable
condition on boundary “BOUNDARY VERTEX ZMAX”.

partial region field condition values
BOUNDARY VERTEX ZMIN Displacement D VEC 0.0, 0.0, 0.0
BOUNDARY VERTEX ZMAX Pressure D PERMEABLE 0.0

• Fields to be used

For “Explicit Solver”, Chi, Concentration, DerivedFreeEnergy, Displacement, FingerTensor, FreeEn-
ergy, Moduli, and VolumeFraction are used.

For “Implicit Solver”, Chi, Concentration, Displacement, FingerTensor, FreeEnergy, Moduli, Volume-
Fraction, PolymerStress, VolumeForce, and Pressure are used.

• Dynamics and Method
. . . “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
. . . “Collective Diffusion Model using Implicit Solver”

Initialization procedure”INITIALIZE:COLLECTIVE DIFFUSION OF GEL NETWORKS” is defined
as follows.
field command for initialization
Chi INITIALIZE:CHI PARAMETER
Concentration INITIALIZE:ION CONCENTRATION
Moduli INITIALIZE:MODULI
VolumeFraction INITIALIZE:VOLUME FRACTION
FingerTensor INITIALIZE:FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
Displacement MOVE:POSITION OF VERTEX BY RANDOM

Time evolution procedure”EVOLVE:COLLECTIVE DIFFUSION OF GEL NETWORKS:IMPLICIT”
is defined as follows.
field command for evolution
FingerTensor SOLVE:FINGER STRAIN TENSOR
VolumeFraction SOLVE:BY FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
Moduli SOLVE:MODULI OF GELS
PolymerStress SOLVE:POLYMER STRESS
PolymerStress APPLY:BOUNDARY CONDITION
VolumeForce SOLVE:VOLUME FORCE BY STRESS AND GRAVITY
Displacement MOVE:BY COLLECTIVE DIFFUSION:LINEAR ELASTICITY

Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.2. From the left figure in time
t = 0.0, 140.0, and 180.0 are displayed. Action named “SHOW SWELLING RATIO” on GOURMET is
used for a display.
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Figure 3.2: Application 02 of Geldyn : Swelling of 3D plate gels and Pattern formation

3.1.3 Application 03: Free swelling of 2D slab gels comparison of two dynamics

Input UDF file:

For the explicit collective diffusion of gel networks,
MUFFIN/sample/Geldyn/EX03/EX03-1_in.udf.

For the explicit stress-diffusion coupling of gels,
MUFFIN/sample/Geldyn/EX03/EX03-2_in.udf.

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

• Mesh . . . type : UNSTRUCTURED RECT, dimension : 2D, size : 128x16, division : 128x16.

• Parameters for swelling

Name of Parameters(KEY) Values
NOIZE OF INITIAL DEFORMATION 1.0e− 3
UNIFORM CROSSLINKING DENSITY IN REFERENCE STATE 0.025
UNIFORM VOLUME FRACTION IN REFERENCE STATE 0.9
TYPE OF MIXING FREE ENERGY GINZBURG LANDAU
UNIFORM CHI PARAMETER IN INITIAL STATE 0.6

• Boundary conditions

For “Explicit Collective Diffusion Dynamics Solver”, you need to input nothing. (in default, all bound-
aries are permeable.)

For “Explicit Stress-Diffusion Coupling Dynamics Solver”, set all boundaries to permeable condition
for free swelling.

partial region field condition values
BOUNDARY VERTEX XMIN Pressure D PERMEABLE 0.0
BOUNDARY VERTEX XMAX Pressure D PERMEABLE 0.0
BOUNDARY VERTEX YMIN Pressure D PERMEABLE 0.0
BOUNDARY VERTEX YMAX Pressure D PERMEABLE 0.0

• Fields to be used

For “Explicit Collective Diffusion Solver of Gel Networks”, Chi, Concentration, DerivedFreeEnergy,
Displacement, FingerTensor, FreeEnergy, Moduli, and VolumeFraction are used.

For “Explicit Stress-Diffusion Coupling Solver”, Chi, Concentration, DerivedFreeEnergy, DerivedIn-
compressibility, Displacement, Flux, FingerTensor, FreeEnergy, Incompressibility, Moduli, Volume-
Fraction, PolymerStress, and Pressure.
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• Dynamics and Method
. . . “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
. . . “Stress-Diffusion Coupling Model using Explicit Solver”

Initialization procedure”INITIALIZE:STRESS DIFFUSION COUPLING OF GELS” is defined as fol-
lows.

field command for initialization
Chi INITIALIZE:CHI PARAMETER
Concentration INITIALIZE:ION CONCENTRATION
Moduli INITIALIZE:MODULI
VolumeFraction INITIALIZE:VOLUME FRACTION
FingerTensor INITIALIZE:FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
Displacement INITIALIZE:MINIMIZER FOR LOCAL EQUILIBRIUM
Displacement MOVE:POSITION OF VERTEX BY RANDOM

Time evolution procedure”EVOLVE:STRESS DIFFUSION COUPLING OF GELS” is defined as fol-
lows.

field command for evolution
FingerTensor SOLVE:FINGER STRAIN TENSOR
VolumeFraction SOLVE:BY FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
PolymerStress SOLVE:POLYMER STRESS
PolymerStress APPLY:BOUNDARY CONDITION
Flux SOLVE:BY PRESSURE COUPLING WITH STRESS AND GRAVITY
VolumeFraction SOLVE:BY SOLVENT FLUX
Displacement MOVE:LOCAL EQUILIBRIUM WITH INCOMPRESSIBILITY

Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.3. From the left figure in time
t = 0.0 and 2000.0 are displayed. Action named “SHOW SWELLING RATIO” on GOURMET is used for
a display.

Figure 3.3: Application 03 of Geldyn : Free swelling of 2D slab gels.

3.1.4 Application 04: Free Swelling of 3D long rod gels comparison of two
dynamics

Input UDF file:

For the explicit collective diffusion of gel networks,
MUFFIN/sample/Geldyn/EX04/EX04-1_in.udf.

For the implicit stress-diffusion coupling of gels,
MUFFIN/sample/Geldyn/EX04/EX04-2_in.udf.
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The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

• Mesh . . . type : UNSTRUCTURED RECT, dimension : 3D, size : 4x4x32, division : 16x16x32.

• Parameters for swelling
Name of Parameters(KEY) Values
NOIZE OF INITIAL DEFORMATION 1.0e− 3
UNIFORM CROSSLINKING DENSITY IN REFERENCE STATE 0.025
UNIFORM VOLUME FRACTION IN REFERENCE STATE 0.9
TYPE OF MIXING FREE ENERGY GINZBURG LANDAU
UNIFORM CHI PARAMETER IN INITIAL STATE 0.6

• Boundary conditions
For “Explicit Collective Diffusion Dynamics Solver”, you need to input no boundary condition. (in
default, all boundaries are permeable.)
For “Implicit Stress-Diffusion Coupling Dynamics Solver”, set all boundaries to permeable condition
for free swelling.
partial region field condition values
BOUNDARY VERTEX XMIN Pressure D PERMEABLE 0.0
BOUNDARY VERTEX XMAX Pressure D PERMEABLE 0.0
BOUNDARY VERTEX YMIN Pressure D PERMEABLE 0.0
BOUNDARY VERTEX YMAX Pressure D PERMEABLE 0.0
BOUNDARY VERTEX ZMIN Pressure D PERMEABLE 0.0
BOUNDARY VERTEX ZMAX Pressure D PERMEABLE 0.0

• Fields to be used
For “Explicit Collective Diffusion Solver of Gel Networks”, Chi, Concentration, DerivedFreeEnergy,
Displacement, FingerTensor, FreeEnergy, Moduli, and VolumeFraction are used.
For “Implicit Stress-Diffusion Coupling Solver”, Chi, Concentration, Displacement, FingerTensor,
FreeEnergy, Moduli, VolumeFraction, PolymerStress, and Pressure.

• Dynamics and Method
. . . “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
. . . “Stress-Diffusion Coupling Model using Implicit Solver”
Initialization procedure”INITIALIZE:STRESS DIFFUSION COUPLING OF GELS:IMPLICIT” is de-
fined as follows.
field command for initialization
Chi INITIALIZE:CHI PARAMETER
Concentration INITIALIZE:ION CONCENTRATION
Moduli INITIALIZE:MODULI
VolumeFraction INITIALIZE:VOLUME FRACTION
FingerTensor INITIALIZE:FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
Displacement MOVE:POSITION OF VERTEX BY RANDOM

Time evolution procedure”EVOLVE:STRESS DIFFUSION COUPLING OF GELS:IMPLICIT” is de-
fined as follows.
field command for evolution
FingerTensor SOLVE:FINGER STRAIN TENSOR
VolumeFraction SOLVE:BY FINGER STRAIN TENSOR
FreeEnergy SOLVE:TOTAL ENERGY
Moduli SOLVE:MODULI OF GELS
PolymerStress SOLVE:POLYMER STRESS
Displacement MOVE:BY STRESS DIFFUSION COUPLING:LINEAR ELASTICITY
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Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.4. From the left figure in time
t = 0.0 and 1000.0 are displayed. Action named “SHOW SWELLING RATIO” on GOURMET is used for
a display.

Figure 3.4: Application 04 of Geldyn : Free swelling of 3D long rod gels.

3.1.5 Application 05: Free Swelling of 3D large disk gels comparison of two
dynamics

Input UDF file:

For the explicit collective diffusion of gel networks,
MUFFIN/sample/Geldyn/EX05/EX05-1_in.udf.

For the implicit stress-diffusion coupling of gels,
MUFFIN/sample/Geldyn/EX05/EX05-2_in.udf.

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

• Mesh . . . type : UNSTRUCTURED RECT, dimension : 3D, size : 32x32x4, division : 32x32x16.

• Parameters for swelling . . . same as Application 04.

• Boundary conditions . . . same as Application 04.

• Fields to be used . . . same as Application 04.

• Dynamics and Method
. . . “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
. . . “Stress-Diffusion Coupling Model using Implicit Solver” is the same as “Application 04”.

Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.5. From the left figure in time
t = 0.0 and 1000.0 are displayed. Action named “SHOW SWELLING RATIO” on GOURMET is used for
a display.



20 CHAPTER 3. SAMPLE PROBLEMS OF GELDYN

Figure 3.5: Application 05 of Geldyn : Free swelling of 3D large disk gels.



Chapter 4

Operation Guide of GelDyn

4.1 Input Parameters of Geldyn

4.1.1 Solver control parameters of Geldyn

Name of Parameters Meanings and notations in theory
INTERVAL OF MINIMIZER Interval of monitoring for minimizer.

OUTPUT
MAX ITERATION OF MINIMIZER Max iteration of minimizer.
DT FOR LOCAL EQUILIBRIUM DT for minimizer

MINIMIZER in the explicit stress-diffusion coupling solver.
DT FOR STATIC EQUILIBRIUM DT for “SIMPLEMIN” minimizer

MINIMIZER in the explicit static equilibrium solver.
ENERGY WEIGHT IN MINIMIZER Weight of elastic energy

in the explicit stress-diffusion coupling minimizer.
INCOMPRESSIBILITY WEIGHT Weight of error of incompressibility (large number)

IN MINIMIZER in the explicit stress-diffusion coupling minimizer.
MATRIX SOLVER Linear equation (matrix equation) solver name

for implicit solvers to be used.
Either “ICCG” or ”CG”. Default is “ICCG”.

CONVERGENCE CRITERION Convergence criterion for CG solver of linear equation.
FOR CG 1 When the norm of residue vector is less than this

criterion, calculation is judged to have converged.
The default value is 0.5× 10−6

CONVERGENCE CRITERION Another convergence criterion for CG solver of linear
FOR CG 2 equation. When the ratio of norm of residue vector

and right hand side vector is less than this criterion,
calculation is judged to have converged. The default
value is zero, and it means that this criterion is
not applied. If fixed displacement condition,
which is treated by the penalty method, is applied,
this criterion should be set to zero.

PENALTY NUMBER A penalty number to handle Dirichlet condition
FOR DIRICHLET BC (a very large number).

The default value is 1013.
ELEMENTS PER MATRIX MERGE In composition procedure of a matrix (stiffness matrix)

for displacement calculation, the matrix may not be
composed for all elements at once, but can be composed
incrementally for groups of elements. The number of
elements of the groups is specified by this parameter.
The default is 5000. The size of memory for matrix
composition can be reduced if number of elements is
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larger than value of this parameter.

4.1.2 Physical parameters of Geldyn

Name of Parameters Meanings and notations in theory
SEED OF RANDOM NUMBER Seed of rundom number for initial deformation by random.
NOIZE OF INITIAL DEFORMATION Magnitude of initial deformation by random.
EXPONENT NU Exponent ν for volume fraction dependency to blob size.

ν equals 1/2 for θ-solvent and 3/5 for good-solvent.
MAGNITUDE OF ELASTIC LOGTERM Magnitude of elastic logarithmic term. (default 0.0)
TYPE OF MIXING FREE ENERGY Type of mixing free energy of gels to be used.

Either “FLORY HUGGINS” or ”GINZBURG RANDAU”
Default is “GINZBURG RANDAU”.

GRAVITY X X component of gravitational acceleration vector.
GRAVITY Y Y component of gravitational acceleration vector.
GRAVITY Z Z component of gravitational acceleration vector.
GRAVITY gravity acceleration vector given as an array.

ie.) [ gX , gY , gZ ]
MASS DENSITY mass density of polymer and solvent

(mass density when volume fraction is 1.0).
UNIFORM VOLUME FRACTION Uniform volume fraction in reference state.

IN REFERENCE STATE If this parameter does’t exist, UDF input field data
(“VolumeFraction”) are applied.

UNIFORM CROSSLINKING DENSITY Uniform crosslingking number density in reference state.
IN REFERENCE STATE If this parameter does’t exist, UDF input field data

(1st component of “Moduli”) are applied.
UNIFORM SHEAR MODULUS Uniform isotropic shear modulus for implicit solver.

If this parameter does’t exist, UDF input field data
(2nd component of “Moduli”) are applied.

UNIFORM BULK MODULUS Uniform isotropic bulk modulus for implicit solver.
If this parameter does’t exist, UDF input field data
(3rd component of “Moduli”) are applied.

UNIFORM CHI PARAMETER Uniform polymer-solvent interaction parameter
IN INITIAL STATE (in initial state).

If this parameter does’t exist, UDF input field data
(1st component of “Chi”) are applied.

STIMULI OF QUENCH Type of stimuli for quench to be used.
Either “CHI” (change χ-parameter field)
or ”TEMPERATURE”(change temperature).
Default is “CHI”.

TEMPERATURE IN INITIAL STATE Temperature of system in initial state (defore quench).
Input this parameter, if ”TEMPERATURE” is selected
as STIMULI OF QUENCH.

TEMPERATURE IN FINAL STATE Temperature of system in final state (after quench).
Input this parameter, if ”TEMPERATURE” is selected
as STIMULI OF QUENCH.

UNIFORM CHI PARAMETER Uniform polymer-solvent interaction parameter
IN FINAL STATE in final state (after quench), when ”CHI” is selected

as STIMULI OF QUENCH.
If this parameter does’t exist, UDF input field data
(2nd component of “Chi”) are applied.

UNIFORM ION CONCENTRATION Uniform ion concentration (in initial state).
IN REFERENCE STATE If this parameter does’t exist, UDF input field data

(1st component of “Concentration”) are applied.
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4.1.3 Analysis results of Geldyn

Name of Results Meanings and notations in theory
TOTAL FREE ENERGY Total free energy of gels
TOTAL ELASTIC FREE ENERGY Total elastic energy of gels
TOTAL ERROR OF INCOMPRESSIBILITY Total error of incompressibility of gels for the ex-

plicit stress-diffusion coupling solver

4.2 Fields and Commands for Fields of Geldyn

4.2.1 List of Fields for Geldyn

Name of Field Meanings and notations in theory
Displacement Displacement (Velocity) of polymer network (essential)
FingerTensor Finger tensor of polymer network (essential)
VolumeFraction Volume fraction of polymer (essential)
Moduli The crosslinking number density, bulk and shear modulus (essential)
Chi Polymer-solvent interaction parameter (essential)
Concentration Counter ions concentration (essential)
FreeEnergy Free energy density of gels (for the explicit solvers)
PolymerStress Polymer network stress tensor (for the stress-diffusion coupling solvers

and the implicit solver of the collective diffusion solver)
Pressure Pressure of solvent (for the stress-diffusion coupling solvers)
Flux Flux of solvent (for the stress-diffusion coupling solvers)
VolumeForce Volume force of gels (for the implicit collective diffusion solver)
DerivedFreeEnergy Derived free energy on vertex (for the explicit stress-diffusion coupling

solver)
Incompressibility Error of incompressibility of gels (for the explicit stress-diffusion cou-

pling solver)
DerivedIncompressibility Derived error of incompressibility of gels on vertex (for the explicit

stress-diffusion coupling solver)

4.2.2 List of Commands for Geldyn

VolumeFraction : Volume fraction of polymer - commands

VolumeFraction Name
Initialization ”INITIALIZE:VOLUME FRACTION”
Time evolution ”SOLVE:BY FINGER STRAIN TENSOR”
Time evolution ”SOLVE:BY SOLVENT FLUX”

1. VolumeFraction - initialization commands

Name ”INITIALIZE:VOLUME FRACTION”
Function Initialize volume fraction of polymer

from morphology input data or uniform parameter.
If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter UNIFORM VOLUME FRACTION IN REFERENCE STATE

2. VolumeFraction - time evolution commands

Name ”SOLVE:BY FINGER STRAIN TENSOR”
Function Solve volume fraction of polymer by finger strain tensor
Dependent field FingerTensor
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Name ”SOLVE:BY SOLVENT FLUX”
Function One step time integration of equation for volume fraction
Dependent field Flux
Dependent parameter DT

Displacement : Displacement of polymer network - commands

Displacement Name
Initialization ”INITIALIZE:MINIMIZER FOR LOCAL EQUILIBRIUM”
Time evolution ”MOVE:POSITION OF VERTEX”
Time evolution ”MOVE:POSITION OF VERTEX BY RANDOM”
Time evolution ”MOVE:BY COLLECTIVE DIFFUSION”
Time evolution ”MOVE:GO TO STATIC EQUILIBRIUM”
Time evolution ”MOVE:LOCAL EQUILIBRIUM WITH INCOMPRESSIBILITY”
Time evolution ”MOVE:BY COLLECTIVE DIFFUSION:LINEAR ELASTICITY”
Time evolution ”MOVE:BY STRESS DIFFUSION COUPLING:LINEAR ELASTICITY”
Time evolution ”MOVE:BY LINEAR ELASTICITY DYNAMICS”

1. Displacement - initialization commands

Name ”INITIALIZE:MINIMIZER FOR LOCAL EQUILIBRIUM”
Function Initialize minimizer for the explicit stress-diffusion coupling solver
Dependent parameter MINIMIZER
Dependent parameter MINIMIZER REGION MIN X
Dependent parameter MINIMIZER REGION MAX X
Dependent parameter MINIMIZER REGION MIN Y
Dependent parameter MINIMIZER REGION MAX Y
Dependent parameter MINIMIZER REGION MIN Z
Dependent parameter MINIMIZER REGION MAX Z

2. Displacement - time evolution commands

Name ”MOVE:POSITION OF VERTEX”
Function Move position of vertices and deform mesh with dirichlet BC

Name ”MOVE:POSITION OF VERTEX BY RANDOM”
Function Move position of vertices by randomize with dirichlet BC
Dependent parameter SEED OF RANDOM NUMBER
Dependent parameter NOIZE OF INITIAL DEFORMATION

Name ”MOVE:BY COLLECTIVE DIFFUSION”
Function Solve the explicit collective diffusion solver with dirichlet BC
Dependent field FreeEnergy
Dependent field DerivedFreeEnergy
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent parameter DT
Dependent parameter EXPONENT NU
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Name ”MOVE:GO TO STATIC EQUILIBRIUM”
Function Solve the static equilibrium shape and deform with dirichlet BC
Dependent field FreeEnergy
Dependent field DerivedFreeEnergy
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent parameter MINIMIZER
Dependent parameter MINIMIZER REGION MIN X
Dependent parameter MINIMIZER REGION MAX X
Dependent parameter MINIMIZER REGION MIN Y
Dependent parameter MINIMIZER REGION MAX Y
Dependent parameter MINIMIZER REGION MIN Z
Dependent parameter MINIMIZER REGION MAX Z
Dependent parameter INTERVAL OF MINIMIZER OUTPUT
Dependent parameter MAX ITERATION OF MINIMIZER
Dependent parameter DT FOR STATIC EQUILIBRIUM MINIMIZER

Name ”MOVE:LOCAL EQUILIBRIUM
WITH INCOMPRESSIBILITY”

Function Solve the explicit stress-diffusion coupling solver with dirichlet BC
Dependent field FreeEnergy
Dependent field DerivedFreeEnergy
Dependent field Incompressibility
Dependent field DerivedIncompressibility
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent parameter ENERGY WEIGHT IN MINIMIZER
Dependent parameter INCOMPRESSIBILITY WEIGHT IN MINIMIZER
Dependent parameter INTERVAL OF MINIMIZER OUTPUT
Dependent parameter MAX ITERATION OF MINIMIZER
Dependent parameter DT FOR LOCAL EQUILIBRIUM MINIMIZER

Name ”MOVE:BY COLLECTIVE DIFFUSION
:LINEAR ELASTICITY”

Function Solve the implicit collective diffusion solver with BC
Dependent field VolumeForce
Dependent field Moduli
Dependent field VolumeFraction
Dependent parameter MATRIX SOLVER
Dependent parameter ELEMENTS PER MATRIX MERGE
Dependent parameter PENALTY NUMBER FOR DIRICHLET BC
Dependent parameter DT
Dependent parameter EXPONENT NU
Dependent parameter CONVERGENCE CRITERION FOR CG 1
Dependent parameter CONVERGENCE CRITERION FOR CG 2



26 CHAPTER 4. OPERATION GUIDE OF GELDYN

Name ”MOVE:BY STRESS DIFFUSION COUPLING
:LINEAR ELASTICITY”

Function Solve pressure and deformation by the implicit stress-diffusion coupling
solver with BC

Dependent field Pressure
Dependent field Moduli
Dependent field VolumeFraction
Dependent field PolymerStress
Dependent parameter MATRIX SOLVER
Dependent parameter ELEMENTS PER MATRIX MERGE
Dependent parameter PENALTY NUMBER FOR DIRICHLET BC
Dependent parameter DT
Dependent parameter EXPONENT NU
Dependent parameter CONVERGENCE CRITERION FOR CG 1
Dependent parameter CONVERGENCE CRITERION FOR CG 2
Dependent parameter GRAVITY
Dependent parameter GRAVITY X
Dependent parameter GRAVITY Y
Dependent parameter GRAVITY Z
Dependent parameter MASS DENSITY

Name ”MOVE:BY LINEAR ELASTICITY DYNAMICS
Function Solve the linear elasticity dynamics with BC
Dependent field VolumeForce
Dependent field Moduli
Dependent parameter MATRIX SOLVER
Dependent parameter ELEMENTS PER MATRIX MERGE
Dependent parameter PENALTY NUMBER FOR DIRICHLET BC
Dependent parameter DT
Dependent parameter CONVERGENCE CRITERION FOR CG 1
Dependent parameter CONVERGENCE CRITERION FOR CG 2

3. Displacement - partial region condition (boundary condition) commands

Partial region condition meanings and parameters
D VEC Set velocity on vertices in specified partial region(fixed displace-

ment condition). Give a 3-dimensional vector. Conditions
”D VX”,”D VY” and ”D VZ” are prepared for cases in which not
all displacement vector components should be fixed.

D VX X component of fixed velocity vector.
D VY Y component of fixed velocity vector.
D VZ Z component of fixed velocity vector.
N LOAD Set load on vertices in specified partial region(fixed load condition).

Give a 3-dimensional vector.
N LOAD NORMAL Set load on vertices normal direction of specified partial region(fixed

load condition).
positive: outer direction, negative: inner direction.

FingerTensor : Finger tensor of polymer network - commands

FingerTensor Name
Initialization ”INITIALIZE:FINGER STRAIN TENSOR”
Time evolution ”SOLVE:FINGER STRAIN TENSOR”

1. FingerTensor - initialization commands
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Name ”INITIALIZE:FINGER STRAIN TENSOR”
Function Initialize finger strain tensor and set reference mesh shape

2. FingerTensor - time evolution commands

Name ”SOLVE:FINGER STRAIN TENSOR”
Function Solve finger strain tensor by present mesh shape

PolymerStress : Polymer network stress tensor - commands

PolymerStress Name
Time evolution ”SOLVE:POLYMER STRESS”
Time evolution ”APPLY:BOUNDARY CONDITION”

1. PolymerStress - time evolution commands

Name ”SOLVE:POLYMER STRESS”
Function Solve polymer network stress tensor by finger strain tensor
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent field Chi
Dependent field Moduli
Dependent field Concentration
Dependent parameter MAGNITUDE OF ELASTIC LOGTERM
Dependent parameter TYPE OF MIXING FREE ENERGY

Name ”APPLY:BOUNDARY CONDITION”
Function Apply boundary condition from BC of pressure and load of displacement
Dependent field Pressure
Dependent field Displacement

Pressure : Pressure of solvent - commands

1. Pressure - partial region condition (boundary condition) commands

Partial region condition meanings and parameters
D PERMEABLE set a constant value (Dirichlet condition) for permeable surface. (only

stress-diffusion coupling)
Other surfaces are considered as impermeable wall.
(cf. In the collective diffusion model, all surfaces are considered as
permeable ones.)

Flux : Flux of solvent - commands

Flux Name
Time evolution ”SOLVE:BY PRESSURE COUPLING WITH STRESS AND GRAVITY”

1. Flux - time evolution commands
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Name ”SOLVE:BY PRESSURE COUPLING
WITH STRESS AND GRAVITY”

Function Solve flux of solvent with gravity and BC
Dependent field VolumeFraction
Dependent field PolymerStress
Dependent field Pressure
Dependent field Displacement
Dependent parameter EXPONENT NU
Dependent parameter GRAVITY
Dependent parameter GRAVITY X
Dependent parameter GRAVITY Y
Dependent parameter GRAVITY Z
Dependent parameter MASS DENSITY

VolumeForce : Volume force of gels - commands

VolumeForce Name
Time evolution ”SOLVE:VOLUME FORCE BY STRESS AND GRAVITY”
Time evolution ”SOLVE:VOLUME FORCE BY GRAVITY”

1. VolumeForce - time evolution commands

Name ”SOLVE:VOLUME FORCE BY STRESS AND GRAVITY”
Function Solve volume force of gels by gravity and gradient of polymer stress
Dependent field VolumeFraction
Dependent field PolymerStress
Dependent parameter GRAVITY
Dependent parameter GRAVITY X
Dependent parameter GRAVITY Y
Dependent parameter GRAVITY Z
Dependent parameter MASS DENSITY

Name ”SOLVE:VOLUME FORCE BY GRAVITY”
Function Solve volume force of gels by gravity
Dependent field VolumeFraction
Dependent parameter GRAVITY
Dependent parameter GRAVITY X
Dependent parameter GRAVITY Y
Dependent parameter GRAVITY Z
Dependent parameter MASS DENSITY

Moduli : The crosslinking number density, bulk and shear modulus - commands

Moduli Name
Initialization ”INITIALIZE:MODULI”
Time evolution ”SOLVE:MODULI OF GELS”

1. Moduli - initialization commands

Name ”INITIALIZE:MODULI”
Function Initialize crosslingking number density in reference state,

or shear and bulk modulus
from input field data or uniform parameter
If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter UNIFORM CROSSLINKING DENSITY IN REFERENCE STATE
Dependent parameter UNIFORM SHEAR MODULUS
Dependent parameter UNIFORM BULK MODULUS
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2. Moduli - time evolution commands

Name ”SOLVE:MODULI OF GELS”
Function Solve isotropic bulk and shear modulus field of gels.
Dependent field VolumeFraction
Dependent field Chi
Dependent field Concentration
Dependent parameter MAGNITUDE OF ELASTIC LOGTERM
Dependent parameter TYPE OF MIXING FREE ENERGY

Chi : Polymer-solvent interaction parameter - commands

Chi Name
Initialization ”INITIALIZE:CHI PARAMETER”
Time evolution ”QUENCH:CHANGE CHI PARAMETER”

1. Chi - initialization commands

Name ”INITIALIZE:CHI PARAMETER”
Function Initialize χ-parameter from input field data or uniform parameter

If uniform parameter doesn’t exist, field data is inputted.
Dependent parameter UNIFORM CHI PARAMETER IN INITIAL STATE

2. Chi - time evolution commands

Name ”QUENCH:CHANGE CHI PARAMETER”
Function Change temperature or χ-parameter field and quench the system.
Dependent parameter STIMULI OF QUENCH
Dependent parameter TEMPERATURE IN INITIAL STATE
Dependent parameter TEMPERATURE IN FINAL STATE
Dependent parameter UNIFORM CHI PARAMETER IN FINAL STATE

Concentration : Counter ions concentration - commands

Concentration Name
Initialization ”INITIALIZE:ION CONCENTRATION”

1. Concentration - initialization commands

Name ”INITIALIZE:ION CONCENTRATION”
Function Initialize counter ions concentration

from input field data or uniform parameter
If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter UNIFORM ION CONCENTRATION IN REFERENCE STATE

FreeEnergy : Free energy and elastic energy of gels - commands

FreeEnergy Name
Time evolution ”SOLVE:TOTAL ENERGY”
Time evolution ”SOLVE:ELASTIC ENERGY”

1. FreeEnergy - time evolution commands
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Name ”SOLVE:TOTAL ENERGY”
Function Solve free energy of gels and analyze the total free energy
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent field Chi
Dependent field Moduli
Dependent field Concentration
Dependent parameter MAGNITUDE OF ELASTIC LOGTERM
Dependent parameter TYPE OF MIXING FREE ENERGY
Dependent result TOTAL FREE ENERGY

Name ”SOLVE:ELASTIC ENERGY”
Function Solve elastic energy of gels and analyze the total elastic energy
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent field Moduli
Dependent parameter MAGNITUDE OF ELASTIC LOGTERM
Dependent result TOTAL ELASTIC FREE ENERGY

Incompressibility : Error of incompressibility of gels - commands

Incompressibility Name
Time evolution ”SOLVE:INCOMPRESSIBILITY”

1. Incompressibility - initialization commands

2. Incompressibility - time evolution commands

Name ”SOLVE:INCOMPRESSIBILITY”
Function Solve error of incompressibility of gels

and analyze the total error of incompressibility
Dependent field VolumeFraction
Dependent result TOTAL ERROR OF INCOMPRESSIBILITY

DerivedFreeEnergy : Derived free energy on vertex - commands

DerivedFreeEnergy Name
Time evolution ”SOLVE:DERIVED TOTAL ENERGY”
Time evolution ”SOLVE:DERIVED ELASTIC ENERGY”

1. DerivedFreeEnergy - time evolution commands

Name ”SOLVE:DERIVED TOTAL ENERGY”
Function Solve derived free energy of gels on vertices
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent field Chi
Dependent field Moduli
Dependent field Concentration
Dependent parameter MAGNITUDE OF ELASTIC LOGTERM
Dependent parameter TYPE OF MIXING FREE ENERGY

Name ”SOLVE:DERIVED ELASTIC ENERGY”
Function Solve derived elastic energy of gels on vertices
Dependent field VolumeFraction
Dependent field FingerTensor
Dependent field Moduli
Dependent parameter MAGNITUDE OF ELASTIC LOGTERM
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DerivedIncompressibility : Derived error of incompressibility of gels - commands

DerivedIncompressibility Name
Time evolution ”SOLVE:DERIVED INCOMPRESSIBILITY”

1. DerivedIncompressibility - time evolution commands

Name ”SOLVE:DERIVED INCOMPRESSIBILITY”
Function Solve derived error of incompressibility of gels on vertices
Dependent field VolumeFraction
Dependent field FingerTensor
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