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Chapter 1

Introduction

Solubilities between polymers and, polymers and solvents are important properties and easily estimations of
these properties have been desired. POTAGE (Phase diagram utility Of Ternary AGEnts) is one of programs
for such estimations. POTAGE generates triangle phase diagrams of polymers/solvents mixture with three
components. The feature of POTAGE is the usage of extended Flory-Huggins theory and the theory enables
us generating phase diagrams with random copolymers and block copolymers. Parameters for calculations
with POTAGE are polymer architectures (topologies of constructing chains and numbers of segments for each
constructing chains) and Flory-Huggins interaction energy between segments (Flory-Huggins χ parameters).

χ parameters can be estimated by a python script using PolymerDatabase , which includes solubility
parameters, generated by OCTA project.

The latest version of POTAGE draws spinodal curves and critical points only on triangle phase diagrams.
The functional of drawing binodal curves will be impremented in future.
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Chapter 2

Theoretical background

2.1 Mixing energy of Flory-Huggins theory

We can calculate the free energy of mixture of polymers/solvents with Flory-Huggins theory, which uses the
lattice theory. The derivation of the theory is written in many letartures, please refer these letartures in
detail [1].

The mixing free energy of Flory-Huggins theory with n components can be written by the generalized
form

∆G

RT
=

n∑
i

ϕi

Ni
lnϕi +

n∑
i

n∑
j>i

χijϕiϕj , (2.1)

n∑
i

ϕi = 1, (2.2)

where R is gas constant, T is thermodynamic temperature, Ni is the number of segments of i-th chain, ϕi

is the volume fraction of i-th chain, and χij is the Flory-Huggins interaction energy between segments com-
posing i-th and j-th chains. Basic Flory-Huggins equation (2.1) was derivered for systems of homopolymer
blends and the theory has been modified for random copolymer blends. [2] [3] [4]. The mixing energy of
random copolymer can be considered as follows. The i-th chain of random copolymer is composed of ki kinds
of segments and each ki segments volume fracrtion is {yp}. The mixing energy of the system of random
copolymer is considered as [Mixing energy of segment-segment interactions]

= [Whole segment-segment interactions energy] - [Internal energy of segment-segment interactions
in random copolymers]
Therefore, equation (2.1) can be modified by

∆G

RT
=

n∑
i

ϕi

Ni
lnϕi +

n∑
i

n∑
j≥i

ki∑
p

kj∑
q>p

χpqypyqϕiϕj −
n∑
i

ki∑
p

ki∑
q>p

χpqypyqϕi (2.3)

=
n∑
i

ϕi

Ni
lnϕi +

n∑
i

n∑
j≥i

χ′
ijϕiϕj −

n∑
i

χ′
iiϕi, (2.4)

where, in right-hand side, the second term is the whole segment-segment interaction energy, the third term
is the internal energy of segment-segment interactions in random copolymers. Take care to the relation of i
and j in the sum, it is different with equation (2.1) and the sum is done between the same volume fraction
ϕi. In equation (2.4), χ′

ij is the effective χ parameter for randomness written by

χ′
ij =

ki∑
p

kj∑
q>p

χpqypyq. (2.5)

Using the equaiton (2.4), the phenomena of miscibility windows of polymer arroys composed of random
copolymers can be explained [2] [3] [4] [5] [6]. The following sections, we use the equation (2.1) as the
standard equation for derivation instead of equation (2.4).
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4 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Partial differential equation of mixing energy of Flory-Huggins equation

The partial differentiation of Flory-Huggins equation (2.4) by the i-th volume fraction ϕi gives the own
chemical potential µi. Using such the manner, several theories using partial differentiations deriverd based
on Flory-Huggins equation are considered for generating spinodal, binodal and critical conditions. However,
these partial differentiations must be done under the imcompressibility condition and the introducing the
imcompressibility condition demands asymmetric treatments in equations. Derived equations introducing the
imcompressibility condition explicitly tends to be complex, therefore we use implicit method to introduce the
imcompressibility condition that we differentiate Flory-Huggins equation (2.4) with the variable {si} which
is implicitlty a componet of ϕi and the imcompressibility condition introduced to the final derived equation,
which is symmetric equation for eqch components, with {si}. This implicit method reduces complexities in
numerical treatments.

First, we express equation (2.4) as G and partially differentiation it by s1 gives

∂G

∂s1
=

n∑
i

1

Ni

(
lnϕi + 1

)∂ϕi

∂s1
+

n∑
i

n∑
j≥i

χ′
ij

(∂ϕi

∂s1
ϕj + ϕi

∂ϕj

∂s1

)
−

n∑
i

χ′
ii

∂ϕi

∂s1
. (2.6)

This equation means the chemical potential of i-th components. Fathermore, we continue to differentiate
partially to this equation by s2, s3, ..., and get higher order differentiate equations using the extinction rule
of the imcompressibility condition that over secondally differentiated terms by the same {si} are vanished
as follows.

∂2G

∂s2∂s1
=

n∑
i

( 1

Niϕi

∂ϕi

∂s2

∂ϕi

∂s1

)
+

n∑
i

n∑
j≥i

χ′
ij

(∂ϕi

∂s1

∂ϕj

∂s2
+

∂ϕi

∂s2

∂ϕj

∂s1

)
(2.7)

∂3G

∂s3∂s2∂s1
=

n∑
i

(
− 1

Niϕ2
i

∂ϕi

∂s3

∂ϕi

∂s2

∂ϕi

∂s1

)
(2.8)

..........

∂mG

∂sm....∂s3∂s2∂s1
=

n∑
i

( 1

Ni
(−1)m−2(m− 2)!

1

ϕm−1
i

m∏
j

∂ϕi

∂sj

)
, (2.9)

where equation (2.9) is the m-th order partial differential equation over third degree partial differentiation.
We introduce the imcompressibility condition to the implicit partially differentiate equations derived

above. We define the number of components as n and can select any component as a dependent component
under the imcompressibility condition. We choose the dependent component as sj = ϕj and the expression
of ∂ϕi/∂sk is written as follows.

∂ϕi

∂sk
= 1 (k = i) (2.10)

∂ϕi

∂sk
= 0 (k ̸= i, k ̸= j) (2.11)

∂ϕi

∂sk
= −1 (k = j). (2.12)

Consequently, ∂ϕk/∂sk has the values 1,0, or -1. For example, ternally systems need a simple impricit rule
for any higher order partially differentiate equation such as
i = 1, j = 3, s1 = ϕ1

∂ϕ1

∂s1
= 1 (2.13)

∂ϕ2

∂s1
= 0 (2.14)

∂ϕ3

∂s1
= −1 (2.15)

i = 2, j = 1, s2 = ϕ2

∂ϕ1

∂s2
= −1 (2.16)
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∂ϕ2

∂s2
= 1 (2.17)

∂ϕ3

∂s2
= 0 (2.18)

i = 3, j = 2, s3 = ϕ3

∂ϕ1

∂s3
= 0 (2.19)

∂ϕ2

∂s3
= −1 (2.20)

∂ϕ3

∂s3
= 1 (2.21)

2.1.2 The method of calculating χ parameters

We introduced the group contribution method by van Krevelen to estimate χ parameters [7].
χij is estimated with the equation

χij = χs +
Vs

RT
(δi − δj)

2 (2.22)

where χs is the constatn (=0.34), Vs is the segment volume, δi and δj are the solubility parameters for
segment i and segment j, respectively. The detail is descrived in SUSHI manual [8].

2.2 The method to estimate the phase diagram with three com-
ponents

The method to estimate the phase diagram with three components are summarized as the literature by
Koningsveld at el [9]. Please refer the literature.

The method to estimate the phase diagram with many components is also summarized by Kamide [10].
Please refer the literature.

Fathermore a tool using the method by Koningsveld was developped as a program named PDFT in
OCTA project. Please refer the manual of PDFT.

The latest version of POTAGE can draw spinodal curves and critical points on triangle phase diagrams.
We will esplain the method as following sections.

2.2.1 Spinodal curves

Spinodal curves is the trace of points where the value of partial differentiation of chemical potential by each
{ϕi} is zero. For simpicity, we define the general partial differentiate form as

Gm....321 =
∂mG

∂sm....∂s3∂s2∂s1
. (2.23)

The condition of spinodal points can be written by the determinant

JSij =

∣∣∣∣ Gii Gij

Gji Gjj

∣∣∣∣ = 0. (2.24)

2.2.2 Critical point

The condition of critical points satisfies Giii = 0 on spinodal curves. This condition demands the additional
equation to equation (2.24) as∣∣∣∣ ∂JSij/∂ϕi ∂JSij/∂ϕj

Gji Gjj

∣∣∣∣+ ∣∣∣∣ Gii Gij

∂JSij/∂ϕi ∂JSij/∂ϕj

∣∣∣∣ = 0 (2.25)
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2.2.3 Tie-line and binodal curve

Tie-line is a line connecting two coexisting compositions on phase diagram. Binodal curve is the curve
connecting ends of tie-lines. Macro phase separation is cuased within the binodal curve.

The chemical potentials of two coexisting compositions match the values.
Using the extend Flory-Huggins theory descrived in the section 2.1, The eq. (2.4) can be written with

three compositions

∆G

kBTN
=

ϕA

NA
lnϕA +

ϕB

NB
lnϕB +

ϕC

NC
lnϕC

+ χABϕAϕB + χBCϕBϕC + χCAϕCϕA

+ χAAϕAϕA + χBBϕBϕB + χCCϕCϕC

− χAAϕA − χBBϕB − χCCϕC , (2.26)

where、N is the total segment number in the sysytem defined as

N = nANA + nBNB + nCNC , (2.27)

where ni is the number of i-th polymer. The binodal condition of coexisting points ϕA, ϕB , ϕC and ϕ′
A, ϕ

′
B , ϕ

′
C

must satisfy the condition

µA(ϕA, ϕB , ϕC) = µA(ϕ
′
A, ϕ

′
B , ϕ

′
C) (2.28)

µB(ϕA, ϕB , ϕC) = µB(ϕ
′
A, ϕ

′
B , ϕ

′
C) (2.29)

µC(ϕA, ϕB , ϕC) = µC(ϕ
′
A, ϕ

′
B , ϕ

′
C) (2.30)

ϕA + ϕB + ϕC = 1 (2.31)

ϕ′
A + ϕ′

B + ϕ′
C = 1. (2.32)

Chemical potential µi is defined as the difference of the free energy of the system when adding one polymer
chain as

µi =
∂G0

i

∂ni
+

∂∆G

∂ni
|nj ̸=ni = µ0

i +∆µi. (2.33)

Therefore the binodal condition be be got by solving these equations

∆µA(ϕA, ϕB , ϕC) = ∆µA(ϕ
′
A, ϕ

′
B , ϕ

′
C) (2.34)

∆µB(ϕA, ϕB , ϕC) = ∆µB(ϕ
′
A, ϕ

′
B , ϕ

′
C) (2.35)

∆µC(ϕA, ϕB , ϕC) = ∆µC(ϕ
′
A, ϕ

′
B , ϕ

′
C). (2.36)

∆G/kBT is obtained with multiplying N to both side of eq.(2.26) as

∆G

kBT
= nA lnϕA + nB lnϕB + nC lnϕC

+ χABnANAϕB + χBCnBNBϕC + χCAnCNCϕA

+ χAAnANAϕA + χBBnBNBϕB + χCCnCNCϕC

− χAAnANA − χBBnBNB − χCCnCNCϕC . (2.37)

Concequentry the chemical potentional of A polymer ∆µA/kBT is given by [9]

∆µA

kBT
=

1

kBT

∂∆G

∂ϕA
|ni ̸=nA

= lnϕA + (1− ϕA)−
NAϕB

NB
− NAϕC

NC

+ (1− ϕA)NA(χABϕB + χCAϕC + χAAϕA − χAA)

− χBCNAϕBϕC − χBBNAϕBϕB − χCCNAϕCϕC . (2.38)

Chemical potentials of B and C polymers also obtained with same manner. Under the binoal condition, the
values of chemical potentials of each components match.
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2.2.4 Numerical calculations

Spinodal condition

The spinodal condition equation (2.24) can be reduced to simultaneous linear equations and it can be solved
analitycally. However the critical point condition equation (2.25) can not be solved analitycally. Thus we
introduce numerical methods for these calculations as follows.

Mesh sysytems are introduced to triangle phase diagrams and select a grid point. We verify the inversion
of the sign of spinodal condition equation (2.24) on arounds a grid points to the selected grid point. If the
inversion is occured, a spinodal point exsists near the selected grid point. and we start to seach the spinodal
point numerically near the point then after seraching the spinodal point, as same sa the spinodal point, we
verify the inversion of the sign of critical condition equation (2.25) on arounds the point, if we can detect
the possibility of the existance of the critical point, we start to seach the critcal point. We introduced the
bisection method for numerical searching for both spinodal and critical points

Binodal condition

The spinodal condition eq. (2.38) can be modified to symmetric form by dividing by N as

1

NA
lnϕA − (ϕA − 1)

NA
− ϕB

NB
− ϕC

NC
+ (1− ϕA)(χABϕB + χCAϕC + χAAϕA − χAA)

−χBCϕBϕC − χBBϕBϕB − χCCϕCϕC

=
1

NA
lnϕ′

A − (ϕ′
A − 1)

NA
− ϕ′

B

NB
− ϕ′

C

NC
+ (1− ϕ′

A)(χABϕ
′
B + χCAϕ

′
C + χAAϕ

′
A − χAA)

−χBCϕ
′
Bϕ

′
C − χBBϕ

′
Bϕ

′
B − χCCϕ

′
Cϕ

′
C . (2.39)

Further, this equation can be transformed to

XA = 1− ϕ′
A

ϕA
expNA[ { ϕA

NA
+

ϕB

NB
+

ϕC

NC

− ϕ′
A

NA
− ϕ′

B

NB
− ϕ′

C

NC

+ χABϕAϕB + χBCϕBϕC + χCAϕCϕA − χABϕB − χCAϕC

− χABϕ
′
Aϕ

′
B − χBCϕ

′
Bϕ

′
C − χCAϕ

′
Cϕ

′
A + χABϕ

′
B + χCAϕ

′
C

+ χAAϕAϕA + χBBϕBϕB + χCCϕCϕC − 2χAAϕA

− χAAϕ
′
Aϕ

′
A − χBBϕ

′
Bϕ

′
B − χCCϕ

′
Cϕ

′
C + 2χAAϕ

′
A}] = 0. (2.40)

Such transformation can be done for both B and C polymers as followings

XB = 1− ϕ′
B

ϕB
expNB [ { ϕA

NA
+

ϕB

NB
+

ϕC

NC

− ϕ′
A

NA
− ϕ′

B

NB
− ϕ′

C

NC

+ χABϕAϕB + χBCϕBϕC + χCAϕCϕA − χBCϕC − χABϕA

− χABϕ
′
Aϕ

′
B − χBCϕ

′
Bϕ

′
C − χCAϕ

′
Cϕ

′
A + χBCϕ

′
C + χABϕ

′
A

+ χAAϕAϕA + χBBϕBϕB + χCCϕCϕC − 2χBBϕB

− χAAϕ
′
Aϕ

′
A − χBBϕ

′
Bϕ

′
B − χCCϕ

′
Cϕ

′
C + 2χBBϕ

′
B}] = 0, (2.41)

XC = 1− ϕ′
C

ϕC
expNC [ { ϕA

NA
+

ϕB

NB
+

ϕC

NC

− ϕ′
A

NA
− ϕ′

B

NB
− ϕ′

C

NC

+ χABϕAϕB + χBCϕBϕC + χCAϕCϕA − χCAϕC − χBCϕB

− χABϕ
′
Aϕ

′
B − χBCϕ

′
Bϕ

′
C − χCAϕ

′
Cϕ

′
A + χCAϕ

′
C + χBCϕ

′
B

+ χAAϕAϕA + χBBϕBϕB + χCCϕCϕC − 2χCCϕC

− χAAϕ
′
Aϕ

′
A − χBBϕ

′
Bϕ

′
B − χCCϕ

′
Cϕ

′
C + 2χCCϕ

′
C}] = 0. (2.42)
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Consequently the problem of the binodal condition of three components reaches to the minimizaion problem
of the equation

X(ϕA, ϕB , ϕ
′
A, ϕ

′
B) = X2

A +X2
B +X2

C . (2.43)

where the incompressibility condition requires only 4 parameters. Newton method can be used to solve the
problem because the eq. (2.43) can be partial differentiated by ϕi.

2.3 Phase diagrams for block polymers

We applied the extend Flory-Huggins（F-H) theory and Random Phase Approximation (RPA) to the mixture
of block polymers.

2.3.1 Linear self-consistent field theory with RPA

We will derive the linear responce equation of polymer melts with RPA [13] . RPA solves the linear self-
consistent field equation given by

x = S0(u+Cx+ u∗e) (2.44)

xij = δϕi(q) (2.45)

Cij = zϵij . (2.46)

where {δϕi(q)} is the fluctuation of the segment density of {ϕi(r)− ϕ̄i} in Fourier space.
S0 is the Scattering function matrix between sub-chains.
C is the χ parameters matrix.
u∗ is the pressure on demand of incompressibility condition.
e is the unit vector of which all elements are unity.
z is the coordinate number of segment(=6).
ϵij is the segment-segment interaction energy between i-th and j-th segments.

2.3.2 The scattering functions between subchains

The scattering functions between subchains are obtained with Gaussian chain theory and given by

S0p
i′i′(q) =

2N
(p)
i′

N (p)x2
(e−x − 1 + x) (2.47)

S0p
i′j′(q) =

N
(p)
i′ N

(p)
j′ e−z

N (p)xy
(e−x − 1)(e−y − 1)(i′ ̸= j′), (2.48)

x ≡ R2
Gi′ |q|2, y ≡ R2

Gj′ |q|2, z ≡ R2
Gi′j′ |q|2, (2.49)

where N is the chain length、p is the index of chain, and i′ and j′ are the index of subchains. RGi′ and
RGi′j′ are the radius of gyration of subchains.

To get the phase diagram of spinodal decomposition of block polymers, we use the scattering functions
matrix between segment kinds given by

S0
KK′(q) =

∑
i∈K,j∈K′

∑
i′,j′

ϕ̄pS0p
i′j′(q). (2.50)

2.3.3 The information of spinodal decomposition with RPA

We solve the eq. 2.44 between segment kinds and get the linear equation in Fourier space as

u = − 1

β
S̃−1x (2.51)

with one-dimensional mesh systtem and following information of spinodal decomposition are obtained from
the eigenvalue problem of the matrix −(1/β)S̃−1.
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The existance of negative eigenvalue of −(1/β)S̃−1 means the sysytem is under a spinodal condition.
where

q = 0 measn macro-phase separation,
q > 0 means micro-phase separation.





Chapter 3

Basic Operation

3.1 Preparation of GOURMET environment

Copy all files on Potage/action directory to $PF ENGINE/action directory. Copy Potage/bin/win*/potage2.exet
to $PF ENGINE/bin/win*, where * means wild cards.

3.2 Basic operation

We copy the POTAGE/def udf/POTAGE.udf to our working directory and change the name for our work.
Open the udf with GOURMET and change to the View/Table mocde and insert date array to pd data[]
(use Edit/Insert...か Ctrl-i) then input parameters to each pd data[]. For name1, name2, and name3, input
names of polymers. The n1, n2, and n3 are the number of segments of each polymers. chiij is the χparameter
between i-th and j-th components. We can add many elements to pd data[] and draw all phase diagrams as
a one sheet.

The parametes in control parameters subholder are the control parameters of numerical calculations.
The num dev is the parameteres of mesh grids. The error sp, error cr, and error bi is numerical criterion
of phi for spinodal points, critical points and binodal points (not used), respectively. The max iter is
the maximum trial number of numerical calculations. The values of recomendation are num dev=400,
error sp=error cr=error bi=1e−12, and max iter=300 , respectively.

11
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Figure 3.1: An example of POTAGE input UDF

After finishing the input, crick the right mouse button on the POTAGEInput subholder and invoke
PotageRun action. An action window will appear with empty parameter boxes for workingdir and run name.
We can input the path of working directory to the workingdir and the name of inptu UDF file path to
run name. No need to input data to both empty parameter boxes for the default runs. The default run
copys the opened UDF file to the default working directory GOURMET/tmp and invoke the potage on
the working directory. After invoking normally, command file run name.gp and data file run name.pd3 for
gnuplot are written on the working directory and gnuplot is automatically invoked and a phase diagram
window is drawed. The drawed pahase diagram is shown in Figure ?? [12]. The regions within the red
curves are spinodal regions. Grid points ”*” in the spinodal regions are colored red and other grid points
are colored blue. The red circle points on spinodal curves are the critical points.
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Figure 3.2: An example of phase diagram by a POTAGE run

POTAGE can be invoked on shell. The method is as

> potage -Iinput.udf

After finishing the run, input.udf.gp and input.udf.pd3 files are generated for gnuplot. We can draw phase
diagram using both files on gnuplot as

> load ’input.udf.gp’

3.3 Execution with POTAGE Ver.2 and Ver.3

There are differences in the UDF data structures of ver 1, 2, 3 of POTAGE because ver. 2 and 3 use RPA
for any archtecture of polymers.

One example of the UDF of ver.3 is shown in the fig. 3.3.

POTAGEInput.recipe　 the point datga to plot as a recipe

POTAGEInput.recipe.phi1 recipe of component 1

POTAGEInput.recipe.phi2 recipe of component 2

Component 3 can be obtained with incompressibility condition.

POTAGEInput.meshForRPA　 Mesh data for RPA calculation.

POTAGEInput.meshForRPA.mesh_width　 mesh width default:0.5

POTAGEInput.meshForRPA.num_mesh　 number of mesh default:64

POTAGEInput.pd_data_for_RPA[]　 UDF data array for ver. 2 and 3.

The UDF data is the same of SUSHI UDF, please refer SUSHI manual.

POTAGEInput.control_parameters　 added date for ver. 3

POTAGEInput.control_parameters.error_bi convergence error for binodal calculation

POTAGEInput.control_parameters.num_dev_bi　 number of division of the system area for

binodal condition
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Please try both values as 1.0E-6 and 40.

Figure 3.3: UDF data structure for POTAGE3

potage2 run action gives triangle phase daiagram shown as fig. 3.4.
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Figure 3.4: Typical triangle phase daiagram obtained with POTAGE3

3.4 Method to use PolymerDatabase( for homo and randompoly-
mer only )

Opne GOURMET and read $PF ENGINE/POLYMERDATABASE/polymerdatabase.udf file. Open File/Header
and write ”potage.act” to the Action File as figure 3.5.

Figure 3.5: dd the potage action file to polymerdatabase UDF

Crick the right mouse button on the PolymerDatabase subholder and invoke potage action POTAGEIn-
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putMaker. Action window with empty parameter of workingdir is appeared. The default of the workingdir
is empty which uses the GOURMET/tmp as the working directory.

After invoking the potage action, POTAGE input maker.udf file with SP values is written on the work-
ing directory. Read the POTAGE input maker.udf with GOURMET. We can see the two subholders
POTAGEInput and POTAGEInputMaker on the UDF file. We modify the date in the POTAGEInput-
Maker with Table mode on GOURMET, crick the polymer parameter for potage[] subholder, we can see the
date of SP values.

Figure 3.6: Polymer parameter for potage subholder

We can see the data use:int and ratio:double in a raw. Put the value 1, 2, or 3 to the use:int cell and the
value 1. to the ratio:double cell for homopolymers. The number means the id of components on the ternaly
phase diagram. If we set a random copolymer’s data, put the same id number for the components composing
the random copolymer. And put the values of the random ratio to the each ratio:double cell where the sum
of all values must be one. If we need to use the same polymer data for different components, insert the same
data as a new raw and use the same data for the different components. The input UDF file is not saved to
the original polymerdatabase.udf file thus mdification is kept on the run.

Figure 3.7: polymer parameter for potage

Crick the right mouse button on the POTAGEInputMaker subholder and invoke POTAGESetChi ac-
tion. A action windows with parameter boxes of segment molar volume Vr[cm

3/mol] and thermodynammic
temperatrure T [˚C]、constant parameter χs. The default values are 100,150 and 0., respectively. In the
manual of CPC, the value χs = 0.34 but the value 0. does not so influence to results.
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Figure 3.8: POTAGEInput subholder

The action write the data to the POTAGEInput subholder. We can see the estimated χ parameters as
mentioned in the previous section 3.2.

For the default value of number of segments n1, n2 and n3, 10000/Vr is inputted. This value sould be
changed for our purpose.

The figure 3.9 shows an example of potage run. This example is the phase diagram of random copolymer
with Polyethylene:Polypropylene=0.5:0.5 , Polyisobutylene and Polystyrene blends.
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Figure 3.9: Calculation results of POTAGE

Figure 3.10: UDF of POTAGE2



Appendix A

Compiling method

A.1 The structure of source file directory

The structure of source file directory of POTAGE is as follows.

SUSHI+

|

POTAGE

|

+--def_udf--+--POTAGE.udf UDF file for Input

| +--POTAGE_input_maker.udf UDF file for action

|

+--bin executable modules

|

+--sample sample files

|

+--src source files and include files

|

+--action action files

When compiling POTAGE, compilers use the source codes of SUSHI and libraries of SUSHI thus the com-
piling POTAGE must be done after compiling SUSHI as one core version and the position of POTAGE
directory must not be moved.

A.2 Compiling method

Use gmake for compiling on Linux (Cygwin).
Make on the directory POTAGE/src as

> cd POTAGE/src

> make all

A.3 Install method

On POTAGE/src directory

> make install

A.4 Clear method

On POTAGE/src directory

> make clean

19
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