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Fig. 1: (left panel) 2-dimensional microphase separation of single-component homopoly-
mers grafted onto a planar substrate. Taken from sample 1. The same, but smaller, system
as the polymer brush shown in Fig. 4(a) of a reference [2]. (right panel) Microphase sep-
aration of diblock copolymers confined in a spherical system box. Taken from sample
4.

Fig. 2: Microphase separation of diblock copolymers confined in a Japanese ancient tomb,
zen-pou-kou-en-fun. Both the panels are taken from sample 5.
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Chapter 1

Introduction

This document is a user manual of “SpaghettiCord” – a molecular Monte Carlo
simulation program to simulate collective phenomena of polymers in a coarse-
grained scale.

Executable binary files of SpaghettiCord for Linux (x64) and Windows (x64)
are provided. This program runs in collaboration with OCTA udf files. Simulation
parameters are read from, and results written to the udf files. The definition of the
udf parameters is also included in the present program package. Features of the
program as well as these udf parameters are illustrated in chapter 2.

Source codes of SpaghettiCord are closed.

1.1 Basic requirements for utilizing SpaghettiCord

A basic understanding of both the standard NVT molecular Monte Carlo simula-
tion method [1] and solvent-free model discussed in a reference [2] is required.

1.2 Usage

The simulation is performed through the following 5 steps:

1. A user sets simulation parameters to the udf file.

2. The executable file is run. The udf file name is given through the standard
input after automatic prompting. The program automatically finishes the
following steps 3 and 4, after this step 2 ends.

3. The simulation parameters are read from the udf file. The total number of
polymers in the system and some other parameters are automatically deter-
mined and written to the udf file.

4. The simulation runs and finishes. Particle configurations are successively
written to the udf file during the simulation run. Time evolutions of the

1



2 CHAPTER 1. INTRODUCTION

acceptance ratio, square end-to-end distance of polymers, and other physical
quantities are also output to other text files during the run.

5. The simulation results are analysed.



Chapter 2

Features and parameters

Molecular Monte Carlo simulations of linear polymers are performed with the
canonical ensemble in 3 dimensions via the standard Metropolis algorithm [1]. The
thermal energy, kBT , is chosen as the unit energy. (Lx, Ly, Lz) denotes the size of the
rectangular parallelepiped system box. A periodic boundary condition is applied
to the system. The system box is placed in spatial regions of 0 ≤ λ < Lλ, where
λ denotes the Cartesian coordinates x, y and z. ∆L is the grid spacing to calculate
the non-bonded interaction among the particles (segments). The Mersenne Twister
algorithm is selected as a random number generator for the simulations [3–5]. In
one simulation step, a particle is picked at random and given a uniform random
trial displacement within a cube of edge length 2∆l. A Monte Carlo step (MCS)
is defined as Ntotal trial moves, during which each particle is selected for the trial
displacement once on average, where Ntotal denotes the total number of particles of
both the grafted and non-grafted ones in the system.

P0,P1, . . . ,P9 denote the molecular (polymer) species, which illustrates that 10
molecular species can be simultaneously designed and utilized in the simulation.
N(P j) is the number of segments per polymer of P j. Different molecular architecture
can be set to each polymer species. For example, when P0 and P1 are a monomer
and homopolymer, homopolymer solution can be simulated by mixing molecules
of P0 and P1 in the system box. Polydisperse systems, mixture of diblock and
triblock copolymers, and other complicated systems can also be simulated.

Each segment in the molecules can be spatially fixed, i.e. grafted, at any po-
sition. When one end of each polymer is grafted onto a hard substrate, polymer
brushes are simulated. When monomers are fixed in the free space, this results in
soft walls.

2.1 Molecular architecture

The molecular architecture of each polymer (molecular) species is described by
three elements: a bead-spring potential, bending rigidity (chain stiffness) along the
linear polymer chain, and configurations of the segment species along the chain.

3



4 CHAPTER 2. FEATURES AND PARAMETERS

Homogeneous springs and homogeneous chain stiffness are given to each polymer.

2.1.1 Linear springs

Linear springs linearly connect the adjacent segments in each polymer. The poten-
tial of each spring of P j is denoted by,

H(P j)
spr

kBT
=

1
2

k(P j)
spr

(
ladj − l(P j)

natural

)2
, (2.1)

where k(P j)
spr denotes the spring constant, l(P j)

natural is the natural length of the springs,
and ladj is the distance between the centres of the pair of the connected segments.
A value set of k(P j)

spr = 3(N(P j) − 1)/R2
e and l(P j)

natural = 0.0, e.g. k(P j)
spr = 3× 31/1 = 93.0

with N(P j) = 32, is typically chosen for monodisperse systems, where Re denotes
the root mean square of the end to end distance of an ideal chain with the same
molecular architecture. For the monodisperse systems, this value set results in
Re = the unit length of the simulation system. This potential energy vanishes at
N(P j) = 1, i.e. monomers.

2.1.2 Chain stiffness

The chain stiffness of each polymer is provided as three-body potential among
adjacent segment triples in a chain [6],

H(P j)
bending

kBT
= k(P j)

stiff

{
1 − cos

(
φ − φ

(P j)
0

)}
, (2.2)

where the angle φ is defined by the scalar product between the two bonds from an
end to the centre of the triples and from the centre to the other end. kstiff denotes
the bending constant and φ(P j)

0 is the preferred angle. The chain stiffness vanishes
when the polymerization degree ≤ 2.

2.1.3 Configuration of the segment species along the chain

The following configurations of the segment species along each polymer chain can
be constructed:

• homopolymer (or monomer) of SA,

• homopolymer (or monomer) of SB,

• SA-SB (or SB-SA) diblock copolymer,

• SA-SB-SA triblock copolymer,

where SA and SB are segment species. Arbitrary value sets of the number of
segments of each block and the total number of segments along the chain can be
chosen.
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2.2 Non-bonded interaction

Non-bonded interaction (or external interaction), denoted by Hnon-bonded, is calcu-
lated utilizing the grid-based density. This calculation technique is discussed in a
reference [2].

Three types of the non-bonded interactions are provided:

1. single-component solvent-free model,

2. binary solvent-free model,

3. interaction potential using χ-parameter.

Users of SpaghettiCord select one of the three for each simulation run. Simultane-
ous or combination use of two or more types is disallowed.

2.2.1 Single-component solvent-free model

The non-bonded interaction of the single-component solvent-free model is given
as a functional of the local segment density. A third-order expansion of the non-
bonded interaction free energy in a form of powers of the local segment density is
employed:

Hnon-bonded

kBT
:=

∫
V

dV
(
−

1
2

v (ρSA(r))2 +
1
3

w (ρSA(r))3
)
, (2.3)

where ρα(r) is the local volumetric number density of the segments of α segment
species at the spatial position r and α denotes the segment species SA, SB. The
positive constants, v and w, correspond to the attractive and repulsive interaction
strengths among the segments, respectively. In the following calculation, dimen-
sionless physical quantities are utilized: the local segment density ρ′α(r) = ρα(r)R3

e ,
parameter w′′ = w/Re

6, and parameter v′′ = v/R3
e . These dimensionless quantities

reduce eq. (2.3) to:

Hnon-bonded

kBT
=

∫
V

dV
Re

3

(
−

1
2

v′′
(
ρ′SA(r)

)2
+

1
3

w′′
(
ρ′SA(r)

)3
)
. (2.4)

Note that values of these dimensionless interaction parameters, v′′ and w′′, are
directly set to the corresponding parameters in the udf file, although double prime
symbols of these parameters are eliminated from the names of the udf parameters.

2.2.2 Binary solvent-free model

The non-bonded interaction of the binary solvent-free model [7, 8] is defined as a
natural extension of the single-component solvent-free model. Dimensionless in-
teraction parameters, v′′αβ = vαβ/R3

e and w′′αβγ = wαβγ/R6
e (where α, β, γ = SA,SB
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denote the segment species), reduce this non-bonded interaction of the binary
model to:

Hnon-bonded

kBT

=

∫
V

dV
Re

3

[
−

1
2

v′′AA

(
ρ′SA(r)

)2
−

1
2

v′′BB

(
ρ′SB(r)

)2
+ v′′AB ρ

′
SA(r) ρ′SB(r)

+
1
3

{
w′′AAA

(
ρ′SA(r)

)3
+ 3w′′AAB

(
ρ′SA(r)

)2
ρ′SB(r) + 3w′′ABB ρ

′
SA(r)

(
ρ′SB(r)

)2
+ w′′BBB

(
ρ′SB(r)

)3
}]
.

(2.5)

Note that values of these dimensionless interaction parameters, v′′αβ and w′′αβγ, are
directly set to the corresponding parameters in the udf file, although double prime
symbols of these parameters are eliminated from the names of the udf parameters.

2.2.3 Interaction potential using χ-parameter

The non-bonded interaction potential using χ-parameter is defined as [9]:

Hnon-bonded

kBT
=

∑
a

[
ρ∆V

(
χφAφB +

1
2
κ (φA + φB − φ0)2

)]
(2.6)

where a denotes the collocation grid, ρ is the average number density of the total
segments in the system, and ∆V = (∆L)3 is the volume of a cubic cell of the
collocation grid. φα = Uα/(ρ∆V) where Uα denotes the number of the α-segments
in the cubic cell. The reference density, φ0, is fixed at unity, i.e. φ0 = 1.

Value sets of χ, κ, and ρ∆V are set to the udf file, where ρ∆V is the average
number of the total segments per cubic cell.

2.3 System size and grid spacing

The system size Lx is directly set to the udf file. Approximate values of Ly/Lx, Lz/Lx,
and the grid spacing for the non-bonded interaction ∆L are also set to the udf file.
Values of Ly, Lz, and ∆L actually utilized in the simulation are automatically deter-
mined through the following code using these input parameters. This results in the
homogeneous and isotropic grids in the system.

// ( Lx, Ly, Lz ) denotes the system size, and "GridSpacing"
// is the grid spacing.
// "LyOverLx" and "LzOverLx" are the given approximate values
// of Ly/Lx and Lz/Lx, respectively.
// "ApproxGridSpacing" is the given approximate value
// of the grid spacing.

// The number of grids along x-axis
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mx = (int)( Lx / ApproxGridSpacing ) ;

// Actual value of the grid spacing is determined.
GridSpacing = Lx / mx ;

// The number of grids along y and z-axis respectively
my = (int)( LyOverLx * mx ) ;
mz = (int)( LzOverLx * mx ) ;

// Values of Ly and Lz are determined.
Ly = my * GridSpacing ;
Lz = mz * GridSpacing ;

2.4 Data structure of particles

Here class CParticle, which is the data structure of the particles written to the
udf file as records, is illustrated.
ParticleNumber denotes the serial number of the particles for each molecular

species P j. This ranges in [0, n(P j)
p N(P j)), where n(P j)

p is the number of polymers of
P j in the system. The value of this parameter divided by N(P j) equals the index of
the polymer (polymer number) to which the particle belongs. This index ranges in
[0, n(P j)

p ).
SegmentNumber is the segment number of the particle in each polymer. This

parameter ranges in [0,N(P j)). For example, this parameter of monomers is always
fixed at 0.

The rectangular parallelepiped system box occupies the spatial region of 0 ≤
λ < Lλ. This box is often referred to as the basic cell. On the other hand, an
infinite number of the identical boxes also lie in and fill the whole space because
the periodic boundary condition is applied to the system. These boxes outside the
region of the basic cell are referred to as image cells. Each image cell is represented
by indices (ix, iy, iz) and occupies the spatial region of iλLλ ≤ λ < (iλ + 1)Lλ. The
image cell at ix = iy = iz = 0 corresponds to the basic cell. Udf parameters x,
y, z of class CParticle denote the coordinates of the particle in the basic cell.
Udf parameters ImageCellX, ImageCellY, ImageCellZ are the indices of the
image cell, (ix, iy, iz), where the particle is located.

2.5 Time evolution of some physical quantities

In addition to the particle configurations written to the udf file, time evolution of
some physical quantities are also written to other plain text files. Each text file
begins with one line of the header information of the file. This header shows what
is recorded in each column of the text file. The 1st column is always “MCS”.
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Udf parameter Logging.SamplingRateEnergyETC determines the interval
of sampling for these physical quantities in MCS. Arbitrary values can be set to
this parameter independently of the sampling rate for the particle configuration,
Logging.SamplingRate.

Udf parameter Logging.FileNamePrefix determines the prefix of the names
of these text files. If empty, the present udf file name is chosen. Here we assume
that “sample” is given to this parameter.

sample-AcceptanceRatio.txt shows the time evolution of the acceptance
ratio of the simulation. Note that the grafted particles always reject the trial. This
decreases the acceptance ratio recorded in this file.

The computational time is recorded in sample-ComputationalTime.txt.
This is measured using the wall-clock time.

The time evolution of the average square end to end distance of a polymer for
each molecular species is recorded in sample-SquareEndToEndDistance.txt.

The time evolution of the average square gyration radius of a polymer for each
molecular species is recorded in sample-SquareGyrationRadius.txt.

sample-PotentialEnergy.txt shows the time evolution of the total poten-
tial energy in the system. Each column, excluding the 1st one, of this file is an
element of the total energy. For example, when the non-bonded interaction po-
tential using χ-parameter is chosen for the simulation, the 2nd column of this file
shows the total energy in the system resulting from the first term of the right-hand
side of eq. (2.6). The other cases are illustrated in tables 2.1 and 2.2.

sample-InitialEnsembleAndSystem.log is a log file for debugging pur-
poses.

Table 2.1: Meanings of columns when the single-component or binary solvent-free model
is chosen.

column meanings
1 MCS
2 all the terms including v′′ or v′′αβ

in the right-hand sides of equations (2.4) and (2.5)
3 all the terms including w′′ or w′′αβγ

in the right-hand sides of equations (2.4) and (2.5)
4 always zero (reserved)
5 the total non-bonded interaction
6 linear springs, eq. (2.1)
7 chain stiffness, eq. (2.2)
8 always zero (reserved)
9 the total interaction potential energy in the system
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Table 2.2: Meanings of columns when the non-bonded interaction potential using χ-
parameter is chosen.

column meanings
1 MCS
2 the first term of the right-hand side of eq. (2.6)
3 the second term of the right-hand side of eq. (2.6)
4 always zero (reserved)
5 the total non-bonded interaction
6 linear springs, eq. (2.1)
7 chain stiffness, eq. (2.2)
8 always zero (reserved)
9 the total interaction potential energy in the system

2.6 Global udf parameters

Here the global udf parameters are illustrated. udf classes utilized in these udf
parameters are shown in sec. 2.8.

2.6.1 SystemSize

System size. The rectangular system box is placed in spatial regions of 0 ≤ α < Lα,
where α denotes x, y, and z. See also sec. 2.3.

• Lx: double
System size, Lx.

• LyOverLx: double
Approximate value of Ly/Lx.

• LzOverLx: double
Approximate value of Lz/Lx.

• ApproxGridSpacing: double
Approximate value of the grid spacing for the external (or non-bonded) in-
teraction.

2.6.2 Resume

Parameters to resume the simulation.

• ResumeSimulation: select { "true", "false" }
If true, the simulation is resumed from the last particle configuration. If false,
the initial particle configuration is automatically arranged according to given
parameters for initialization.
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• LastParticleConfigFileName: string
The udf file name from which the last particle configuration is loaded if
"ResumeSimulation" is true. When this parameter is left empty, the present
udf file is automatically chosen. If "ResumeSimulation" is false, this pa-
rameter is ignored.

2.6.3 ExternalInteraction

Parameters for external or non-bonded interaction.

• HamiltonianType: select { "OFF", "Chi",
"SolventFree1Component", "SolventFreeBinary" }
Type of Hamiltonian, i.e. external or non-bonded interaction. When "OFF"
is chosen, the interaction is off, which results in ideal polymers.

• Chi:

– ParameterChi: double
Interaction parameter χ.

– ParameterKappa: double
Interaction parameter κ.

– AverageNumberOfParticlesPerFieldCell: double
The average number of particles per cell.

• SolventFree1Component:

– ParameterW: double
Interaction parameter w′′.

– ParameterV: double
Interaction parameter v′′.

• SolventFreeBinary:

– ParameterVAA: double
Interaction parameter v′′AA.

– ParameterVBB: double
Interaction parameter v′′BB.

– ParameterVAB: double
Interaction parameter v′′AB.

– ParameterWAAA: double
Interaction parameter w′′AAA.

– ParameterWAAB: double
Interaction parameter w′′AAB.

– ParameterWABB: double
Interaction parameter w′′ABB.
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– ParameterWBBB: double
Interaction parameter w′′BBB.

2.6.4 Logging

Parameters to control logging.

• SamplingRate: int
Interval of sampling in MCS.

• NumberOfSamples: int
The number of samples, i.e. records, excluding the initial configuration.

• SamplingRateEnergyETC: int
Interval of sampling for energy etc. in MCS.

• FileNamePrefix: string
Prefix of the log file names. If empty, the present udf file name is chosen.

2.6.5 Miscellaneous

Miscellaneous.

• TrialDisplacementMax: double
Maximum trial displacement. In one simulation step, a particle is chosen
at random and given a uniform random trial displacement within a cube of
edge length = 2 × (this parameter).

2.6.6 MolecularArch[]: CPolymerStructure

Molecular architecture. 1 to 10 polymer species can be simultaneously set and
used: P0, P1, P2, ... , P9. The polymer species which are not set here are ignored.
For example, when P0, P1, and P2 species are set here, only these species can
be utilized in the simulation, and the other species cannot. When more than 10
polymer species are set, only the first 10 species are utilized, and the others are
ignored.

2.6.7 HardWalls

Hard walls, i.e. hard planes and hard blocks. The hard planes are placed parallel to
xy-plane.

• MasterSwitch: select { "ON", "OFF" }
Master switch, i.e. switch for all the hard walls.

• SwitchHardPlanes: select { "ON", "OFF" }
Switch for planar hard walls, i.e. hard planes.
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• Switch3DHardBlocks: select { "ON", "OFF" }
Switch for 3D hard walls, i.e. hard blocks.

• HardPlanesZ[]: double
z-coordinates of hard planes parallel to xy-plane. Hard planes outside the
system box, i.e. in regions of z < 0 or Lz ≤ z, are ignored.

• HardBlocks[]: CGeometricShape3D
Hard blocks. Set 3D geometric shapes as the hard blocks. Non-grafted par-
ticles are disallowed to be positioned on the surface of or inside the hard
blocks. Regions of these 3D shapes outside the system box are ignored.
Note that the non-grafted particles can pass through or leap the hard blocks.
This means that the trial displacement of the non-grafted particles is allowed
when both the starting and ending points of the displacement are located out-
side the hard blocks, even though the hard blocks are found between these
points.

• CellSizeForHardBlock: double
Cell size for the cell lists for the hard blocks. An arbitrary positive value
smaller than Lx, Ly, and Lz can be set. Typically, the value of the grid spacing
for the interaction potential can be an acceptable value.

2.6.8 IniParticleConf[]:
CInitialNumberAndArrangementParticles

Initial particle configuration.

2.6.9 MersenneTwister

Parameters for Mersenne Twister, a pseudorandom number generator.

• AutoSeed: select { "true", "false" }
Option mostly for debugging purposes. This should be fixed at "true" for
usual production runs. If true, the random seed is automatically determined
utilizing the system clock. If false, the seed is manually given through the
following variable.

• RandomSeed: long
Random seed of Mersenne Twister, zero or a positive value. This parameter
is ignored when "AutoSeed" is true.

2.6.10 Output

Output data. These parameters are automatically determined based on the input
data.
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• NumberOfParticlesAndPolymers: The numbers of particles and poly-
mers.

– n_P0: int
The number of polymers, P0.

– n_P1: int
The number of polymers, P1.

– n_P2: int
The number of polymers, P2.

– n_P3: int
The number of polymers, P3.

– n_P4: int
The number of polymers, P4.

– n_P5: int
The number of polymers, P5.

– n_P6: int
The number of polymers, P6.

– n_P7: int
The number of polymers, P7.

– n_P8: int
The number of polymers, P8.

– n_P9: int
The number of polymers, P9.

– N_SA: int
The number of segments, SA.

– N_SB: int
The number of segments, SB.

– N_SC: int
The number of segments, SC.

– N_total: arraysize
The total number of particles.

• SystemSize: System size. See also sections 2.3 and 2.6.1.

– Ly: double
System size, Ly.

– Lz: double
System size, Lz.

– V: double
System volume, V .
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– GridSpacing: double
Grid spacing.

• RandomSeed: long
Random seed of Mersenne Twister, zero or a positive value.

2.7 udf parameters for records

Here udf parameters for records are illustrated. These are all output data, i.e. sim-
ulation results.

• MCS: int
MCS at the present record. 1 MCS (Monte Carlo step) is defined as N_total
trial moves, during which each particle is selected for the trial displacement
once on average, where N_total denotes the total number of particles (seg-
ments) in the system. This N_total includes both the grafted and non-
grafted particles.

• Particles[ N_total ]: CParticle
Array for particles. See sections 2.4 and 2.8.4.

2.8 udf classes

2.8.1 udf classes for geometric shapes

2.8.1-a class CPoint_2D

Point in 2-D.

• x: double
x-coordinate.

• y: double
y-coordinate.

2.8.1-b class CPoint_3D

Point in 3-D.

• x: double
x-coordinate.

• y: double
y-coordinate.

• z: double
z-coordinate.
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2.8.1-c class CCircle

Circle.

• Centre: CPoint_2D
Centre coordinates.

• r: double
Radius.

2.8.1-d class CRectangle

Rectangle. Each side is placed parallel to x or y-axis.

• x_min: double
min. x-coordinate.

• x_max: double
max. x-coordinate.

• y_min: double
min. y-coordinate.

• y_max: double
max. y-coordinate.

2.8.1-e class CTriangle

Triangle.

• Vertex1st: CPoint_2D
1st vertex.

• Vertex2nd: CPoint_2D
2nd vertex.

• Vertex3rd: CPoint_2D
3rd vertex.

2.8.1-f class CCircularSector

Circular sector. This ranges in [phi − theta/2, phi + theta/2], where theta
denotes the central angle and phi does the direction. theta should be set in [0, 2π].

• Centre: CPoint_2D
Centre coordinates.

• r: double
Radius.
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• theta: double [rad]
Central angle. This should be set in [0, 2π].

• phi: double [rad]
Direction.

2.8.1-g class CQuadrilateral

Quadrilateral. This is composed of a pair of triangles: triangles with the 1st - 3rd
vertices and with 2nd - 4th vertices. The line segment between the 2nd and 3rd
vertices is shared between these two triangles.

• Vertex1st: CPoint_2D
1st vertex.

• Vertex2nd: CPoint_2D
2nd vertex.

• Vertex3rd: CPoint_2D
3rd vertex.

• Vertex4th: CPoint_2D
4th vertex.

2.8.1-h class CBasicGeometricShape2D

2-D basic geometric shape.

• BasicShape2D: select { "circle", "rectangle", "triangle",
"CircularSector", "quadrilateral" }
Basic 2-D shape.

• circle: CCircle

• rectangle: CRectangle

• triangle: CTriangle

• CircularSector: CCircularSector

• quadrilateral: CQuadrilateral

• Inverse: select { "ON", "OFF" }
If ON, the region of the geometric shape is inverted.
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2.8.1-i class CMultipleShapeIntersection2D

The intersection of 2-D geometric shapes, i.e. a 2-D multiple geometric shape.

• ComponentShapes2D[]: CBasicGeometricShape2D
Array of component 2-D basic shapes. Regions of the component shapes
with "Inverse == ON" are removed from the resulting multiple shape.

• Inverse: select { "ON", "OFF" }
If ON, the region of the geometric shape is inverted.

2.8.1-j class CMultipleShapeUnion2D

The union of 2-D geometric shapes, i.e. a 2-D multiple geometric shape.

• ComponentShapes2D[]: CBasicGeometricShape2D
Array of component 2-D basic shapes. Regions of the component shapes
with "Inverse == ON" are removed from the resulting multiple shape.

• Inverse: select { "ON", "OFF" }
If ON, the region of the geometric shape is inverted.

2.8.1-k class CGeometricShape2D

2-D geometric shape.

• Shape2D: select { "basic", "MultipleIntersection",
"MultipleUnion" }
2-D shape.

• basic: CBasicGeometricShape2D

• MultipleIntersection: CMultipleShapeIntersection2D

• MultipleUnion: CMultipleShapeUnion2D

2.8.1-l class CSphere

Sphere.

• Centre: CPoint_3D
Centre coordinates.

• r: double
Radius.
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2.8.1-m class CCuboid

Cuboid. Each edge is placed parallel to x, y, or z-axis.

• x_min: double
min. x-coordinate.

• x_max: double
max. x-coordinate.

• y_min: double
min. y-coordinate.

• y_max: double
max. y-coordinate.

• z_min: double
min. z-coordinate.

• z_max: double
max. z-coordinate.

2.8.1-n class CCylinder

Cylinder. The axis is placed parallel to z-axis.

• Base: CCircle
Base.

• z_min: double
min. z-coordinate.

• z_max: double
max. z-coordinate.

2.8.1-o class CRectangularFrustum

3-D geometric shape including, similar to, and more general than rectangular frus-
tums, oblique rectangular prisms, etc. The lower and upper rectangular bases of
this shape are placed parallel to xy-plane. Each edge of the bases is placed parallel
to x or y-axis. These two rectangular bases can be independently set. This means
that these bases can be independent in the size as well as the position. Four side
surfaces of this shape are all trapezoids. This 3-D shape is equivalent to a rectan-
gular frustum when the bases are similar, and an oblique rectangular prism when
congruent.

• LowerBase: CRectangle
Lower rectangular base.
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• z_min: double
min. z-coordinate.

• UpperBase: CRectangle
Upper rectangular base.

• z_max: double
max. z-coordinate.

2.8.1-p class CBasicGeometricShape3D

3-D basic geometric shape.

• BasicShape3D: select { "sphere", "cuboid", "cylinder",
"RectangularFrustum" }
Basic 3-D shape.

• sphere: CSphere

• cuboid: CCuboid

• cylinder: CCylinder

• RectangularFrustum: CRectangularFrustum

• Inverse: select { "ON", "OFF" }
If ON, the region of the geometric shape is inverted.

2.8.1-q class CMultipleShapeIntersection3D

The intersection of 3-D geometric shapes, i.e. a 3-D multiple geometric shape.

• ComponentShapes3D[]: CBasicGeometricShape3D
Array of component 3-D basic shapes. Regions of the component shapes
with "Inverse == ON" are removed from the resulting multiple shape.

• Inverse: select { "ON", "OFF" }
If ON, the region of the geometric shape is inverted.

2.8.1-r class CMultipleShapeUnion3D

The union of 3-D geometric shapes, i.e. a 3-D multiple geometric shape.
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• ComponentShapes3D[]: CBasicGeometricShape3D
Array of component 3-D basic shapes. Regions of the component shapes
with "Inverse == ON" are removed from the resulting multiple shape.

• Inverse: select { "ON", "OFF" }
If ON, the region of the geometric shape is inverted.

2.8.1-s class CGeometricShape3D

3-D geometric shape.

• Shape3D: select { "basic", "MultipleIntersection",
"MultipleUnion" }
3-D shape.

• basic: CBasicGeometricShape3D

• MultipleIntersection: CMultipleShapeIntersection3D

• MultipleUnion: CMultipleShapeUnion3D

2.8.2 udf classes for molecular architecture

2.8.2-a class CPolymerStructure

Polymer structure. Each linear polymer has the homogeneous bonds and homo-
geneous chain stiffness over the polymer chain. When the polymerization degree
equals one, the polymer is equivalent to a monomer.

• BlockLengthA1: int
The number of segments in the first A-block, >= 0. The linear molecu-
lar architecture is: (1st A-block)-(B-block)-(2nd A-block). The length of
each block can be zero. For example, the molecule is equivalent to a ho-
mopolymer of A-species at B-block = zero, and equivalent to an A-B diblock
copolymer at either (1st A-block) = zero or (2nd A-block) = zero. When the
total number of the segments, i.e. the polymerization degree, equals one,
the molecule is equivalent to a monomer. When zero, the polymer species
cannot be utilized.

• BlockLengthB: int
The number of segments in the B-block, >= 0.

• BlockLengthA2: int
The number of segments in the second A-block, >= 0.
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• SpringConstant: double
Spring constant of linear springs between the segments. The same spring
const. and natural length are given to all the springs in each polymer. These
parameters of the springs are ignored when the polymerization degree equals
one, i.e. for a monomer.

• NaturalLengthOfSpring: double
Natural length of the linear springs.

• BendingConstant: double
Bending constant of the chain stiffness potential. The chain stiffness of the
polymer is provided as three-body potential among three neighboring seg-
ments. Therefore, the parameters for the chain stiffness are ignored when
the polymerization degree <= 2.

• PreferredBondAngle: double
Preferred bond angle of the chain stiffness potential. When this parameter
equals zero, the minimum of the chain stiffness potential occurs for parallel
bonds in a chain.

2.8.3 udf classes for initial particle configuration

2.8.3-a class CInitialPolymerConformationGaussianRandom

Gaussian random polymer conformation.

• SignOf0thTo1stSegmentZ: select { "POSITIVE", "NEUTRAL",
"NEGATIVE" }
Sign of the relative z-coordinate from the head segment (0th particle) to the
next segment (1st particle) of each polymer. If "POSITIVE" (or "NEGATIVE"),
always positive (or negative). This means that, when the gaussian random
number generator provides a negative (or positive) value, this is automat-
ically turned positive (or negative) keeping the same absolute value. For
example, this is chosen when a single-sided polymer brush on a planar sub-
strate is simulated. If "NEUTRAL", the above automatic adjustment of the
sign is switched off.

2.8.3-b class CInitialPolymerConformationHomogeneousLinear

Segments of each polymer are placed at regular intervals on a straight line from the
head segment.

• IntervalBetweenSegments: double
Intervals between the adjacent segments.

• Longitude: double
Direction of the straight line, longitude (φ in typical geometric notation).
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• Latitude: double
Direction of the straight line, latitude (θ in typical geometric notation).

2.8.3-c class CPolymerConformation

Polymer conformation.

• ConformationType: select { "gaussian", "straight" }
Type of polymer conformation.

• gaussian: CInitialPolymerConformationGaussianRandom

• straight: CInitialPolymerConformationHomogeneousLinear

2.8.3-d class CInitialHeadOn3DPoint

The head segments are placed on a given 3-D point.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• NumberOfPolymers: int
The number of placed polymers.

• Graft: select { "OFF", "FIRST_END", "LAST_END",
"BOTH_ENDS", "MIDDLE_POINT", "ALL" }
Grafting type.

"OFF": No segments are grafted. In other words, no segments are spatially
fixed.

"FIRST_END": The first end, i.e. the 0th (head) segment, of each polymer
(or each segment as a polymer species) is grafted.

"LAST_END": The last end, i.e. the N-th ((N − 1)-th) segment, of each poly-
mer (or each segment as a polymer species) is grafted.

"BOTH_ENDS": Both the ends, i.e. both the 0th (head) and N-th ((N − 1)-
th) segments, of each polymer (or each segment as a polymer species) are
grafted.

"MIDDLE_POINT": The middle point between both the ends, i.e. (N/2)-th
segment, of each polymer (or each segment as a polymer species) is grafted.

"ALL": All the segments of each polymer (or each segment as a polymer
species) are grafted.
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• Point3DForHead: CPoint_3D
The 3-D point where the head segments are placed.

• PolymerConformation: CPolymerConformation
Polymer conformation.

• IgnoredHardBlockIndex: int
The index of the hard block to ignore for the arrangement of the head (0th)
segments. When a negative value or one larger than the maximum is given
to this parameter, no hard blocks are ignored, i.e. all the hard blocks are
checked.

2.8.3-e class CInitialHeadOnSquareLattice2D

Arranging the head (0th) segments of each polymer on 2-D geometric shape lying
parallel with xy-plane. The head segments are placed on 3-D points at square lattice
points on or inside the 2-D shape, i.e. including the perimeter of the shape.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• Graft: select { "OFF", "FIRST_END", "LAST_END",
"BOTH_ENDS", "MIDDLE_POINT", "ALL" }
Grafting type.

"OFF": No segments are grafted. In other words, no segments are spatially
fixed.

"FIRST_END": The first end, i.e. the 0th (head) segment, of each polymer
(or each segment as a polymer species) is grafted.

"LAST_END": The last end, i.e. the N-th ((N − 1)-th) segment, of each poly-
mer (or each segment as a polymer species) is grafted.

"BOTH_ENDS": Both the ends, i.e. both the 0th (head) and N-th ((N − 1)-
th) segments, of each polymer (or each segment as a polymer species) are
grafted.

"MIDDLE_POINT": The middle point between both the ends, i.e. (N/2)-th
segment, of each polymer (or each segment as a polymer species) is grafted.

"ALL": All the segments of each polymer (or each segment as a polymer
species) are grafted.

• ShapeForHeadSegment: CGeometricShape2D
2-D geometric shape, on which the head segments are placed.

• z: double
z-coordinate, at which the 2-D geometric shape is placed. Actually, z-coordinate
of the head segments.
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• PolymerConformation: CPolymerConformation
Polymer conformation.

• LatticeConst: double
Lattice constant.

• NumberOfHeadsPerLattice: int
The number of the head segments distributed to each lattice point. The num-
ber of heads per lattice point. This equals the number of polymers per lattice
point.

• IgnoredHardBlockIndex: int
The index of the hard block to ignore for the arrangement of the head (0th)
segments. When a negative value or one larger than the maximum is given
to this parameter, no hard blocks are ignored, i.e. all the hard blocks are
checked.

2.8.3-f class CInitialHeadOnCubicLattice3D

Arranging the head (0th) segments of each polymer on 3-D geometric shape. The
head segments are placed on 3-D points at cubic lattice points inside the 3-D shape,
including the surface.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• Graft: select { "OFF", "FIRST_END", "LAST_END",
"BOTH_ENDS", "MIDDLE_POINT", "ALL" }
Grafting type.

"OFF": No segments are grafted. In other words, no segments are spatially
fixed.

"FIRST_END": The first end, i.e. the 0th (head) segment, of each polymer
(or each segment as a polymer species) is grafted.

"LAST_END": The last end, i.e. the N-th ((N − 1)-th) segment, of each poly-
mer (or each segment as a polymer species) is grafted.

"BOTH_ENDS": Both the ends, i.e. both the 0th (head) and N-th ((N − 1)-
th) segments, of each polymer (or each segment as a polymer species) are
grafted.

"MIDDLE_POINT": The middle point between both the ends, i.e. (N/2)-th
segment, of each polymer (or each segment as a polymer species) is grafted.

"ALL": All the segments of each polymer (or each segment as a polymer
species) are grafted.
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• ShapeForHeadSegment: CGeometricShape3D
3-D geometric shape, on which the head segments are placed.

• PolymerConformation: CPolymerConformation
Polymer conformation.

• LatticeConst: double
Lattice constant.

• NumberOfHeadsPerLattice: int
The number of the head segments distributed to each lattice point. The num-
ber of heads per lattice point. This equals the number of polymers per lattice
point.

• IgnoredHardBlockIndex: int
The index of the hard block to ignore for the arrangement of the head (0th)
segments. When a negative value or one larger than the maximum is given
to this parameter, no hard blocks are ignored, i.e. all the hard blocks are
checked.

2.8.3-g class CInitialHeadRandomSurface2D

Arranging the head (0th) segments of each polymer on 2-D geometric shape lying
parallel with xy-plane. Random distribution using rejection sampling. Note that
the acceptance ratio of this rejection sampling depends on the geometric shapes.
This could result in the extremely low acceptance ratio. The simulation program
automatically aborts when the random numbers cannot be accepted in acceptable
computational time.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• NumberOfPolymers: int
The number of placed polymers.

• Graft: select { "OFF", "FIRST_END", "LAST_END",
"BOTH_ENDS", "MIDDLE_POINT", "ALL" }
Grafting type.

"OFF": No segments are grafted. In other words, no segments are spatially
fixed.

"FIRST_END": The first end, i.e. the 0th (head) segment, of each polymer
(or each segment as a polymer species) is grafted.

"LAST_END": The last end, i.e. the N-th ((N − 1)-th) segment, of each poly-
mer (or each segment as a polymer species) is grafted.
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"BOTH_ENDS": Both the ends, i.e. both the 0th (head) and N-th ((N − 1)-
th) segments, of each polymer (or each segment as a polymer species) are
grafted.

"MIDDLE_POINT": The middle point between both the ends, i.e. (N/2)-th
segment, of each polymer (or each segment as a polymer species) is grafted.

"ALL": All the segments of each polymer (or each segment as a polymer
species) are grafted.

• ShapeForHeadSegment: CGeometricShape2D
2-D geometric shape, on which the head segments are placed.

• z: double
z-coordinate, at which the 2-D geometric shape is placed. Actually, z-coordinate
of the head segments.

• PolymerConformation: CPolymerConformation
Polymer conformation.

• IgnoredHardBlockIndex: int
The index of the hard block to ignore for the arrangement of the head (0th)
segments. When a negative value or one larger than the maximum is given
to this parameter, no hard blocks are ignored, i.e. all the hard blocks are
checked.

2.8.3-h class CInitialHeadRandomSurface3D

Arranging the head (0th) segments of each polymer on 3-D geometric shape. Ran-
dom distribution on surface of the 3-D shape using rejection sampling. Note that
the acceptance ratio of this rejection sampling depends on the geometric shapes.
This could result in the extremely low acceptance ratio. The simulation program
automatically aborts when the random numbers cannot be accepted in acceptable
computational time.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• NumberOfPolymers: int
The number of placed polymers.

• Graft: select { "OFF", "FIRST_END", "LAST_END",
"BOTH_ENDS", "MIDDLE_POINT", "ALL" }
Grafting type.

"OFF": No segments are grafted. In other words, no segments are spatially
fixed.
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"FIRST_END": The first end, i.e. the 0th (head) segment, of each polymer
(or each segment as a polymer species) is grafted.

"LAST_END": The last end, i.e. the N-th ((N − 1)-th) segment, of each poly-
mer (or each segment as a polymer species) is grafted.

"BOTH_ENDS": Both the ends, i.e. both the 0th (head) and N-th ((N − 1)-
th) segments, of each polymer (or each segment as a polymer species) are
grafted.

"MIDDLE_POINT": The middle point between both the ends, i.e. (N/2)-th
segment, of each polymer (or each segment as a polymer species) is grafted.

"ALL": All the segments of each polymer (or each segment as a polymer
species) are grafted.

• ShapeForHeadSegment: CGeometricShape3D
3-D geometric shape, on which the head segments are placed.

• PolymerConformation: CPolymerConformation
Polymer conformation.

• IgnoredHardBlockIndex: int
The index of the hard block to ignore for the arrangement of the head (0th)
segments. When a negative value or one larger than the maximum is given
to this parameter, no hard blocks are ignored, i.e. all the hard blocks are
checked.

2.8.3-i class CInitialHeadRandomVolumetric3D

Arranging the head (0th) segments of each polymer on 3-D geometric shape. Ran-
dom distribution inside the 3-D shape, including the surface, using rejection sam-
pling. Note that the acceptance ratio of this rejection sampling depends on the
geometric shapes. This could result in the extremely low acceptance ratio. The
simulation program automatically aborts when the random numbers cannot be ac-
cepted in acceptable computational time.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• NumberOfPolymers: int
The number of placed polymers.

• Graft: select { "OFF", "FIRST_END", "LAST_END",
"BOTH_ENDS", "MIDDLE_POINT", "ALL" }
Grafting type.

"OFF": No segments are grafted. In other words, no segments are spatially
fixed.
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"FIRST_END": The first end, i.e. the 0th (head) segment, of each polymer
(or each segment as a polymer species) is grafted.

"LAST_END": The last end, i.e. the N-th ((N − 1)-th) segment, of each poly-
mer (or each segment as a polymer species) is grafted.

"BOTH_ENDS": Both the ends, i.e. both the 0th (head) and N-th ((N − 1)-
th) segments, of each polymer (or each segment as a polymer species) are
grafted.

"MIDDLE_POINT": The middle point between both the ends, i.e. (N/2)-th
segment, of each polymer (or each segment as a polymer species) is grafted.

"ALL": All the segments of each polymer (or each segment as a polymer
species) are grafted.

• ShapeForHeadSegment: CGeometricShape3D
3-D geometric shape, on which the head segments are placed.

• PolymerConformation: CPolymerConformation
Polymer conformation.

• IgnoredHardBlockIndex: int
The index of the hard block to ignore for the arrangement of the head (0th)
segments. When a negative value or one larger than the maximum is given
to this parameter, no hard blocks are ignored, i.e. all the hard blocks are
checked.

2.8.3-j class CInitialNumberAndArrangementParticles

Initial particle configuration.

• ConfigurationType: select { "point3D", "SquareLattice2D",
"CubicLattice3D", "RandomSurface2D", "RandomSurface3D",
"RandomVolumetric3D" }
Type of the initial particle configuration.

• point3D: CInitialHeadOn3DPoint

• SquareLattice2D: CInitialHeadOnSquareLattice2D

• CubicLattice3D: CInitialHeadOnCubicLattice3D

• RandomSurface2D: CInitialHeadRandomSurface2D
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• RandomSurface3D: CInitialHeadRandomSurface3D

• RandomVolumetric3D: CInitialHeadRandomVolumetric3D

2.8.4 udf classes for particles

See also sec. 2.4.

2.8.4-a class CParticle

• ParticleNumber: int
Particle number.

• SegmentNumber: int
Segment number.

• SegmentSpecies: select { "SA", "SB" }
Segment species.

• PolymerSpecies: select { "P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9" }
Polymer species.

• x: double
Particle coordinate, x.

• y: double
Particle coordinate, y.

• z: double
Particle coordinate, z.

• ImageCellX: int
Index of the image cell, x.

• ImageCellY: int
Index of the image cell, y.

• ImageCellZ: int
Index of the image cell, z.

• GraftSwitch: select { "ON", "OFF" }
Switch of the grafting.
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