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Chapter 1

Introduction

Solubilities between polymers and, polymers and solvents are important properties and easily estimations of
these properties have been desired. POTAGE (Phase diagram utility Of Ternary AGEnts) is one of programs
for such estimations. POTAGE generates triangle phase diagrams of polymers/solvents mixture with three
components. The feature of POTAGE is the usage of extended Flory-Huggins theory and the theory enables
us generating phase diagrams with random copolymers and block copolymers. Parameters for calculations
with POTAGE are polymer architectures (topologies of constructing chains and numbers of segments for each
constructing chains) and Flory-Huggins interaction energy between segments (Flory-Huggins x parameters).

X parameters can be estimated by a python script using PolymerDatabase , which includes solubility
parameters, generated by OCTA project.

The latest version of POTAGE draws spinodal curves and critical points only on triangle phase diagrams.
The functional of drawing binodal curves will be impremented in future.






Chapter 2

Theoretical background

2.1 Mixing energy of Flory-Huggins theory

We can calculate the free energy of mixture of polymers/solvents with Flory-Huggins theory, which uses the
lattice theory. The derivation of the theory is written in many letartures, please refer these letartures in
detail [1].
The mixing free energy of Flory-Huggins theory with n components can be written by the generalized
form N
]A%g 1 ng; + ZZXUM, (2.1)

i J>1

where R is gas constant, 7' is thermodynamic temperature, N; is the number of segments of i-th chain, ¢;
is the volume fraction of i-th chain, and x;; is the Flory-Huggins interaction energy between segments com-
posing i-th and j-th chains. Basic Flory-Huggins equation (2.1) was derivered for systems of homopolymer
blends and the theory has been modified for random copolymer blends. [2] [3] [4]. The mixing energy of
random copolymer can be considered as follows. The i-th chain of random copolymer is composed of k; kinds
of segments and each k; segments volume fracrtion is {y,}. The mixing energy of the system of random
copolymer is considered as [Mixing energy of segment-segment interactions|

= [Whole segment-segment interactions energy] - [Internal energy of segment-segment interactions
in random copolymers]
Therefore, equation (2.1) can be modified by

AG i
RT = Z i ln ¢i + Z Z Z Z XpqYpYe®Pi®j — Z Z Z XpqYpYqPi (2.3)

i j>i p q>p q>p
n n

ln Git D> D> Xibid; — Z Xii®i» (2.4)

i j>i

where, in right-hand side, the second term is the whole segment-segment interaction energy, the third term
is the internal energy of segment-segment interactions in random copolymers. Take care to the relation of 4
and j in the sum, it is different with equation (2.1) and the sum is done between the same volume fraction
¢;. In equation (2.4), X;j is the effective x parameter for randomness written by

ki ki
X;j = Z Z XpqYpYq- (2.5)

p q>p

Using the equaiton (2.4), the phenomena of miscibility windows of polymer arroys composed of random
copolymers can be explained [2] [3] [4] [5] [6]. The following sections, we use the equation (2.1) as the
standard equation for derivation instead of equation (2.4).
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2.1.1 Partial differential equation of mixing energy of Flory-Huggins equation

The partial differentiation of Flory-Huggins equation (2.4) by the i-th volume fraction ¢; gives the own
chemical potential p;. Using such the manner, several theories using partial differentiations deriverd based
on Flory-Huggins equation are considered for generating spinodal, binodal and critical conditions. However,
these partial differentiations must be done under the imcompressibility condition and the introducing the
imcompressibility condition demands asymmetric treatments in equations. Derived equations introducing the
imcompressibility condition explicitly tends to be complex, therefore we use implicit method to introduce the
imcompressibility condition that we differentiate Flory-Huggins equation (2.4) with the variable {s;} which
is implicitlty a componet of ¢; and the imcompressibility condition introduced to the final derived equation,
which is symmetric equation for eqch components, with {s;}. This implicit method reduces complexities in
numerical treatments.
First, we express equation (2.4) as G and partially differentiation it by s; gives

n

0G _ \ ) 001 00u, | ;.00 , 00
o Z (1n¢>z+1 +ZZ ”( + & J)—Zi:x“asl' (2.6)

This equation means the chemical potential of i-th components. Fathermore, we continue to differentiate
partially to this equation by ss, s3, ..., and get higher order differentiate equations using the extinction rule
of the imcompressibility condition that over secondally differentiated terms by the same {s;} are vanished
as follows.

0°G B - 1 0¢; 0¢; S 0¢; 0¢; = 0p; 09;
882881 N ;<N1¢Z (982 881) * Xl: ; X;j ((981 6782 + 882 878i> (27)
*G _ N~ (L 09i06: 09
DD G -t et ret o) (28)
"G 1 — 99
O5m....083059051 - ;(Nl(l) H(m — pmt H ) (2.9)

where equation (2.9) is the m-th order partial differential equation over third degree partial differentiation.

We introduce the imcompressibility condition to the implicit partially differentiate equations derived
above. We define the number of components as n and can select any component as a dependent component
under the imcompressibility condition. We choose the dependent component as s; = ¢; and the expression
of 0¢; /sy, is written as follows.

%

5. = 1 (k=1) (2.10)
gj’; = 0 (k#1i, k#)) (2.11)
9¢i .

95, = -1 (k=j). (2.12)

Consequently, d¢y /sy has the values 1,0, or -1. For example, ternally systems need a simple impricit rule
for any higher order partially differentiate equation such as
1= 17j:3781 :(bl

g%ll -1 (2.13)

ZL;Q = 0 (2.14)

g;ﬁ 4 (2.15)
i1=2,7=182=¢2

91 _ (2.16)

882
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% - 1 (2.17)

% = 0 (2.18)
i=3,j =255 =

% - 9 (2.19)

% - (2.20)

% = 1 (2.21)

2.1.2 The method of calculating y parameters

We introduced the group contribution method by van Krevelen to estimate y parameters [7].
Xij is estimated with the equation

Vv, )
where x; is the constatn (=0.34), V; is the segment volume, §; and J; are the solubility parameters for
segment ¢ and segment j, respectively. The detail is descrived in SUSHI manual [8].

2.2 The method to estimate the phase diagram with three com-
ponents

The method to estimate the phase diagram with three components are summarized as the literature by
Koningsveld at el [9]. Please refer the literature.

The method to estimate the phase diagram with many components is also summarized by Kamide [10].
Please refer the literature.

Fathermore a tool using the method by Koningsveld was developped as a program named PDFT in
OCTA project. Please refer the manual of PDFT.

The latest version of POTAGE can draw spinodal curves and critical points on triangle phase diagrams.
We will esplain the method as following sections.

2.2.1 Spinodal curves

Spinodal curves is the trace of points where the value of partial differentiation of chemical potential by each
{¢;} is zero. For simpicity, we define the general partial differentiate form as

oG

Gm = . 2.23
321 0Sm,....083082081 ( )
The condition of spinodal points can be written by the determinant
G G
Jsii = i U= 0. 2.24
si=| 6F g (2.2)

2.2.2 Critical point

The condition of critical points satisfies G;;; = 0 on spinodal curves. This condition demands the additional
equation to equation (2.24) as

0Jsij/0¢;  0Jsij /00,
Gji Gjj

G Gij

=0 2.25
0Jsij/0¢; 0Jsij/0¢; (225)

"
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2.2.3 Tie-line and binodal curve

Tie-line is a line connecting two coexisting compositions on phase diagram. Binodal curve is the curve
connecting ends of tie-lines. Macro phase separation is cuased within the binodal curve.

The chemical potentials of two coexisting compositions match the values.

Using the extend Flory-Huggins theory descrived in the section 2.1, The eq. (2.4) can be written with
three compositions

AG ba bB bc
kpTN Na H¢A+NB H¢B+NC noc
+ XAB%A®B + XBCcOBPC + XCADPCPA
+ X440ad4 + XBBPBPB + XCCPCPC

—  XAAba — XBBPB — Xccdo, (2.26)

whered N is the total segment number in the sysytem defined as
N =nsuNjs+ngNp+ncN¢, (227)

where n; is the number of i-th polymer. The binodal condition of coexisting points ¢ 4, ¢, ¢c and ¢y, ¢'5, o
must satisfy the condition

pa(ga,dp,0c) = palda, dp, dc) (2.28)
1B(da, ¢, 0c) = wp(Ph, ¥ ¢c) (2.29)
pc(ba, dB,0c) = po(ds ¢p: dc) (2.30)
pat+odp+oc = 1 (2.31)
P+ +dc = L (2.32)

Chemical potential u; is defined as the difference of the free energy of the system when adding one polymer
chain as

0GY  OAG o
= T o = 10+ A 2.
Hi 3m + anl |nﬂ£m 122 + Hi ( 33)

Therefore the binodal condition be be got by solving these equations

Apa(da,¢p,0c) = Apa(dy, dp, oc) (2.34)
A:LLB(¢A;¢B’¢C) = AMB((ZS//h(b/B,QS/C) (235)
Apc(Pa, dp,0c) = Apc(dy, ¢p. dc)- (2.36)
AG/kpT is obtained with multiplying N to both side of eq.(2.26) as
AG
—— = nalnga+nplnep +neclnoe
kT

+ xaBnaNaop + xBcnBNBdc + XcancNcoa
+ XxaanalNaoa + xBnNpop + xccneNcoc
— XaanalNg — xsBnNpB — XcencNcoc.- (2.37)

Concequentry the chemical potentional of A polymer Apy/kpT is given by [9]

AIU,A _ 1 8AG|
ksT kgl Ops ™7™
Nagpp Naoc
-1 1— da) — -
noa+ (1—¢a) Np Ne

+ (1 =0a)Na(xaBdB + xcadc + xa4da — Xaa)
— XBcNa¢pdc — xBBNAOBOB — XccNadcdc. (2.38)

Chemical potentials of B and C polymers also obtained with same manner. Under the binoal condition, the
values of chemical potentials of each components match.
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2.2.4 Numerical calculations
Spinodal condition

The spinodal condition equation (2.24) can be reduced to simultaneous linear equations and it can be solved
analitycally. However the critical point condition equation (2.25) can not be solved analitycally. Thus we
introduce numerical methods for these calculations as follows.

Mesh sysytems are introduced to triangle phase diagrams and select a grid point. We verify the inversion
of the sign of spinodal condition equation (2.24) on arounds a grid points to the selected grid point. If the
inversion is occured, a spinodal point exsists near the selected grid point. and we start to seach the spinodal
point numerically near the point then after seraching the spinodal point, as same sa the spinodal point, we
verify the inversion of the sign of critical condition equation (2.25) on arounds the point, if we can detect
the possibility of the existance of the critical point, we start to seach the critcal point. We introduced the
bisection method for numerical searching for both spinodal and critical points

Binodal condition

The spinodal condition eq. (2.38) can be modified to symmetric form by dividing by N as

NLA Ingy — % - % - j\% + (1= ¢a)(xaBdB + XcAPC + Xa4PA — XA4)
—XBCPBPC — XBBPBOB — XCCPCPC

= L, - aD % Fo () (apdh + xoad + xardh - xas)
Na A Na Ng No A)\XABPB T XCAPc T XAAPA — XAA
—XBcPROc — XBBYROE — Xcebode- (2.39)

Further, this equation can be transformed to

Py $a ¢  ¢c
Xa=1-PAepN P4 9B 9C
4 A expNal | Ny * Ng * N¢
7 B c

+ XaBPAOB + XBCPBOC + XCcAPCcPA — XABDPB — XCADC
—  XaBP4dB — XBCPBPC — XCaPcPa + XaBPE + XCade
+ X440a¢A + XBBPBPB + XccPcPC — 2XAAPA

—  XAad 9 — XBBOEDE — XcePodo + 2xaads}] = 0. (2.40)
Such transformation can be done for both B and C polymers as followings
P da o5 | dc
Xp=1-BexpN oA 08 00
B quexp Bl { NA+NB+NC
/ / /
A B %c

+ XABPAOB + XBCPBOC + XCAPCPA — XBCPC — XABPA

—  XaABP4dp — XBCPBPC — XCabcPa + XBePe + XABPA

+ Xaa¢ada +XxBBOBPB + XcoPcPc — 2XBBPB

—  XAAPaPUs — XBBOEOE — XCcodode + 2xBBOB}H =0, (2.41)

/
Xc=1- (b—cexpNC[
¢c

ﬁ
|
_|_
|
+
|

+ XaBPA®B + XBCPBOC + XCAPCPA — XCAPC — XBCPB

—  XABP4dp — XBePRPC — XcaPcPa + Xcade + XBCPB

+ Xaabada+ XBBOBOB + XCcCcbcdo — 2xccdo

—  XAA®udh — XBBOROE — XcoPcbe + 2xccdc}] = 0. (2.42)
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Consequently the problem of the binodal condition of three components reaches to the minimizaion problem
of the equation

X (64,08, 8, 0) = X3 + Xj + XE. (2.43)
where the incompressibility condition requires only 4 parameters. Newton method can be used to solve the
problem because the eq. (2.43) can be partial differentiated by ¢;.

2.3 Phase diagrams for block polymers

We applied the extend Flory-Huggind] F-H) theory and Random Phase Approximation (RPA) to the mixture
of block polymers.

2.3.1 Linear self-consistent field theory with RPA

We will derive the linear responce equation of polymer melts with RPA [13] . RPA solves the linear self-
consistent field equation given by

x = S%u+ Cx+u'e) (2.44)
zij = 0pi(q) (2.45)
Ci' = Z€;. (246)

where {6¢;(q)} is the fluctuation of the segment density of {¢;(r) — ¢;} in Fourier space.
S? is the Scattering function matrix between sub-chains.
C is the x parameters matrix.
u* is the pressure on demand of incompressibility condition.
e is the unit vector of which all elements are unity.
z is the coordinate number of segment(=6).
€;; is the segment-segment interaction energy between i-th and j-th segments.

2.3.2 The scattering functions between subchains

The scattering functions between subchains are obtained with Gaussian chain theory and given by

2N_(/P)

Op . —T
Sip(@) = Sgysle® —1+a) (2.47)
o NPNPe = I
Sii(a) = W(e =D =1 #5), (2.48)
Tr = Réi/|q‘2? Yy = R2Gjl|q|27 z = R2Gi/j/|q|2’ (249)

where N is the chain lengthO p is the index of chain, and i’ and j' are the index of subchains. Rgy and
Rgi o are the radius of gyration of subchains.

To get the phase diagram of spinodal decomposition of block polymers, we use the scattering functions
matrix between segment kinds given by

@) = D SE(q). (2.50)

ieK,jeK’ i',j'

2.3.3 The information of spinodal decomposition with RPA

We solve the eq. 2.44 between segment kinds and get the linear equation in Fourier space as
1§ (2.51)
u=—— X .
B

with one-dimensional mesh systtem and following information of spinodal decomposition are obtained from
the eigenvalue problem of the matrix —(1/38)S~1.



2.3. PHASE DIAGRAMS FOR BLOCK POLYMERS

The existance of negative eigenvalue of —(1/ B)g_l means the sysytem is under a spinodal condition.
where

q = 0 measn macro-phase separation,

q > 0 means micro-phase separation.






Chapter 3

Basic Operation

3.1 Preparation of GOURMET environment

Copy all files on Potage/action directory to $PF_ENGINE/action directory. Copy Potage/bin/win*/potage2.exet
to $PF_ENGINE/bin/win*, where * means wild cards.

3.2 Basic operation

We copy the POTAGE/def_udf/POTAGE.udf to our working directory and change the name for our work.
Open the udf with GOURMET and change to the View/Table mocde and insert date array to pd_data]]
(use Edit/Insert... O Ctrl-i) then input parameters to each pd_data[]. For namel, name2, and name3, input
names of polymers. The nl, n2, and n3 are the number of segments of each polymers. chi;; is the yparameter
between i-th and j-th components. We can add many elements to pd_datal|] and draw all phase diagrams as
a one sheet.

The parametes in control_parameters subholder are the control parameters of numerical calculations.
The num_dev is the parameteres of mesh grids. The error_sp, error_cr, and error_bi is numerical criterion
of phi for spinodal points, critical points and binodal points (not used), respectively. The max_iter is
the maximum trial number of numerical calculations. The values of recomendation are num_dev=400,
error_sp=error_cr=error_bi=1le 12, and max_iter=300 , respectively.

11
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File Edit View Unit Python Options Tool Window Help
Path History Yiew Location
“ < ” » ” Gl | [@ Tree ' Table [@ Global ' Record

UDF Path: ‘F'OTAGElnput.cnntrnl_parameters

Mame | Type | YWalue | Linit
testl.udf - -
% 7 POTAGEInput struct - -
5 namel string Falymer A
£ name2 =tring Faolymer B
& name3l string FPolyrmer C
@ ] pd_data] PDData array - -
@ [ pd_data[0] FDData - -
g ni double 1000.0
d n2 double 1000.0
d n3 double 1000.0
g chilz double -0.024
d chil3 dauble 0.0010
g chizs double -0.01
g chili double n.o
d chizz double n.o
d chial double 0.0
L | cantral_parameters ContralPara... - -
£ hum_dew int 400
g error_sp douhle 1.0E-12
d eror_cr double 1.0E-12
g error_hi douhle 1.0E-12
£ max_iter int 300

Figure 3.1: An example of POTAGE input UDF

After finishing the input, crick the right mouse button on the POTAGEInput subholder and invoke
PotageRun action. An action window will appear with empty parameter boxes for workingdir and run_name.
We can input the path of working directory to the workingdir and the name of inptu UDF file path to
run_name. No need to input data to both empty parameter boxes for the default runs. The default run
copys the opened UDF file to the default working directory GOURMET /tmp and invoke the potage on
the working directory. After invoking normally, command file run_name.gp and data file run_name.pd3 for
gnuplot are written on the working directory and gnuplot is automatically invoked and a phase diagram
window is drawed. The drawed pahase diagram is shown in Figure ?? [12]. The regions within the red
curves are spinodal regions. Grid points ”*” in the spinodal regions are colored red and other grid points
are colored blue. The red circle points on spinodal curves are the critical points.
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"PHASITAGIA Il .
Palymer C
08 . |
/‘/- \\\..
3 o
06 | S w * |
* % . N
T S # * " |
. )
; ’ - * * * *
02 | e } . ) |
¥* * * % . N . X
O | I ‘ I : L L
0 072 04 s » 1
o Polymer B

Figure 3.2: An example of phase diagram by a POTAGE run

POTAGE can be invoked on shell. The method is as
> potage -Iinput.udf

After finishing the run, input.udf.gp and input.udf.pd3 files are generated for gnuplot. We can draw phase
diagram using both files on gnuplot as

> load ’input.udf.gp’

3.3 Execution with POTAGE Ver.2 and Ver.3

There are differences in the UDF data structures of ver 1, 2, 3 of POTAGE because ver. 2 and 3 use RPA
for any archtecture of polymers.
One example of the UDF of ver.3 is shown in the fig. 3.3.

POTAGEInput.recipe U the point datga to plot as a recipe
POTAGEInput.recipe.phil recipe of component 1
POTAGEInput.recipe.phi2 recipe of component 2

Component 3 can be obtained with incompressibility condition.

POTAGEInput.meshForRPA [0 Mesh data for RPA calculation.
POTAGEInput.meshForRPA.mesh_width [0 mesh width default:0.5
POTAGEInput.meshForRPA.num_mesh [1 number of mesh default:64

POTAGEInput.pd_data_for_RPA[] O UDF data array for ver. 2 and 3.
The UDF data is the same of SUSHI UDF, please refer SUSHI manual.

POTAGEInput.control_parameters [ added date for ver. 3

POTAGEInput.control_parameters.error_bi convergence error for binodal calculation

POTAGEInput.control_parameters.num_dev_bi [J number of division of the system area for
binodal condition
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Please try both values as 1.0E-6 and 40.

Mame Type Value |
AB0_B50B50_AS0B100A50_3 udf - -
3 POTAGEInput - -

§ namel ABD |
§ name2 A50B50 B
§ name32 AB0B100AB0
3 pd_data[] - -
3 recipe - -
d phi1 N
d phiz N
] meshForRPA - -
d mesh_width |
£ num_mesh N
= - -
¢ [ pd_data_for_RPA[D] - -
3 polymer1 - -
3 polymer2 - -
sel type BLOCK N
=3 blocks]l - -
] blocks[0] - -
§ monomer_nal |
4 number_of_m N
3 blocks[1] - -
§ monomer_nal .
d number_of_m N
o= ] junction_pairs[] - -
3 polymer3 - -
rﬂ chi_parameters[] - -
& [ chi_parameters[0] - -
¢ =5 control_parameters - -
£ num_dev |
d error_sp
d error_cr
d error_hi
£ max_iter
£ num_dev_hi

Figure 3.3: UDF data structure for POTAGE3

potage2_run action gives triangle phase daiagram shown as fig. 3.4.
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ASOB100A50 VAR Green circles :

L micro phase separation
Blue lines: tie lines spinodal region

0.8 & O A\
/ 4 ¢ o B A
W IN .
/

0.6
Red square: recipe

04

02

B O & O & O & o O

i / I
0 .l
1] 02 04
o /

. \ 08 1
Red triangle: critical point Red curve: spinodal curve
Figure 3.4: Typical triangle phase daiagram obtained with POTAGE3

3.4 Method to use PolymerDatabase( for homo and randompoly-
mer only )

Opne GOURMET and read $PF_ENGINE/POLYMERDATABASE /polymerdatabase.udf file. Open File/Header
and write ”potage.act” to the Action File as figure 3.5.

ﬁ LIDF Header il

UDF Name: |C:1DCTA2I]I]31PF_EI'~IGIME_EI]IB\PDLTMEHDATAEAE...
Engine Type: |FolymerDB

Engine Yersion: [ver.0.3
10 Type: |(OUT
Project Hame: |release 2002 Dec

Action File: |potage.act

cComment;
04.02.04 bug is fixed. i

Cancel oK

Figure 3.5: dd the potage action file to polymerdatabase UDF

Crick the right mouse button on the PolymerDatabase subholder and invoke potage action POTAGEIn-
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putMaker. Action window with empty parameter of workingdir is appeared. The default of the workingdir
is empty which uses the GOURMET /tmp as the working directory.

After invoking the potage action, POTAGE_input_maker.udf file with SP values is written on the work-
ing directory. Read the POTAGE_input_maker.udf with GOURMET. We can see the two subholders
POTAGEInput and POTAGEInputMaker on the UDF file. We modify the date in the POTAGEInput-
Maker with Table mode on GOURMET, crick the polymer_parameter_for_potage[] subholder, we can see the
date of SP values.

File Edit View Unit Python Options Tool Window Help
’—Path History ’—\ﬂew "Lucatiun

< = E (' Tree ® Table || ' Global ® Record

UDF Path: |POTAGEInputMaker.polymer_parameter_for_potagel]

POTAGE_input_tmaker.udf loolymer_par.| name:sting |SolubilitPar.|  useint | ratio:double |
@ GraphSheet] ’ [0] Polyethylene 16.0 1] 1.0
©- [ POTAGEInput : [1] Polypropylene 17.0 0 1.0
Q |j POTAGEInputMaker [2] Polyisobutyl... 16.4 0 1.0

© Jpolymer_parametar_for_potage] : [31 Palystyrene 181 a 1.8

§ name 3 [4] FPoly fvinyl c... 19.7 1] 1.0
. ; [5] Paly fvinyl br... 203 0 1.0

SalubilityP 3
'f o lityPararm 1 B Polyinviid. 205 0 1.0
d ratio : [71 Faly ietraflu... 1.7 i 10
: [8] Poly {chlarot... 187 1] 1.0

Figure 3.6: Polymer parameter for potage subholder

We can see the data use:int and ratio:double in a raw. Put the value 1, 2, or 3 to the use:int cell and the
value 1. to the ratio:double cell for homopolymers. The number means the id of components on the ternaly
phase diagram. If we set a random copolymer’s data, put the same id number for the components composing
the random copolymer. And put the values of the random ratio to the each ratio:double cell where the sum
of all values must be one. If we need to use the same polymer data for different components, insert the same
data as a new raw and use the same data for the different components. The input UDF file is not saved to
the original polymerdatabase.udf file thus mdification is kept on the run.

File Edit View Unit Python Options Tool Window Help
~Path History View Location

< ES E i Tree ® Table || ( Global : Record

UDF Path: |F'OTAGEInputMaker.pulymer_parameter_for_potageﬂ

FOTAGE_input_maker.udf Alnolymer par...| name:string |SDIubi@rPar...| use:int | ratio:douhle |
&= =5 GraphSheet] ’ [0] Polyethylene 16.0 1 0.5
- [ POTAGEInput [11 Polypropylene 17.0 1 04
o] [ POTAGEInputMaker [21 Falyisobutyl... 16.4 2 1.0

% 3 polymer_parameter_for_potage] : 151 Polystyrene 18.1 1.0

§ name : [4] Faly einyl C... 19.7 1] 1.0
. : 5] Paly deiryl br... 203 0 1.0

SolubilityFaram :
f - b : [6] Foly fvirylid... 206 0 1.0
A ratio : [71 Poly ietraflu... 1.7 i 10
: 8] Paly {chlarot... 167 1] 1.0

Figure 3.7: polymer parameter for potage

Crick the right mouse button on the POTAGEInputMaker subholder and invoke POTAGESetChi ac-
tion. A action windows with parameter boxes of segment molar volume V;.[em?/mol] and thermodynammic
temperatrure T ° C]0O constant parameter x;. The default values are 100,150 and 0., respectively. In the
manual of CPC, the value x5 = 0.34 but the value 0. does not so influence to results.
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File Edit View Unit Python Options Tool Window Help
Path History View Location
“ < ” » ” 7| M@ Tree (! Table [@ Global ! Record
UDF Path: |POTAGEInput.pd_data[D]
Matme | Tvpe | Walue | Lnit
FOTAGE_input_rmaker.udf - -
@ [ POTAGEInput struct - -
§ nameil string Falyethylene..
§ name2 string Polyisobutyl...
5 name3l string Folystirene:...
@ [ pd_data] FDData array - -
@ 7 pol_datal0] PDData - -
d ni double 100.0
d n2 double 100.0
d ni double 100.0
d chilz douhle 0.02084708..
d chil3 douhle 0.56206960..
d chiz3 dauhle 058452031,
g chill douhle 0.02004527..
d chizz double 0.0
d chiz3 double 0.0
@ 7 control_parameters ControlPara... - -
& 7 POTAGEInputMaker struct - -

Figure 3.8: POTAGEInput subholder

The action write the data to the POTAGEInput subholder. We can see the estimated x parameters as

mentioned in the previous section 3.2.

For the default value of number of segments nl, n2 and n3, 10000/V;. is inputted. This value sould be

changed for our purpose.

The figure 3.9 shows an example of potage run. This example is the phase diagram of random copolymer
with Polyethylene:Polypropylene=0.5:0.5 , Polyisobutylene and Polystyrene blends.
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CHAPTER 3. BASIC OPERATION

"HHEEHEBHAR M e d

Palystyrene: 1.0
08 ¥
* *
06 ¥ * *
* * #
04t * # * *
* * * *
02+ ¥* * ¥ * *
* * * * ¥
l

0 02 0.4 08
Folyethylenes 0 .5/Polypropylene 0.5

08 1
Polyisobutylenes: 1.0

Figure 3.9: Calculation results of POTAGE

Mame Type Value
AB0_B50_AS0B50.udf -
¢ [ POTAGEInput struct -
¥ namei string ARD
¥ name? string BA0O
§F name3 string AB0BS0
o= 5 pd_data]] PDData array -
o= [ recipe Recipe -
o= [] meshForRPA MeshForRPA -
9 [ pd_data_for_RPA] PDDataFor... -
¢ [ pd_data_for RPA[D] FDDataFor... -
- =] polymer1 Polymer -
5ol type select HOMO
o= [ blocks]) Block array -
o~ [ junction_pairs]) JunctionPair... -
o= [ polymer2 Polymer -
o= 1] polymer3 Polymer -
o= [ chi_parameters]] ChiParamet. .. -
o= [] control_parameters ControlPara... -

Figure 3.10: UDF of POTAGE2




Appendix A

Compiling method

A.1 The structure of source file directory

The structure of source file directory of POTAGE is as follows.

SUSHI+
|
POTAGE

I
+--def_udf--+--POTAGE.udf UDF file for Input
| +--POTAGE_input_maker.udf UDF file for action

+--bin executable modules

+--sample sample files

+--src source files and include files

+--action action files
When compiling POTAGE, compilers use the source codes of SUSHI and libraries of SUSHI thus the com-
piling POTAGE must be done after compiling SUSHI as one core version and the position of POTAGE
directory must not be moved.

A.2 Compiling method

Use gmake for compiling on Linux (Cygwin).
Make on the directory POTAGE/src as

> cd POTAGE/src
> make all

A.3 Install method

On POTAGE/src directory

> make install

A.4 Clear method

On POTAGE/src directory

> make clean

19






References

1) M. DoiDA. OnukiD O OO0ODOO0OO0O00D00000DO0 in Japanese, Chapter 2, Iwanami (1992).
2) Kambour, R. P., Bendler, J. T. and Bopp, R. C.: Macromolecules, Vol. 16, p. 753 (1983).

3) ten Brinke, G., Karasz, F. E. and MacKnight, W. J.: Macromolecules, Vol. 16, p. 1827 (1983).
4) Paul, D. R. and Barlow, J. W.: Polymer, Vol. 25, p. 487 (1984).

5) S. Akiyamal NIPPON GOMU KYOUKAISHI in Japanese, Vol. 62, p. 534 (1989).

6) T. Ougizawal NIPPON GOMU KYOUKAISHI in Japanese, Vol. 68, p. 841 (1995).

)
)
)
)
)
)
7) van Krevelen, D. W.: Properties of Polymers, chapter 7 & 8, Elsevier (1990).

8) Kawakatsu, T.: CPC(The simple Python scripts for x-parameter guess), http://octa.jp (2001).

9) Koningsveld, R., Stockmayer, W. H. and Nies, E.: Polymer Phase Diagrams, Oxford University (2001).
10) Kamide, K.: Thermodynamics of Polymer Solutions, Elsevier (1990).
11) Fukunaga, H.: PDFT(Phase Diagram For Ternary), http://octa.jp (2001).
12) Su, A. C. and Fried, J. R.: Polymer Engineering and Science, Vol. 27, p. 1657 (1987).

)

13) Honda, T. and Kawakatsu, T: Macromolecules, Vol. 40, p. 1227 (2007).

21



