
OCTA
Integrated simulation system for soft materials

Multi-Phase Dynamics Program

Muffin
version 5.1

User’s Manual

- Volume I -

General Functions, I/O and Tools

OCTA User’s Group

January 01 2016

Authors of the Manual
Introduction Tatsuya Yamaue
Muffin Tatsuya Yamaue and Takashi Taniguchi
Milk and Tools Tatsuya Yamaue and Makoto Sasaki
Appendix Tatsuya Yamaue

Programers
Muffin Tatsuya Yamaue and Takashi Taniguchi
Milk Tatsuya Yamaue and Akiyoshi Kuroda
Python Tools Tatsuya Yamaue and Makoto Sasaki

Version 3.3 release
Programer, Authors of the Manual Tatsuya Yamaue

Version 4.0 release
Programer, Authors of the Manual Tatsuya Yamaue

Version 4.1 release
Programer, Authors of the Manual Tatsuya Yamaue

Version 5.0 release
Programer, Authors of the Manual Tatsuya Yamaue, Taku Ozawa

Version 5.1 release
Programer, Authors of the Manual Taku Ozawa

Acknowledgment
This work is supported by the national project, which has been entrusted to the Japan Chemical Inno-

vation Institute (JCII) by the New Energy and Industrial Technology Development Organization (NEDO)
under METI’s Program for the Scientific Technology Development for Industries that Creates New Industries.

This work is also partially supported by CREST-JST (Japan Science and Technology Agency) from
2003FY.

Copyright c⃝2000-2016 OCTA Licensing Committee All rights reserved.

Contents

Introduction ix

1 What is Muffin? 1

2 Starting Muffin 3
2.1 Starting guide . 3

2.1.1 The UDF files needed by Muffin . 3
2.1.2 Starting command . 3

3 Operation guide of Muffin 5
3.1 Input and output UDF . 5

3.1.1 The outline of input and output UDF . 5
3.1.2 Parameters (parameter) . 7
3.1.3 Mesh node coordinates data (mesh coordinate) . 13
3.1.4 Mesh element connection data (mesh element) . 14
3.1.5 Partial region data (partial region[]) . 14
3.1.6 Field data (field) . 16
3.1.7 Partial region (boundary) condition data (region condition[]) 20
3.1.8 Analysis result data (result[]) . 21

3.2 Dynamics manager . 22
3.2.1 The definition of terms of dynamics manager . 22
3.2.2 The functions of dynamics manager . 24
3.2.3 The outline of directions of dynamics manager . 24
3.2.4 Dynamics manager data of input and output UDF (dynamics manager) 27

3.3 Control parameter input UDF . 35
3.3.1 The outline of control parameter input UDF . 35
3.3.2 Control parameter data (parameter[]) . 35
3.3.3 Analysis result UDF control data (summary control) 35

3.4 Analysis result output UDF . 36

4 MILK – a generator of unstructured mesh for MUFFIN 37
4.1 Generation external shape . 37

4.1.1 Description of mesh parameters . 37
4.1.2 Partial regions generated by MILK . 37

4.2 Generation of internal structures . 38
4.2.1 The description of internal structure parameters . 38
4.2.2 Internal partial regions generated by MILK . 40

4.3 Generation of input UDF by MILK . 41

5 Pre-processor 43
5.1 Modeler – the input UDF generator for Elastica and Milk . 43
5.2 MuffinMujigen – a program to get dimensionless parameters for MUFFIN 43

5.2.1 The description of functions of non-dimensionized program 43
5.3 MeshFieldConvertor – a mesh and field UDF convertor . 44

5.3.1 The function of MeshFieldConvertor . 44
5.3.2 The interface of MeshFieldConvertor . 44

iii

iv CONTENTS

5.3.3 Zoom in/out of the field data between UDF(s) of SUSHI and MUFFIN 44
5.3.4 Zooming in/out of the field data by action operation 45

5.4 Conversion of mesh data from NASTRAN BULK file to UDF 45
5.4.1 Mesh data conversion on GOURMET . 45
5.4.2 The conversion program execution on console . 45

6 Post-processor 47
6.1 MeshFieldPlot - an analysis and plot tool for MUFFIN . 47

6.1.1 Function of MeshFieldPlot.py . 47
6.1.2 Interface of MeshFieldPlot.py . 47

6.2 MeshFieldShow - a drawing tool for MUFFIN . 49
6.2.1 Function of MeshFieldShow.py . 49
6.2.2 Interface of MeshFieldShow.py . 49

6.3 udf2avs - a convertor from UDF to the AVS format . 51

A Compiling MUFFIN 53
A.1 Setting of environment variables . 53
A.2 Compilation of MUFFIN . 53

B System extension guide 55
B.1 Basic class libraries of MUFFIN . 55
B.2 Compile options of basic class libraries of MUFFIN . 56

B.2.1 Discretization methods and compile options . 57
B.2.2 Mesh types and compile options . 57
B.2.3 Simulation picture and compile options . 58

B.3 System Extension Tutorial . 58

List of Figures

3.1 The top objects of the input and output UDF of Muffin . 5
3.2 Mesh parameter: A mesh type input screen . 7
3.3 Mesh parameter: The input screen of axial data . 8
3.4 Mesh parameter: The input screen of periodic boundary conditions and INDEX RULE 9
3.5 Solver control parameter (UDF description) . 9
3.6 Common physical parameter . 10
3.7 Physical parameter . 11
3.8 Input of a parameter . 11
3.9 The input of the scheduling of a parameter . 12
3.10 Mesh structure data . 13
3.11 Partial region data - partial region name setup - . 15
3.12 Partial region data - partial region element setup - . 16
3.13 Scalar field data - The name of a field and a region - . 17
3.14 Scalar field data - Value of field - . 17
3.15 Vector field data - The name of a field and a region - . 18
3.16 Vector field data - Value of field - . 18
3.17 Tensor field data - The name of a field and a region, and the type of tensor - 19
3.18 Tensor field data - Value of field - . 20
3.19 Partial (boundary) region condition data - Name of a condition, region and field - 21
3.20 Partial region (boundary) condition data - Value of conditions - 22
3.21 The flow of the Muffin simulator . 24
3.22 The flow of Dynamics Manager . 25
3.23 Dynamics manager - registered field - (UDF description) . 28
3.24 Dynamics manager - initialization procedure table - . 30
3.25 Dynamics manager - time development procedure table - . 31
3.26 Dynamics manager - Name of schedule - . 31
3.27 Dynamics manager - Unit of time schedule - . 31
3.28 Dynamics manager - time development schedule - . 32
3.29 Dynamics manager - dynamic condition bifurcation / evaluation command - 32
3.30 Dynamics manager - dynamic condition bifurcation and candidate procedure - 33
3.31 Dynamics manager - dynamic analysis execution / evaluation command - 34
3.32 Dynamics manager - dynamic analysis execution / analysis execution command - 34

4.1 Mesh which has a sphere structure in an unstructured lattice of a rectangular parallelepiped
external shape. Tetrahedron cells are put in two spheres (left). The boundary triangles of the
interior are put in four spheres, and the surface (right). 39

v

List of Tables

3.1 The simulation which changes a procedure at a certain decided time 26
3.2 The simulation which performs condition bifurcation dynamically 26
3.3 The simulation which performs analysis processing dynamically 26
3.4 Dynamics manager - registered field - (UDF description) . 28
3.5 Dynamics manager - Example of initialization procedure - . 29
3.6 Dynamics manager - Example of a time development procedure - 29

vii

Introduction

This manual explains about the function and input-and-output data dealing with

Multi-Phase Dynamics

of a simulator

Muffin
(MUltiFarious Field Simulator for Non-equilibrium system)

(with the following Muffin).
Muffin is a general solver for the continuum models for the multi-phase dynamics of soft materials on

finite difference method (FDM) or finite element method (FEM). Muffin includes the following six packages
(three fluid system packages, two solid system packages and one optics package).

1. PhaseSeparation. . . .Multi-Fluid Phase Dynamics Simulator (FDM and FEM).

2. Electrolyte. . . . Electrolyte Fluid Dynamics Simulator (FDM and FEM).

3. MEMFluid. . . .Micro Electro Chemical Fluidics Chip Simulator (FEM).

4. Elastica. . . . Linear Elasticity Simulator.

5. Geldyn. . . . Gel and Elasticity Dynamics Simulator.

6. Turban. . . . Light Transmittance Simulator.

They can deal with various problems in soft materials, such as the elasticity of multi-phase materials,
swelling and deswelling of gels, ion transport in charged colloids, reaction and diffusion in narrow channels,
and phase separation and droplets deformation in shear and electric field. Muffin can take the multi-phase
structure obtained by SUSHI and can calculate various properties such as the effective elastic modules of
the system.

Moreover, to provide a flexible environment for combining various functions and for future develop-
ment, Muffin is designed by the object oriented modeling, which enables DynamicsManager to combine,
cooperate and analyze the various fields with various solvers.

The structure of this manual is as follows.
In volume I , we explain basic functions, such as the starting method of Muffin, input and output UDF,

and the dynamics manager.
In volume II-VII, we explain the function of each package, the usage, and the example of application

in detail. In volume II, Multi-Fluid Phase Dynamics Simulator package named ”PhaseSeparation”, in vol-
ume III, Electrolyte Fluid Dynamics Simulator package named ”Electrolyte”, in volume IV, Micro Electro
Chemical Fluidics Chip Simulator package named ”MEMFluid”, in volume V, Linear Elasticity Simulator
package named ”Elastica”, in volume VI, Gel and Elasticity Dynamics Simulator package named ”Geldyn”,
and in volume VII, Light Transmittance Simulator package named ”Turban”.

In volume I, we explain the general pre, post and analysis tools (support tools) for Muffin. The support
tools consist of two parts, a pre processor (a mesh generation program ”Milk”, Modeler for ”Elastica”
and ”Milk”, the conversion program of the finite element data of NASTRAN form into that of UDF form
and initial value generation program) and a post processor (an analysis program, a drawing program, Plot
program).

ix

Appendix A describes the compile method for reconstructing the module of Muffin. In appendix B, the
source codes of C++ class libraries for the meshing, the dynamics manager and so on are described. It also
explains how a user can add a new function to Muffin.

If you use the Muffin base class libraries, various simulations (the finite difference method or the finite
element method using an unstructured or a structured mesh) can be performed. You can also deal with an
input and output data on GOURMET automatically. Moreover, the users can also use the common analysis
tools for all the output data in Muffin.

A tutorial manual for adding your own simulator to Muffin, which is given in the Appendix B, allows
you to develop your simulator using the C++ class libraries of Muffin.

We wish that Muffin finally becomes the tool which produces a meaningful, completely new results in
research of polymer science and soft condensed matter physics. Furthermore, we hope that Muffin will be
developed continuously in the future, and become the essentially innovative simulation software in the near
future.

22 Feb. 2002, Muffin development team.

Comment for version 3.3 release

Merry Christmas !!
Please enjoy your simulation using Muffin version 3.3.

25 Dec. 2002, Muffin development team.

Comment for version 4.0 release

In Muffin4, we add the new action programs, ”import picture” and ”porous generator”, in which we wish
the advance of the collaboration of the OCTA simulation and experiment and the expansion of users and
application of Muffin. Please enjoy your work using Muffin version4.0.

25 Dec. 2003, Muffin development team.

Comment for version 4.1 release

In Muffin4.1, we add new functions to ”Elastica” and ”Milk”, new action programs related to ”Elastica”
and ”Milk” modeler and engine run and lots of new samples of ”Elastica” and ”Milk”, which make easy to
build FEM model, run and analyze FEM solvers of Muffin. Please enjoy your work using Muffin version4.1.

03 Mar. 2003, Muffin development team.

Comment for version 5.0 release

In Muffin5.0, we unified ”PhaseSeparationFDM” and ”ElectrolyteFDM” into one package (Sep.2006). and
added new functions to ”PhaseSeparation(FDM)”. Manuals of ”PhaseSeparation” and ”Elastica” were
revised. Please enjoy your work using Muffin version5.0.

01 Feb. 2015, Muffin development team.

Comment for version 5.1 release

In Muffin5.1, we added new functions to ”PhaseSeparation(FDM)”. Especially, diffusion (e.g.heat conduc-
tion) simulation on the phase separated structure is available. Action tools of ”PhaseSeparation(FDM)” and
”Elastica” were revised. Please enjoy your work using Muffin version5.1.

01 Jan. 2016, Muffin development team.

x

Chapter 1

What is Muffin?

Muffin is a general solver for the continuum models for the multi-phase dynamics of soft materials on
finite difference method (FDM) or finite element method (FEM). Muffin includes the following six packages,
PhaseSeparation, Electrolyte, MEMFluid, Elastica, Geldyn and Turban , and can deal with various
problems in soft materials, such as the elasticity of multi-phase materials, swelling and deswelling of gels, ion
transport in charged colloids, reaction and diffusion in narrow channels, and phase separation and droplets
deformation in shear and electric field. Muffin can take the multi-phase structure obtained by SUSHI and
can calculate various properties such as the effective elastic modules of the system.

Moreover, in order to provide a flexible environment for combining various functions and for future devel-
opment, the interface between functions needs to be unified. By the object oriented design, functional separa-
tion of fields, solvers, and the dynamics is clearly made for Muffin, and the function (DynamicsManager)
to freely combine, to cooperate and to analyze the object of fields with various solvers is provided. The list of
the analysis function with which Muffin of this release is equipped, and the calculation techniques is shown
below.

1. The basic analysis functional list of Muffin

• Analysis of the flow under various external fields, such as the shear and the electric field.

• Analysis of multi-phase behavior, such as the coalescence and breakup process of droplets.

• The chemical reaction of fluid, a diffusion flow, and separation and extraction of reaction compo-
nents under pressure and electric fields in MEMS (Micro Electro Mechanical Systems), such as
micro reactor and micro-TAS (Total Analysis System).

• Deformation analysis of an elastic body with multi-phase structure in a stress seal of approval
and a distortion seal of approval.

• Deformation dynamics of a gel and an elastic body, with multi-phase structure under the stress,
pressure and electric field impression, and temperature and solvent change.

• Simulation of the spherulites growth and the light transmittance.

2. Basic calculation technique list of Muffin

• The flow action analysis by the structured lattice, the finite difference method (FDM), and Euler
picture.

• The flow action analysis in arbitrary form by the non-structure lattice, the finite element method
(FEM), and Euler picture.

• The deformation analysis of gels and elastic bodies in arbitrary form by the non-structure lattice,
the finite element method (FEM), and Lagrange picture.

• Dynamics Manager for cooperating and dispelling various fields, solvers, and dynamics.

• Generation of the non-structure lattice by the Delaunay automatic division.

• Use of the common UDF of the mesh, field, and boundary conditions, which makes a zooming
analysis with SUSHI easy.

1

2 CHAPTER 1. WHAT IS MUFFIN?

In this release, these functions are divided into the following packages. FDM simulators are unified into
one package.

1. Multi-Fluid Phase Dynamics Simulator : PhaseSeparation Package

(a) FDM PhaseSeparation Simulator (muffin5)

(b) FEM PhaseSeparation Simulator (muffin5e phaseseparation)

2. Electrolyte Fluid Dynamics Simulator : Electrolyte Package

(a) FDM Electrolyte Simulator (muffin5)

(b) FEM Electrolyte Simulator (muffin5e electrolyte)

3. Micro Electro Chemical Fluidics Chip Simulator : MEMFluid Package (muffin5e memfluid)

4. Linear Elasticity Simulator : Elastica Package (muffin5e elastica)

5. Gel and Elasticity Dynamics Simulator : Geldyn Package (muffin5e geldyn)

6. Light Transmittance Simulator : Turban Package (turban)

These modules are built on common functions of Muffin, such as a field, a mesh, boundary conditions,
a dynamics manager, and an UDF IO interface, the operation method, the input-and-output UDF file, and
the analysis program.

Chapter 2

Starting Muffin

2.1 Starting guide

2.1.1 The UDF files needed by Muffin

In order to use Muffin, the following UDF files are needed.

• UDF definition file (muffin5.udf or muffin5e.udf) . . . The definition of the data structure of input and
output UDF.
It is necessary to put this file on the directory specified by environment variable UDF DEF PATH.
Although it is already set up when engine is installed according to an installation manual, if you set up it
manually, it is necessary to set environment variable UDF DEF PATH as the udf/ directory under the
directory (environment variable PF ENGINE) where engines are installed. When UDF DEF PATH
was not defined, UDF definition file is necessary to exist in the directory where the execution module
exists.

• Input UDF file (inputUDF) . . . input data of UDF structure.

• Output UDF file (outputUDF) . . . output data of UDF structure.

As options, the following files are also necessary for the real-time display of analysis results and for
controlling the engine.

• Analysis-result output UDF definition file (muffin5res.udf) . . . The data structure of the analysis-result
output UDF is defined.
It is necessary to put this file on the directory specified by environmental-variable UDF DEF PATH.

• Control parameter input UDF file (parameterUDF:muffin5par.udf) . . . The UDF file where the change-
able parameters and control parameters for summary data during simulation are described.

• Analysis-result output UDF file (summaryUDF) . . . The UDF file where analysis-result output data
are described by real time.

2.1.2 Starting command

Names of modules are listed below.

• FDM Multi-Fluid Phase Dynamics Simulator . . .muffin5

• FEM Multi-Fluid Phase Dynamics Simulator . . .muffin5e phaseseparation

• FDM Electrolyte Fluid Dynamics Simulator . . .muffin5

• FEM Electrolyte Fluid Dynamics Simulator . . .muffin5e electrolyte

• Micro Electro Chemical Fluidics Chip Simulator . . .muffin5e memfluid

• Multi-Phase Linear Elasticity Simulator . . .muffin5e elastica

3

4 CHAPTER 2. STARTING MUFFIN

• Multi-Phase Gel Dynamics Simulator . . .muffin5e geldyn

The staring commands and the data structures of input and output UDFs are common to
all the above modules, as the following sections.

How to start using the command line

User can perform the execution module of MUFFIN with some arguments from a command prompt in the
windows system or from a shell prompt in the Unix System.

Muffin can be performed from a command line. An argument surrounded by {} is an option. Usually, -I
and -O are designated.

% muffin(module name) -I inputUDF {-O outputUDF} {-r or -i input record No.} {-e end record No.}
{-P parameterUDF} {-S summaryUDF}

• inputUDF . . . The path of an input UDF file

• outputUDF . . . The path of an output UDF file

• input record No. . . . The record number of the UDF data to input. -r is for a FDM engine and -i is
for FEM engines.

• end record No. . . . The maximum record number of the UDF data.

• parameterUDF . . . The path of the input UDF file of an interactive parameter change command

• summaryUDF . . . The path of the analysis result output UDF file for an interactive surveillance of
calculation result

• In the execution of an engine on GOURMET, the control parameter file specified by “-P” option is
surely read once in the initial processing. When ”RESUME” of the engine (a parameter changed)
is carried out, it is read again. The analysis-result data specified by the control parameter file are
outputted to the analysis-result output file specified by “-S” option. An analysis result is outputted at
intervals of the step of input-parameter “INTERVAL OF MONITORING”. When the analysis-result
data to output are not specified by the control parameter file, all analysis-result data are outputted to
an analysis-result output file.

• Batch processing which performs an engine directly from a console can also output analysis-result data
using “-S” option. It is only the once in the case of initialization that the control parameter specified
by “-P” option is read in the case of batch processing. The analysis-result data specified by the control
parameter file are outputted to the analysis-result output file specified by “-S” option at intervals of
the step of input-parameter “INTERVAL OF MONITORING”. When a control parameter file (“-P”)
was not specified, or when the analysis-result data to output are not specified by the control parameter
file, all analysis-result data are outputted to an analysis-result output file.

Chapter 3

Operation guide of Muffin

3.1 Input and output UDF

3.1.1 The outline of input and output UDF

The structure of an input UDF file and an output UDF file is the same in Muffin. The outline of input and
output UDF files is explained below.

Figure 3.1: The top objects of the input and output UDF of Muffin

As shown in Fig.3.1, the input and output data of Muffin have the following structure.

1. Parameter part(parameter)

5

6 CHAPTER 3. OPERATION GUIDE OF MUFFIN

• Mesh structure parameter (mesh parameter)

• Solver control parameter (solver parameter)

• Common physics parameter (common physical parameter)

• Physical parameter (physical parameter)

2. Mesh node coordinates data part (mesh coordinate)

3. Mesh element connection data part (mesh element)

4. Partial region data part (partial region[])

5. Fields data part

• Scalar field data (scalar field)

• Vector field data (vector field)

• Tensor field data (tensor field)

6. Partial region (boundary) conditions data part (region condition[])

7. A dynamics manager part (dynamics manager)

• The list of fields to be used (registered field)

• The list of initialization procedures (procedures table for initialization)

• The list of 1 step execution procedures (procedures table for evolution)

• Data of the simulation schedule to perform (schedule of simulation)

8. Analysis result data part (result[])

9. Modeler part (modeler)

The input and output data for Muffin consist of parameters, mesh node coordinates data, mesh element
connection data, partial region data, the data of fields, partial region (boundary) condition data, a dynamics
manager, analysis result data, and modeler part.

1. Parameter part (parameter) . . . Initial data

2. (Only FEM) Mesh node coordinates data part (mesh coordinate)

• Fluid system simulator (Euler picture) . . . Initial data

• Solid system simulator (Lagrange picture) . . . Record data

3. (Only FEM) Mesh element connection data part (mesh element) . . . Initial data

4. (Only FEM) Partial region data part (partial region[]) . . . Initial data

5. Fields data part(field) . . . Record data
(When the field data is inputted into the initial data, it will be read as an initial value distribution of
a field)

6. Partial region (boundary) conditions data part (region condition[]) . . . Initial data

7. A dynamics manager part (dynamics manager) . . . Initial data

8. Analysis result data part (result[]) . . . Record data

9. Modeler part (modeler) . . . Initial data

Below, each data of parameters, mesh node coordinates data, mesh element connection data, partial
region data, the data of fields, partial region (boundary) condition data, a dynamics manager, and analysis
result data are explained.

3.1. INPUT AND OUTPUT UDF 7

3.1.2 Parameters (parameter)

The outline of a parameter part (parameter)

All parameters are inputted from the common data of Input UDF, and are outputted to the common data
of Output UDF as it is. The parameter is mainly divided into four parts as follows.

1. Mesh structure parameter (mesh parameter)
The value of the parameter group for a mesh creation is given.

2. Solver control parameter (solver parameter)
The parameters for tuning up a solver are given.
(An acceleration factor for the SOR method, a maximum number of the iteration in CG method, etc.)

3. Common physical parameter (common physical parameter)
The parameters used commonly in all the modules of Muffin are given here. For example, they are the
time unit ”DT”, a number of initial steps ”INITIAL STEP”, an initial time ”INITIAL TIME”, and a
number of end steps ”FINAL STEP”.

4. Physical parameter (physical parameter)
The physical constants used in a simulation or non-dimensional parameters are given.

Mesh structure parameter (parameter.mesh parameter)

Write all the information about generation of Mesh here.

Figure 3.2: Mesh parameter: A mesh type input screen

Fig.3.2 shows the example of an opened mesh parameter in Editor.

• name : . . . The name of a mesh
It is useful in using two or more mesh data in a simulation.

• type : . . . The type of a mesh
As a type of a mesh, the structure lattices of the following four types and the unstructured lattices of
four types are supported.

– REGULAR . . . Regular mesh (for FDM)

– UNSTRUCTURED RECT . . . Unstructured mesh (for FEM) (square form and rectangular par-
allelpiped form)

8 CHAPTER 3. OPERATION GUIDE OF MUFFIN

– UNSTRUCTURED SPHERE . . . Unstructured mesh (for FEM) (the shape of circle and sphere)

– UNSTRUCTURED INPUT . . . Unstructured mesh-data input (for FEM)

Figure 3.3: Mesh parameter: The input screen of axial data

Fig.3.3 shows the example of axes[].values[] in Editor.

• axes[] : . . . The array of axial data
The number of elements of the array of axes[] expresses a space dimension. Fig.3.3 is the case of three
dimensions and axes [0], axes [1], and axes [2] express X, Y, and the Z-axis, respectively.

• axes[].values[] : . . . The coordinates and the number of division of each axis

– axes[].values[0] . . . The minimum value of the region of an axis

– axes[].values[1] . . .Maximum of the region of an axis

– axes[].values[2] . . . The number of division of an axis
However, in the case of unstructured lattice data input (UNSTRUCTURED INPUT), the number
of division of an axis is disregarded.

– unit . . . Unit of coordinates.

When a mesh type is RECTANGULAR, the array of the coordinates of a mesh point must be inputted.

Fig.3.3 shows the case of the minimum value 1.0, maximum 2.0, and 15 division for each of X, Y, and
Z-axis.

Fig.3.4 shows the example of the periodic[] and the index rule[] in Editor.

• periodic[] : . . . The array of the periodic boundary condition data of an axis
1 . . . periodic, 0 . . . non-periodic
periodic[0], periodic[1], and periodic[2] correspond to the periodicity of the axis of axes[0], axes[1], and
axes[2], respectively.

Fig.3.4 figure shows the case where all of X, Y, and the Z-direction are non-periodic, in the three
dimension system.

• index rule[] : . . . In the case of a structured lattice, the relation between the order of the data array of
a field and the surroundings order of an axis is described.

3.1. INPUT AND OUTPUT UDF 9

Figure 3.4: Mesh parameter: The input screen of periodic boundary conditions and INDEX RULE

Figure 3.5: Solver control parameter (UDF description)

10 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Solver control parameter (parameter.solver parameter)

Parameters related to a numerical algorithm such as the value of criterion of convergence, the maximum
number of iteration of a using-as release-repeating method case, and the acceleration factor of a SOR solver
etc. should be written here.

The solver control parameter in Elastica is shown as an example in Fig.3.5.

Common physical parameter (parameter.common physical parameter)

Figure 3.6: Common physical parameter

A parameter common to all the simulators of Muffin is described here. The following six parameters
exist as common physical parameters that we have at this moment.

• DT: . . . The time unit for the integral in the direction of time
If this value is set up, a dynamics manager’s time counter will be automatically added only for DT in
every 1STEP execution.

• INITIAL STEP: . . . The record number of restart data (the default value is 0)
It becomes the initial value of a dynamics manager’s time step counter.
(cautions: Positive integer in which INITIAL STEP contains 0)

• INITIAL TIME: . . . The initial value of a time counter (the default value is 0)
It becomes the initial value of a dynamics manager’s time counter.

• FINAL STEP: . . . The number of the maximum calculation steps.
The maximum in this simulation of a time step counter is specified.
(Cautions: the FINAL STEP must be a positive integer.)

• INTERVAL OF MONITORING: . . . Every this step interval, the status of simulation is outputted.

• INTERVAL OF UDF OUTPUT: . . . Every this step interval, the record data of simulation is out-
putted.

A common physical parameters are shown in Fig.3.6 as an example.

Physical parameter (parameter.physical parameter)

The physical constant which describes a system is inputted. Since the explanation on each simulator is
described in the following parts I to IV, please refer to those chapters about the parameters and their
meanings.

The physical parameters in Elastica are shown in Fig.3.7.

3.1. INPUT AND OUTPUT UDF 11

Figure 3.7: Physical parameter

Input of a parameter

The parameter data of

• Solver control parameter (parameter.solver parameter)

• Common physics parameter (parameter.common physical parameter)

• Physical parameter (parameter.physical parameter)

have the same structure, so shall we explain how to input these parameters together.

Figure 3.8: Input of a parameter

The structure of parameter data is as follows.

• name : . . . Parameter name
The left figure of fig.3.8 shows the case of parameter name’DT’.

• value[] : . . . The array of the value (a character sequence or numerical value) of a parameter
The right figure of fig.3.8 shows the case where the value of ’DT’ is set to be 1.0e− 2.

• schedule : . . . The schedule of a parameter can be inputted here.

12 CHAPTER 3. OPERATION GUIDE OF MUFFIN

[Agreement01]

You can refer another parameter by writing as $(NameOfParameter).
Description of $(NameOfParameter) can be used in the following parts.

• Solver control parameter (parameter.solver parameter)

• Common physics parameter (parameter.common physical parameter)

• Physical parameter (parameter.physical parameter)
The value of all these parameters.

• The value of boundary conditions
region condition.condition[].value[]

• Registration of the number of components a dynamics manager’s field
dynamics manager.registered field[].num of component

• The various steps and step width of a schedule of a dynamics manager
dynamics manager.schedule of simulation.evolution plan.schedule[].from this time step
dynamics manager.schedule of simulation.bifurcation plan.interval for evaluation
dynamics manager.schedule of simulation.analysis plan.interval for evaluation

[Agreement02]

About the operation of $(NameOfParameter) variable
For example, when writing like $(NumberOfComponent) $(*) $ (2), it was made to carry out calculation
deployment automatically. Now, $ (*), $ (/), $ (+), and $ (-) can be used.
* Explanation * about an operation order
Every one operation is performed from before. Therefore, A+B*C is interpreted as (A+B) *C.

The input of parameter scheduling

The scheduling of a parameter is the function to change the value of a parameter automatically at two or
more time (or step) which the user should set up beforehand. For example, you can give a parameter (for
example, χ-parameter) as a function of time in the simulation. It is also possible to set the common physical
parameter DT as 1.0e-2 at the initial time, to also change it into 5.0e-3 at the time step of 10000, and to
change it again into 2.5e-3 at the time step of 20000. This will be useful when you want to make DT smaller
gradually to stabilize a numerical computation scheme. The figure of Editor at the time of carrying out the
schedule of the DT using STEP is shown in Fig.3.9.

Figure 3.9: The input of the scheduling of a parameter

The structure of the schedule data of a parameter is as follows.

• time or step : . . . Either “TIME” or “STEP” should be described.
It specifies whether a schedule is controlled by time or step.
In the case of the left figure of Fig.3.9, the schedule of parameter’DT’ is controlled by STEP.

3.1. INPUT AND OUTPUT UDF 13

• time or step and value[] : . . . The array of schedules

• time or step and value[].from the time or step : . . . The time or the step, at which a parameter is
changed is inputted.
The example in which parameter’DT’ is changed at 10, 100, and 1000 STEP is shown in the center of
Fig.3.9.

• time or step and value[].scheduled value[] : . . . The value of a parameter you want to change.
The right of Fig.3.9 shows the example where a value is changed into 1.0e − 3 at the 10 STEP, into
1.0e− 4 at the 100 STEP and into 1.0e− 5 at 1000 STEP.

3.1.3 Mesh node coordinates data (mesh coordinate)

The coordinates data of all node elements (Vertex) and mesh node coordinates data are outputted only in
the case of an unstructured lattice.

When the mesh type of a mesh parameter is set to UNSTRUCTURED INPUT, the data is read into the
engine. What is necessary is just to put the node coordinates data generated by the pre-post processor into
this mesh node coordinates data part, in using another meshing software as a pre processor and generating
a mesh.

In the fluid system simulator (Euler picture) it is outputted to ”initial data”, while in the solid system
simulator (Lagrange picture) it is outputted to ”record data”.

Below, a data structure is explained.

Figure 3.10: Mesh structure data

• vertex[] : . . . Coordinates data of all the node elements that constitute a system
The aggregate of these elements is treated by the name ”ALL VERTEX”, from the data of a field,
a dynamics manager, a python analysis program, etc.

– vertex[].id : . . . ID of a node element (Natural-number: 1, 2 and 3, ...)

– vertex[].position : . . . Coordinates of a node element

∗ vertex[].position.x : . . . X coordinates of a node

∗ vertex[].position.y : . . . Y coordinates of a node

∗ vertex[].position.z : . . . Z coordinates of a node

Refer to the left figure of fig.3.10.

• unit : . . . The unit of coordinates.

14 CHAPTER 3. OPERATION GUIDE OF MUFFIN

3.1.4 Mesh element connection data (mesh element)

The connection data of the mesh element which constitutes the whole system is outputted here.
The information on all edge elements (Edge), all face elements (Face), all cell elements (Cell), and

neighbor elements is written. Only in the case of an unstructured lattice, the mesh element connection data
is outputted. Mesh type of a mesh parameter When referred to as UNSTRUCTURED INPUT, the data
here is read into engine and a mesh element is built. What is necessary is just to put the mesh element
connection data generated by the pre-post processor into this mesh element connection data part, in using
another meshing software as a pre processor and generating a mesh. All data are not outputted.

Although all the cell elements (Cell) that constitute a system are indispensable in the case of a 3-
dimensional system, the output of an edge element (Edge), a face element (Face), and a neighbor element
depends on the necessity for each simulator. Although similarly all the face elements (Face) that constitute
a system are indispensable in the case of a 2-dimensional system, the output of an edge element (Edge)
and a neighbor element depends on the necessity for each simulator. Moreover, in Muffin, all mesh element
connection data is outputted and inputted from ”common data.”

In the following, a data structure will be explained.

• edge[] : . . . Node information on all the edge elements that constitute a system
The aggregate of these elements is treated by the name ”ALL EDGE”, from the data of a field, a
dynamics manager, a python analysis program, etc.

– edge[].id : . . . ID of an edge element (Natural-number: 1, 2 and 3, ...)

– edge[].vertex : . . . Node information on an edge element
IDs of two nodes which constitute both ends of an edge.

• face[] : . . . Node information on all the face elements that constitute a system
The aggregate of these elements is specified by the name ”ALL FACE”, from the data of a field, a
dynamics manager, a python analysis program, etc.

– face[].id : . . . ID of a face element (Natural-number: 1, 2 and 3, ...)

– face[].vertex : . . . Node information on a face element
IDs of three nodes which constitute the vertex of a triangle element are entered.

• cell[] : . . . Node information on all the cell elements that constitute a system
The set of these elements is specified by the name ”ALL CELL”, from the data of a field, a dynamics
manager, a python analysis program, etc.

– cell[].id : . . . ID of a cell element (Natural-number: 1, 2 and 3, ...)

– cell[].vertex : . . . Node information on a cell element
IDs of four nodes which constitute the vertices of a tetrahedron element are entered.

Refer to the right figure of Fig.3.10.

3.1.5 Partial region data (partial region[])

In MUFFIN, partial region data is always outputted and inputted from ”common data.” When the type
of a mesh parameter is UNSTRUCTURED INPUT, partial region data as well as mesh structure data are
read, and a partial region is built inside a simulator. When you generate a mesh inside a simulator without
inputting mesh structure data, the set of an indispensable partial regions or a partial boundary is created.
However, it describes this partial region data, and if it is registered with a different name from the partial
region generated internally, partial region data will be read to add a partial region original in addition to it.
All the partial region data generated by the simulator in the input or the inside is outputted to the partial
region data of output data.

The following rules are prepared in the method of the name beginning of a partial region (set of an
element).

1. If the character sequence of ”ALL” is included, all the elements that constitute a system, or all
boundary elements are expressed.

3.1. INPUT AND OUTPUT UDF 15

2. Including the character sequence of ”BOUNDARY”, if a top character is ’B’ or ’b’, it expresses that
it is the set of a boundary element.

3. If the character sequence of ”VERTEX” is included, the set of node elements is expressed.

4. If the character sequence of ”EDGE” is included, the set of edge elements is expressed.

5. If the character sequence of ”FACE” is included, the set of face elements is expressed.

6. If the character sequence of ”CELL” is included, the set of cell elements is expressed.
Any one character sequence of ”VERTEX”, ”EDGE”, ”FACE”, and the ”CELL” needs to be
contained in the partial region name. On the other hand, two or more character sequences using the
four are not allowed to be included.

7. According to the above rule, a reserved word cannot re-define the following partial region name.

(a) “ALL VERTEX” . . . The set of all node elements

(b) “ALL EDGE” . . . The set of all edge elements

(c) “ALL FACE” . . . The set of all face elements

(d) “ALL CELL” . . . The set of all cell elements

(e) “ALL BOUNDARY VERTEX” . . . The set of all boundary node elements

(f) “ALL BOUNDARY EDGE” . . . The set of all boundary edge elements

(g) “ALL BOUNDARY FACE” . . . The set of all boundary face elements

(h) “ALL BOUNDARY CELL” . . . The set of all boundary cell elements

Below, a data structure is explained.

Figure 3.11: Partial region data - partial region name setup -

• name : . . . Input the name of a partial region.
The rule of naming is as mentioned above. Refer to the left figure of Fig.3.11.

• vertex[] : . . . ID of the node elements which constitute a partial region is inputted.
The data here becomes effective when ”VERTEX” is contained in a partial region name. Refer to
fig.3.12.

• edge[] : . . . ID of the edge elements which constitute a partial region is inputted.
The data here becomes effective when ”EDGE” is contained in a partial region name.

• face[] : . . . ID of the face elements which constitute a partial region is inputted.
The data here becomes effective when ”FACE” is contained in a partial region name.

• cell[] : . . . ID of the cell elements which constitute a partial region is inputted.
The data here becomes effective when ”CELL” is contained in a partial region name.

Refer to the right of Fig.3.11.

16 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.12: Partial region data - partial region element setup -

3.1.6 Field data (field)

The data part of fields consists of the following three arrays.

• The array of scalar fields (field.scalar field[])

• The array of vector fields (field.vector field[])

• The array of tensor fields (field.tensor field[])

The rule of input and output of the value of a field is as follows.

• Input
In the usual start, if there is data of the field in the initial data region, it will be inputted as an initial
value.
In a restart, if there is data of the field in the record, it will be inputted as an initial value.

• Output
All the data of the field whose dynamics manager.registered field[].io data flag is 1 are outputted to
record data.

Below, the structure of the data of each field will be explained.

Scalar field data (field.scalar field[])

• name : . . . The name of a scalar field. Refer to fig.3.13.

• name of region : . . . The name of the region where this field is defined
The partial region name mentioned above, or either of the reserved name of partial regions.

• num of component : . . . The number of components of a field
The number of the values of the field defined on an element (a node, a cell, etc.) in a partial region.

• value[]: . . . The array of the value of a field (array about a mesh element)
The value of the field in each element is outputted in the order of the mesh element array in the partial
region data.

– value[].comp[] : . . . The array of the component of the field on each mesh element.

3.1. INPUT AND OUTPUT UDF 17

Figure 3.13: Scalar field data - The name of a field and a region -

Figure 3.14: Scalar field data - Value of field -

18 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.15: Vector field data - The name of a field and a region -

Figure 3.16: Vector field data - Value of field -

3.1. INPUT AND OUTPUT UDF 19

Vector field data (field.vector field[])

• name : . . . The name of a vector field. Refer to Fig.3.15.

• name of region : . . . The name of the region where this field is defined
The partial region name mentioned above, or either of the reserved name of partial regions.

• num of component : . . . The number of components of a field
The number of the values of the field on an element (a node, a cell, etc.) in a partial region.

• value[]: . . . The array of the value of a field (array about a mesh element)
The value of the field in each element is outputted in the order of the mesh element array in the partial
region data.

– value[].comp[] : . . . The array of the value of the field in each mesh element (array about a
component)

∗ value[].comp[].x : . . . The value of X component of the vector field on each element and each
component

∗ value[].comp[].y : . . . The value of Y component of the vector field on each element and each
component

∗ value[].comp[].z : . . . The value of Z component of the vector field on each element and each
component

Tensor field data (field.tensor field[])

Figure 3.17: Tensor field data - The name of a field and a region, and the type of tensor -

• name : . . . The name of a tensor field. In a symmetric second rank tensor field, refer to Fig.3.17.

• type : . . . The type of the tensor. Either of the followings.

1. 2ndRankTensor . . . the second rank tensor

2. Sym2ndRankTensor . . . the symmetric second rank tensor

3. 3rdRankTensor . . . the third rank tensor

4. 4thRankTensor . . . the fourth rank tensor

20 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.18: Tensor field data - Value of field -

• name of region : . . . The name of the region where this field is defined
The partial region name mentioned above, or either of the reserved name of partial regions.

• num of component : . . . The number of components of a field
The number of components of the field defined on an element (a node, a cell, etc.) in a partial region.

• value[]: . . . The array of the value of a field (array about a mesh element)
The value of the field on each element is outputted in the order of the mesh element array in the partial
region data.

– value[].comp[] : . . . The array of the value of the field in each mesh element (array about a
component)

∗ value[].comp[].tensor[] : . . . The value of the tensor field of each element and each component
is held in an array.

3.1.7 Partial region (boundary) condition data (region condition[])

In MUFFIN, a user can set up the (boundary) conditions of arbitrary fields and arbitrary partial regions
(boundary) using partial region (boundary) condition data. When this function and the function in which a
user can define a partial region (boundary) freely are put together, the simulation under various conditions
is possible without change of a solver.

Partial region conditions are mainly used for the following cases.

• In the case of initializing a certain field with a fixed value in a certain partial region

• A setup of the boundary conditions of Dirichlet, Neumann, and Cauchy

Below, a data structure and the inputting method will be explained.

• name : . . . The name of partial region conditions (if there is no duplication, any name can be useful.)

• name of region : . . . The name of the partial (boundary) region which applies conditions.
Either the partial region name mentioned above or the reserved name of a partial region.

• name of field : . . . The name of the field to which conditions are applied
Either of the names of an effective field (field in dynamics manager.registered field[].name) is inputted
by the simulator.

3.1. INPUT AND OUTPUT UDF 21

Figure 3.19: Partial (boundary) region condition data - Name of a condition, region and field -

• name of condition : . . . The name of partial region (boundary) conditions
The name of the boundary conditions currently supported by the simulator (it can be used) should
refer to the boundary condition description of each simulator. The following prefixes are prepared for
naming the boundary conditions as a common rule.

1. DIRICHLET boundary condition . . . Prefix of ”D ” is attached like ”D XXXXX”.

2. NEUMANN boundary condition . . . Prefix of ”N ” is attached like ”N XXXXX”.

3. CAUCHY boundary condition . . . Prefix of ”C ” is attached like ”C XXXXX”.

4. Initialization conditions . . . Prefix of ”INI ” is attached like ”INI XXXXX”.

An example is shown in Fig.3.19 for a case where the boundary conditions fix the bottom boundary
perpendicular to the Z-axis
“BOUNDARY VERTEX ZMIN” (Dirichlet conditions ”D VEC” about displacement field), and apply
a force to the upper surface perpendicular to the Z-axis ”BOUNDARY FACE ZMAX” (Neumann
conditions ”N LOAD” about displacement field) are given.

• values[] : . . . The parameter of partial region (boundary) conditions
The required number and meaning of parameters should refer to description of the boundary conditions
of each simulator according to each conditions.

1. DIRICHLET boundary condition . . . The parameter value of the Dirichlet conditions is inputted.

2. NEUMANN boundary condition . . . The parameter value of the Neumann conditions is inputted.

3. CAUCHY boundary condition . . . The parameter value of the Cauchy conditions is inputted.

4. Initialization conditions . . . The initialization value of a field is inputted.

An example is shown in Fig.3.20 for a case where the position of the bottom surface perpendicular to
the Z-axis ”BOUNDARY VERTEX ZMIN” is fixed (the Dirichlet condition ”D VEC” about displace-
ment field a value (0.0, 0.0, 0.0)) and a force is applied to the upper surface perpendicular to Z-axis
”BOUNDARY FACE ZMAX” (the Neumann condition ”N LOAD” about displacement field and a
value (5.0, 0.0, 0.0)).

3.1.8 Analysis result data (result[])

The name and value of data of a result which are analyzed inside the simulator are outputted to analysis
result data of each record. Refer to guidance of ”dynamic analysis execution” of ”3.2 Dynamics Manager”,
and the analysis command list of each simulator description part about the analysis program included in the
simulator.

The structure of analysis result data is as follows.

22 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.20: Partial region (boundary) condition data - Value of conditions -

• name : . . . The data name of an analysis result

• value[] : . . . Data values of an analysis result. (a character sequence or numerical value)

3.2 Dynamics manager

Here, the dynamics manager which is the important basic function of a MUFFIN simulator is explained.
All the simulators in Muffin are built using the dynamics manager which is the basic function of Muffin.

Moreover, all the basic functions of Muffin, such as input and output of UDF files, mesh, partial regions,
fields, and boundary conditions, are managed by the dynamics manager function. Therefore, input-and-
output UDF form and directions are common to all simulators in Muffin.

A dynamics manager’s feature is two of the followings.

• Scheduling function
The time schedule table of a parameter or a simulation is created and a simulation based on the plan
is performed.

• Dynamics construction function
User can select the field to solve, the equation to be used, boundary conditions, an initial state, etc.
and can build up the simulator which a user wants to use.

Before describing the data structure in the input- and output-UDF file of dynamics manager data and
the input method, we define terminologies used in the dynamics manager in the next section.

3.2.1 The definition of terms of dynamics manager

Here, the terminologies which are necessary to understand the dynamics manager are explained.
The dynamics manager’s feature is the ”scheduling function” and the ”dynamics construction function.”

Such functions differ from the use form of the usual simulator fundamentally. The terms required in order
to define these functions by the dynamics manager are explained below.

There are seven basic terms of the dynamics manager as:

1. Command

2. Procedure

3. ProcedureTable

4. DynamicBifurcation

5. DynamicAnalyzer

6. Schedule

3.2. DYNAMICS MANAGER 23

7. DynamicsManaging

The definitions of these are explained in detail below.

1. Command . . . The minimum basic unit which constitutes a solver.
In Muffin, one “Command” consists of combination of a field and a message, which are sent to the
field.

Command

Command = an Operand (a Field object) + a Message

ex.) Command = ”Chemical Potential” + ”calculation using Flory-Huggins free energy.”
Thus, what combines the operand (a certain field) and the message is called “Command”. The Com-
mands is classified into five groups in Muffin.

• The Command for initialization

• The Command for 1 step execution

• The Command for a boundary condition setup

• The Command for analysis execution

• The Command for evaluation execution

2. Procedure . . . The minimum unit of a processing procedure.
A “Procedure” is the set of one or more Commands, and it is the minimum unit of a processing
procedure. The execution of a Procedure performs a series of Commands in order of registration.
Moreover, you can give a name to a Procedure and the Procedure is called NamedProcedure.
NamedProcedure is classified into the following two groups.

• Initialization Procedure

• (One step) Time development Procedure

The Procedure may be built using the above-mentioned Commands except for the Command for
evaluation execution.

3. ProcedureTable . . . The table of Procedures built from Commands.
A NamedProcedure of Muffin will be registered into the following two procedure tables as mentioned
above.

• Initialization Procedure table
A set of NamedProcedures which will be used as an initialization of fields.

• (One step) Time development Procedure table
A set of NamedProcedures which will be used in the calculation of the time evolution for fields.

4. DynamicBifurcation . . . Dynamic change of dynamics.
DynamicBifurcation means a mechanism which change a Procedure into another Procedure accord-
ing to the return value of the Bifurcation evaluation command during a simulation. If you input the
time schedule of simulation, the schedule is canceled when DynamicBifurcation is executed.

5. DynamicAnalyzer . . . Dynamic execution of an analysis program.
DynamicAnalyzer means a mechanism which executes the analysis commands of two or more fields
according to the return value of the Analysis evaluation commands during a simulation.

6. Schedule . . . Simulation execution plan (time schedule).
A building of a schedule is as follows.

• To select an initialization procedure from an initialization procedure table.

• To select a time development procedure from a time development procedure table, and the step
to start the procedure and to end the procedure. To determine such a plan up to FINAL STEP.

• To determine the dynamic bifurcation condition and dynamic analysis execution to perform.

7. DynamicsManaging . . . To perform a Schedule.

24 CHAPTER 3. OPERATION GUIDE OF MUFFIN

3.2.2 The functions of dynamics manager

Here, the flow of processing of a dynamics manager and the outline of how to use a function are explained
using a flow chart.

The flow of the Muffin simulator

First, a flow chart in Fig.3.21 shows the flow of processing common to Muffin. Processing progresses in the
order of reading of an input UDF file, construction of a parameter, a mesh, and a field, construction of a
dynamics manager, initialization and execution of a simulation, generation of output data, and a simulation
ends.

Figure 3.21: The flow of the Muffin simulator

The flow of dynamics manager

After generating a dynamics manager, and initializing it, the simulation is automatically performed with the
schedule given to the dynamics manager. For an understanding of a dynamics manager’s function, a flow
chart in Fig.3.22 shows processing of the contents of simulation execution.

3.2.3 The outline of directions of dynamics manager

A dynamics manager’s scheduling function is designed to perform the following three types of simulation:

1. the simulation which changes a procedure at a certain time

2. the simulation which performs condition bifurcation dynamically

3. the simulation which performs analysis processing dynamically

How to perform three kinds of the above simulation plans will be explained briefly in the following
sections.

3.2. DYNAMICS MANAGER 25

Figure 3.22: The flow of Dynamics Manager

26 CHAPTER 3. OPERATION GUIDE OF MUFFIN

from this time step this procedure will be used
INITIALIZE InitializeA
$(INITIAL TIME) EvolveA
TIME1 EvolveB
TIME2 EvolveC

Table 3.1: The simulation which changes a procedure at a certain decided time

return value this procedure ...bifurcation
1 EvolveD
2 EvolveE
3 EvolveF

Table 3.2: The simulation which performs condition bifurcation dynamically

The simulation which changes a procedure at a certain time

For example, if you want to execute the initializing procedure ”A”(InitializeA), the procedure ”A”(EvolveA)
from INITIAL TIME to TIME1, the procedure ”B”(EvolveB) from TIME1 to TIME2, and the procedure
”C”(EvolveC) from TIME2 to FINAL TIME, input “evolution plan” as shown in table 3.1.

The simulation which performs condition bifurcation dynamically

For example, when you execute the initializing procedure ”A”(InitializeA) and the procedure ”A”(EvolveA)
after initialization, if you want to change the procedure (EvolveD, EvolveE or EvolveF) according to the
return value (1, 2 or 3) of evaluation function, input “bifurcation plan” as shown in table 3.2.

The simulation which performs analysis processing dynamically

Using “analysis plan”, you can make plans as follows.

1. A fixed time interval analysis execution.
It is enabled by using the function which always returns a true (non-zero) as an evaluation function.

2. The analysis execution plan controlled by condition judgment.
For example we consider the following dynamic analysis. Two evaluation functions (“nameOfEval-
Func C” and “nameOfEvalFunc D”) of a field (“nameOfField Y”) and the evaluation function (“name-
OfEvalFunc E”) of a field (“nameOfField Z”) are performed every 1000 steps, and if each evaluation
value is a true, the corresponding analysis function of a field is performed. Such a dynamic analysis
can be performed as follows :

• Input “STEP” to analysis plan.unit of schedule.

• Input “1000” is described to analysis plan.interval for evaluation.

• Input the name of the analysis function which is performed when the name of a field, the name of
an analysis evaluation function, and an evaluation value are true, into evaluation function name,
and analysis function name of analysis plan.analyzer list[], as shown in table 3.3.

field evaluation function name analysis function name
nameOfField X nameOfEvalFunc A nameOfAnalyzerFunc00
nameOfField X nameOfEvalFunc B nameOfAnalyzerFunc01
nameOfField Y nameOfEvalFunc C nameOfAnalyzerFunc11
nameOfField Y nameOfEvalFunc D nameOfAnalyzerFunc12
nameOfField Z nameOfEvalFunc E nameOfAnalyzerFunc23

Table 3.3: The simulation which performs analysis processing dynamically

3.2. DYNAMICS MANAGER 27

3.2.4 Dynamics manager data of input and output UDF (dynamics manager)

The Outline of Dynamics Manager data (dynamics manager)

In the dynamics manager part of an input UDF file, a simulation is assembled and a simulation schedule is
described. The dynamics manager data of an input is outputted to the dynamics manager part of an output
UDF file as it is. The dynamics and the schedule which were used in the simulation are recorded on it. Since
the dynamics manager part of an output UDF file is read in the case of a restart, it is necessary to edit it
before a restart, to change dynamics and a schedule.

An input-and-output UDF dynamics manager data consists of four parts as shown below.

1. The fields to be registered (dynamics manager.registered field[]).
The field used in a simulation is registered from the list of fields which can be used written to the
manual.

2. Initialization procedure table (dynamics manager.procedures table for initialization[]).
Register the candidates of initialization procedure for each of the registered field.

3. Time development procedure table (dynamics manager.procedures table for evolution[]).
In time development, a group of the command executed for the registered field is created with an order,
and is named and registered to make it into a (one step) time development procedure. Two or more
time development procedures can be registered. The schedule of a simulation, which is explained later,
can be created using two or more procedures.

4. Schedule of simulation (dynamics manager.schedule of simulation).
The schedule of a simulation is described. The following four items are inputted if necessary.

(a) Selection of an initialization procedure.
Initialization to be used is chosen from an initialization procedure table.

(b) Selection of a time development procedure, and a time schedule.
Select a time development procedure to be used from a time development procedure table, and
it is determined to which time steps this procedure is applied using a step number or time. This
must be specified till the last time (FINAL STEP or FINAL TIME).

(c) Dynamic condition bifurcation.
The following information is described in order to perform bifurcation of a simulation.

i. The name of the evaluation command which gives a condition of bifurcation.

ii. A combination of the returned value and time development procedure for changing a time
development procedure according to the return value of an evaluation command.

iii. Time (or STEP) interval to execute an evaluation command.

(d) Dynamic analysis execution.
Select a field to analyze and a method (command for analysis execution) for analysis, with an
evaluation command which decides whether analysis is performed or not. Execution of two or
more analyses is possible.

The fields to be registered (dynamics manager.registered field[])

The method of describing the field registered into a dynamics manager is explained. Two or more fields
required for a simulation are registered here. For each of the field registered, its name and type, the number
of components, and the existence of output data are registered.

Below, a data structure and the inputting method are explained.

• name : . . . The name of a field
The name of a field is chosen from ”a list of the field which can be used” of the references of each
simulator.

• type : . . . The type of the variable of a field.

1. Scalar . . . Scalar field

2. Vector . . . Vector field

28 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.23: Dynamics manager - registered field - (UDF description)

Name of a field Type of a field Region Number of components Output data

VolumeFraction Scalar ALL VERTEX 2 yes
FreeEnergy Scalar ALL VERTEX 1 yes
Displacement Vector ALL VERTEX 1 yes

Table 3.4: Dynamics manager - registered field - (UDF description)

3. 2ndRankTensor . . . 2nd. rank tensor field

4. Sym2ndRankTensor . . . Symmetric 2nd. rank tensor field

5. 3rdRankTensor . . . 3rd. rank tensor field

6. 4thRankTensor . . . 4th. rank tensor field

• name of region : . . . The name of the region where the field is defined

• num of component : . . . The number of components of a field

• io data flag : . . . Existence of the output of the data of this field to an output UDF file.
“1” means there is output, while “0” means there is none. In the case of “1”, the data of a field is
outputted to an output UDF file. The data of a field to re-input in the case of a restart calculation
should be outputted.

The above five data must be given to each field to register. The example of an input is shown in Fig.3.23.
Fig.3.23 is an example which registers three fields of table3.4.

Usually, however, a user will edit the input template UDF file and the sample UDF file of each simulator
and create an input UDF file. In such a case, it is not necessary to consider and put in these data.

The procedure table of initialization and time development

A dynamics manager’s initialization and the method of describing a time development procedure table are
explained. Here, one or more initialization procedures and time development procedures are described,
respectively. It becomes possible to build the simulation schedule using these tables.

Since the structure of initialization procedures table
(dynamics manager.procedures table for initialization[]) is the same as the procedure table of time develop-
ment procedures table
(dynamics manager.procedures table for evolution[]), a data structure and the inputting method for these
are explained together.

A procedure table is the array of a procedure. One procedure is created in inputting a procedure name
and a series of command sequences (the names of a field and a message). Here, the case where four procedures
of table 3.5 are registered into an initialization procedure table is shown and explained in Fig.3.24 as an
initialization procedure.

3.2. DYNAMICS MANAGER 29

[1] Initialization procedure name INITIALIZE:LINEAR ELASTICITY:
ISOTROPIC:UNIFORM

The order of execution The name of a field The name of the message to perform
1 VolumeFraction INITIALIZE:UNIFORM
2 Displacement INITIALIZE:TO ZERO
3 FreeEnergy SOLVE:LINEAR ELASTICITY

[2] Initialization procedure name INITIALIZE:LINEAR ELASTICITY:
ISOTROPIC:ONE COMPONENT

The order of execution The name of a field The name of the message to perform
1 VolumeFraction INITIALIZE:ONE COMPONENT
2 Displacement INITIALIZE:TO ZERO
3 FreeEnergy SOLVE:LINEAR ELASTICITY

[3] Initialization procedure name INITIALIZE:LINEAR ELASTICITY:
ISOTROPIC:TWO COMPONENT

The order of execution The name of a field The name of the message to perform
1 VolumeFraction INITIALIZE:TWO COMPONENT
2 Displacement INITIALIZE:TO ZERO
3 FreeEnergy SOLVE:LINEAR ELASTICITY

[4] Initialization procedure name INITIALIZE:LINEAR ELASTICITY:
ISOTROPIC:MULTI COMPONENT

The order of execution The name of a field The name of the message to perform
1 Displacement INITIALIZE:TO ZERO
2 FreeEnergy SOLVE:LINEAR ELASTICITY

Table 3.5: Dynamics manager - Example of initialization procedure -

Moreover, the case where two procedures of table 3.6 are registered into a time development procedure
table is shown in Fig.3.25.

The data structure and the inputting method of a procedure are explained below.

• name : . . . The name of a procedure.
The example of an input of an initialization procedure name is shown in the upper part of Fig.3.24,
and the example of an input of a time evolution procedure name is shown in the upper part of Fig.3.25.

• command list[]: . . . A series of commands executed by this procedure.
Since commands are performed in the order of registration, be careful about the order of an input.
One command consists of the following data.

– command list[].field : . . . The name of a field.

[1] Time development SOLVE:LINEAR ELASTICITY:ISOTROPIC
procedure name

The order of execution The name of a field The name of the message to perform
1 Displacement SOLVE:LINEAR ELASTICITY:ISOTROPIC
2 FreeEnergy SOLVE:LINEAR ELASTICITY
3 Displacement MOVE:POSITION OF VERTEX

[2] Time development SOLVE:LINEAR ELASTICITY:ANISOTROPIC
procedure name

The order of execution The name of a field The name of the message to perform
1 Displacement SOLVE:LINEAR ELASTICITY:ANISOTROPIC
2 FreeEnergy SOLVE:LINEAR ELASTICITY
3 Displacement MOVE:POSITION OF VERTEX

Table 3.6: Dynamics manager - Example of a time development procedure -

30 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.24: Dynamics manager - initialization procedure table -

– command list[].name of func : . . . The name of the processing (message) to be performed.
Select a command from the command list of each fields written in the reference manual.

The example of an input of the commands of an initialization procedure is shown in the lower part of
Fig.3.24, and the example of an input of the commands of a time development procedure is shown in
the lower part of Fig.3.25.

Description of a schedule (dynamics manager.schedule of simulation)

Here, the method of describing a dynamics manager’s simulation schedule is explained.
All the information about the schedule of a simulation is described here. Select and input the initialization

procedure used in a simulation and of a time development procedure, and, if required, input the time schedule
of a time evolution procedure, dynamic condition bifurcation, and dynamic analysis execution.

The outline and the describing method of an input data structure of a schedule are explained below.

• name : . . . The name of a schedule (good anything)
The example of an input is shown in Fig.3.26.

• evolution plan : . . . Selection of an initialization procedure, and description of the simulation of a type
which changes a procedure at a certain time

– evolution plan.unit of schedule : . . . The unit used for a time schedule
Either “TIME” or ”STEP” is inputted.

1. “TIME” . . . The scheduling is controlled using time.

2. “STEP” . . . The scheduling is controlled using a calculation step.

An example in the case of performing a schedule controlled using a calculation step is shown in
Fig.3.27.

– evolution plan.schedule[] : . . . Selection of an initialization procedure and a time development
procedure.

3.2. DYNAMICS MANAGER 31

Figure 3.25: Dynamics manager - time development procedure table -

Figure 3.26: Dynamics manager - Name of schedule -

Figure 3.27: Dynamics manager - Unit of time schedule -

32 CHAPTER 3. OPERATION GUIDE OF MUFFIN

An initialization procedure is the first data of an array, and the execution schedule of a time
development procedure is entered in the data of the 2nd henceforth. Schedule data is given as a
combination of the name of start time or start step and the procedure to perform, and a schedule
is registered as an array of these data. As a starting time or step of an initialization procedure,
a string ”INITIALIZE” must be inputted.

∗ evolution plan.schedule[].from this time step : . . . Start time or start step.

∗ evolution plan.schedule[].this procedure will be used : . . . Execution procedure name.

An example of input is shown in Fig.3.28.

Figure 3.28: Dynamics manager - time development schedule -

• bifurcation plan : . . . Description of a dynamic condition bifurcation type simulation.

– bifurcation plan.unit of schedule : . . . The unit used for a time schedule. Input either “TIME” or
”STEP”.

– bifurcation plan.interval for evaluation : . . . Evaluation command execution interval.

– bifurcation plan.evaluation function name : . . . Condition bifurcation evaluation command name.

Figure 3.29: Dynamics manager - dynamic condition bifurcation / evaluation command -

– bifurcation plan.bifurcation candidate[] : . . . Description of the candidate procedure of a bifurca-
tion.
When the return value of the condition bifurcation evaluation command inputted in the above
is 0 (an evaluation result is false), bifurcation does not take place. Only in the case of a natural
number (1, 2, 3, ...) is returned, the value changes a time development procedure. The relation of
the returned value and the name of a time development procedure to change is described below.

3.2. DYNAMICS MANAGER 33

∗ bifurcation plan.bifurcation candidate[].return value : . . . The return value of an evaluation
function.
The return value from an evaluation function of the bifurcation condition is inputted. A
return value must be a natural number (1, 2, 3, ...) and in order from a candidate’s head.

∗ bifurcation plan.bifurcation candidate[]. this procedure will be used for evolution after bifurcation
: . . . The name of a time development procedure to perform after bifurcation.
Corresponding to each return value, the name of a time development procedure is chosen
from a time development procedure table, and is filled in.

An example is shown in Fig.3.30. In this example, when a return value is 1, a time development
procedure is changed into
”SOLVE:LINEAR ELASTICITY:ISOTROPIC”, and when a return value is 2, the case where it
changes into
”SOLVE:LINEAR ELASTICITY:ANISOTROPIC”.

Figure 3.30: Dynamics manager - dynamic condition bifurcation and candidate procedure -

• analysis plan : . . . Description of dynamic analysis execution.
The dynamic analysis execution is described. It is a mechanism which executes the registered analysis
execution evaluation command for the registered field for every fixed time of calculation, or fixed step,
and will execute the registered analysis execution command if the return value is a true (non-zero). The
field for analysis, an analysis evaluation command, and an analysis execution command are described.

– analysis plan.unit of schedule : . . . The unit used for a time schedule.
Input either “TIME” or ”STEP”.

– analysis plan.interval for evaluation : . . . Evaluation command execution interval.

An example of an input in the case of executing an analysis execution evaluation command at a
calculation step at the time of each step end is shown in Fig.3.31.

– analysis plan.analyzer list[] : . . . The list of the field to analyze, an analysis evaluation command,
and analysis execution commands.

∗ analysis plan.analyzer list[].field : . . . The name of the field for analysis.

∗ analysis plan.analyzer list[].evaluation function name : . . . The name of the analysis evalua-
tion command of a field.

∗ analysis plan.analyzer list[].analysis function name : . . . The name of the analysis execution
command of a field.

Fig.3.32 shows an example of an input to perform analysis execution evaluation by ”EVALU-
ATE:TRUE” (evaluation command which always returns a true), and performs ”OUTPUT:AVS”
(command which carries out the file output of the data of a field in AVS form) as an analysis
function of the both ”a free energy field (FreeEnergy)” and ”a volume-fraction field (VolumeFrac-
tion)”.

34 CHAPTER 3. OPERATION GUIDE OF MUFFIN

Figure 3.31: Dynamics manager - dynamic analysis execution / evaluation command -

Figure 3.32: Dynamics manager - dynamic analysis execution / analysis execution command -

3.3. CONTROL PARAMETER INPUT UDF 35

3.3 Control parameter input UDF

Here, the data structure of the control parameter input UDF (it specifies by {-P parameterUDF} option)
for making a parameter change on real time during calculation of Muffin engine is explained.

3.3.1 The outline of control parameter input UDF

The control parameter input UDF consists of two parts as follows.

1. Control parameter section (parameter[]).
Describe the name and value of a parameter to be changed during calculation.

2. Analysis-result output-control section (summary control).
Specify a data outputted to an analysis-result output file (summaryUDF) in a report or in a graph.

• Control of report output data (report result[])

• Control of graph output data (graph result[])

3.3.2 Control parameter data (parameter[])

The list of parameters to be changed during a calculation is inputted into the control parameter section.
Each control parameter is inputted by the following data structures.

• name : . . . The name of a parameter to be changed.
The value is updated if it is the existing parameter. The parameter is registered when a new parameter
is inputted.

• value[] : . . . The value to be changed (array).
Muffin can give two or more values in an array to the parameter of one name.

3.3.3 Analysis result UDF control data (summary control)

The control data for the analysis-result output file (summaryUDF) is inputted.

• report result[] : . . . The list of analysis-result data names which carries out report output.

– name : . . . The analysis-result data name which carries out report output.
The data to be used as the candidate for report output are analysis-result data (data outputted to
the analysis-result data (result[]) of Output UDF), or an input parameter (the solver parameter, a
common physical parameter, physical parameter of Input UDF). The report of an input parameter
is useful for confirming whether the parameter is normally changed when the scheduling of a
parameter is being performed.

• graph result[] : . . . The list of analysis-result data which carries out graph output.

– name : . . . The analysis-result data name which carries out graph output.

– mode : . . . The mode of the graphical representation range (“auto range” or “manual range”).
When ”auto range” is chosen, a range is determined automatically from the maximum and the
minimum value of a data sequence, and when ”manual range” is chosen, it is necessary to speci-
fying the range manually. When nothing is chosen, it is regarded as “auto range.”

– manual range : . . . Range specification when the mode of the graphical representation range is
“manual range.”

∗ min : . . . The minimum value of the axis in graphical representation.

∗ max : . . . The maximum value of the axis in graphical representation.

36 CHAPTER 3. OPERATION GUIDE OF MUFFIN

3.4 Analysis result output UDF

Here, the data structure of an analysis-result output file (it is specified by “-S summaryUDF” option) is
explained. Since it corresponds to a display in the engine control of GOURMET and is fundamentally
common to every engine, this data structure is explained briefly.

In Muffin, basically, if there are report data and graph data which were specified in the control parameter
input UDF, this will be outputted.

When the applicable data of the control parameter input UDF are empty, or when the control parameter
input UDF itself is not specified by -P option argument, all analysis-result data are outputted. In this case,
an input parameter does not serve as a candidate for output.

• report attribute : . . . The attribute of report data.

– location[] : . . . The array of the UDF location of report data.

– label[] : . . . The array of the label of report data.

• graph attribute : . . . The attribute of graph data.

– title : . . . The title of a graph.

– location[] : . . . The array of the UDF location of graph data.

– label[] : . . . The array of the label of graph data.

– scale[] : . . . The range of the axis in graphical representation.

∗ min : . . . The minimum value of the axis in graphical representation.

∗ max : . . . The maximum value of the axis in graphical representation.

• report data : . . . Report data.

– value[] : . . . The array of the value of report data.

• graph data : . . . Graph data.

– item[] : . . . The array of the item of graph data.

∗ value[] : . . . The time series array of the graph data of a certain item.

Chapter 4

MILK – a generator of unstructured
mesh for MUFFIN

The MILK generates the unstructured lattice mesh in UDF form. A three-dimensional Delaunay mesh and
a two-dimensional Delaunay mesh are used for the formation of a unstructured lattice.

4.1 Generation external shape

The mesh type currently supported by MILK is shown below. The type of the mesh is specified by the mesh
parameter (parameter.mesh parameter.type of mesh) as one of the following.

• UNSTRUCTURED RECT . . . Unstructured mesh (the shape is square or rectangular parallelepiped)

• UNSTRUCTURED SPHERE . . . Unstructured mesh (the shape is a circle or a sphere)

4.1.1 Description of mesh parameters

For each mesh type, parameters axes[] (the axes of a mesh), periodic[] (periodicity) have the following
meanings.

• UNSTRUCTURED RECT

– axes[0] . . . X-axis, axes[1] . . . Y-axis, axes[2] . . . Z-axis (3D case)

– periodic[0] . . . periodicity of X-axis, periodic[1] . . . periodicity of Y-axis, periodic[2] . . . periodicity
of Z-axis (3D case)

• UNSTRUCTURED SPHERE

– axes[0] . . . r-axis, axes[1] . . . θ-axis, axes[2] . . .ϕ-axis (3D case)

– periodic[0],periodic[1],periodic[2] . . . always 0 (false)

4.1.2 Partial regions generated by MILK

The partial regions (aggregate of mesh elements) which are generated for each mesh type are as follows.

• The commonly generated partial regions for UNSTRUCTURED RECT,
and UNSTRUCTURED SPHERE.

– “ALL [VERTEX,EDGE,FACE,CELL]” . . . All [vertices, edges, faces and cells].

– “ALL BOUNDARY [VERTEX,EDGE,FACE,CELL]”
. . . All boundary [vertices, edges, faces and cells].

• In the case of UNSTRUCTURED RECT.

37

38 CHAPTER 4. MILK – A GENERATOR OF UNSTRUCTURED MESH FOR MUFFIN

– “BOUNDARY VERTEX [XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX]”
. . . [Vertices on the base perpendicular to X-axis (X-axis non-periodic), Vertices on the top face
perpendicular to X-axis (X-axis non-periodic),
Vertices on the base perpendicular to Y-axis (Y-axis non-periodic), Vertices on the top face per-
pendicular to Y-axis (Y-axis non-periodic),
Vertices on the base perpendicular to Z-axis (Z-axis non-periodic), Vertices on the top face per-
pendicular to Z-axis (Z-axis non-periodic)]

– “BOUNDARY FACE [XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX]”
. . . [Faces on the base perpendicular to X-axis (X-axis non-periodic), Faces on the top face per-
pendicular to X-axis (X-axis non-periodic),
Faces on the base perpendicular to Y-axis (Y-axis non-periodic), Faces on the top face perpen-
dicular to Y-axis (Y-axis non-periodic),
Faces on the base perpendicular to Z-axis (Z-axis non-periodic), Faces on the top face perpendic-
ular to Z-axis (Z-axis non-periodic)]

• In the case of UNSTRUCTURED SPHERE

– “CENTER VERTEX” . . . A main node (when there is no inner spherical surface)

– “BOUNDARY VERTEX [TOP,BOTTOM] CENTER” . . . Center points on [top and bottom] sur-
face.

– “BOUNDARY VERTEX [OUTER,INNER] SPHERE” . . . Vertices on the [outside and inside]
spherical surface

– “BOUNDARY VERTEX [TOP,BOTTOM]” . . . Vertices on [top and bottom] surface.

– “BOUNDARY VERTEX [TOP,BOTTOM] [OUTER,INNER] SPHERE” . . . Vertices on cross line
of [outside and inside] spherical surface and [top and bottom] surface.

– “BOUNDARY FACE [OUTER,INNER] SPHERE” . . . Faces on the [outside and inside] spherical
surface

– “BOUNDARY FACE [TOP,BOTTOM]” . . . Faces on [top and bottom] surface.

4.2 Generation of internal structures

MILK can generate two or more internal structures to the interior of the possible external shapes described
previously.

• SPHERE . . . Gives the shape of a sphere for three dimensions.

• CIRCLE . . . Gives the shape of a circle for two dimensions.

• RECT . . . Gives the shape of a rectangular parallelepiped for three dimensions and a rectangle for two
dimensions.

The inner side of these internal structures can be a cavity, or filled with meshes.

Using to these structures, the (electrolyte) fluid simulation which has two or more structures of the
shape of a sphere or a rectangular parallelepiped in the interior region can be performed using PhaseSepa-
ration FEM or Electrolyte FEM. And, foaming rubbers and hollow cylinder elastic rubbers or gels with two
or more cavities, etc. can be calculated using Elastica or GelDyna.

A mesh which has the spherical structure into the interior of the external shape of a rectangular paral-
lelepiped is shown in fig.4.1.

4.2.1 The description of internal structure parameters

The information of internal structures can be given as solver parameters or physical parameters. Parameters
to give internal structures are as follows.

4.2. GENERATION OF INTERNAL STRUCTURES 39

Figure 4.1: Mesh which has a sphere structure in an unstructured lattice of a rectangular parallelepiped
external shape. Tetrahedron cells are put in two spheres (left). The boundary triangles of the interior are
put in four spheres, and the surface (right).

name of parameter meaning of parameter

INTERNAL STRUCTURE “1”(true) or “0”(false). The flag showing the existence of
an internal structure.

NUM OF INTERNAL STRUCTURE The number of internal structure objects (zero or more
integers)

INTERNAL STRUCTURE num The parameter array of each in-
ternal structure object (num =
0, 1, 2, ...NUM OF INTERNAL STRUCTURE − 1)

Give parameter array elements of INTERNAL STRUCTURE num as follows.

• value[0] . . . “RECT” or “SPHERE” or “CIRCLE”

• value[1] . . . “1”(fill) or “0”(empty)

– In the case of “RECT”(3D).

∗ value[2] . . .minimum value of X-axis. value[3] . . .minimum value of Y-axis. value[4] . . .minimum
value of Z-axis.

∗ value[5] . . .maximum value of X-axis. value[6] . . .maximum value of Y-axis. value[7] . . .maximum
value of Z-axis.

∗ value[8] . . . division number of X-axis. value[9] . . . division number of Y-axis. value[10]
. . . division number of Z-axis.

– In the case of “RECT”(2D).

∗ value[2] . . .minimum value of X-axis. value[3] . . .minimum value of Y-axis.

∗ value[5] . . .maximum value of X-axis. value[6] . . .maximum value of Y-axis.

∗ value[8] . . . division number of X-axis. value[9] . . . division number of Y-axis.

– In the case of “SPHERE”.

∗ value[2] . . . X-coordinate of the center point. value[3] . . . Y-coordinate of the center point.
value[4] . . . Z-coordinate of the center point.

∗ value[5] . . . radius.

40 CHAPTER 4. MILK – A GENERATOR OF UNSTRUCTURED MESH FOR MUFFIN

∗ value[6] . . . division number of radius.

∗ value[7] . . . division number of theta(0 ∼ π) next the center. value[8] . . . division number of ϕ
next the pole.

– In the case of “CIRCLE”.

∗ value[2] . . . X-coordinate of the center point. value[3] . . . Y-coordinate of the center point.

∗ value[5] . . . radius.

∗ value[6] . . . division number of radius (r).

∗ value[7] . . . division number of theta(0 ∼ 2π) next the center.

4.2.2 Internal partial regions generated by MILK

A partial region created as an interior region of a mesh structure and the surface of an internal structure
have the names which contain the character string of above-mentioned “INTERNAL STRUCTURE num”
to show that it is an internal structure object. The following description explains by replacing the identifier
“INTERNAL STRUCTURE num” with “XXXX”.
Notice)

• “ALL [VERTEX,EDGE,FACE,CELL] XXXX” . . . All the elements contained in an internal structure
object are contained in ”ALL [VERTEX, EDGE, FACE, CELL]”.

• “ALL BOUNDARY [VERTEX,EDGE,FACE] XXXX” . . . All the boundary elements of an internal
structure object are contained in ”ALL BOUNDARY [VERTEX, EDGE, FACE]”.

• Common to “RECT”,“SPHERE” and “CIRCLE”.

– “ALL VERTEX XXXX”
. . . All the vertices that are contained in an internal structure object.

• In the case of “RECT”.

– “ALL CELL XXXX”
. . . All the cells that are contained in an internal structure object.

– “BOUNDARY VERTEX [XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX] XXXX”
. . . Vertices of [the base perpendicular to X-axis, the top surface perpendicular to X-axis, the
base perpendicular to Y-axis, the top surface perpendicular to Y-axis, the base perpendicular to
Z-axis, the top surface perpendicular to Z-axis] of the internal structure object XXXX.

– “BOUNDARY FACE [XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX] XXXX”
. . . Faces of [the base perpendicular to X-axis, the top surface perpendicular to X-axis, the base
perpendicular to Y-axis, the top surface perpendicular to Y-axis, the base perpendicular to Z-axis,
the top surface perpendicular to Z-axis] of the internal structure object XXXX.

• In the case of “SPHERE”.

– “ALL CELL XXXX”
. . . All the cells that are contained in an internal structure object.

– “CENTER VERTEX XXXX” . . . The center vertex of the internal structure object.

– “BOUNDARY VERTEX XXXX” . . . Vertices on the spherical surface of the internal structure
object.

– “BOUNDARY VERTEX XXXX num” . . . Vertices of the partial region on the spherical surface
of the internal structure object.
num = 00, 01, 02, 03, 10, 11, 12, 13 correspond to the following partial regions respectively, the
first, second, third, 4th, 5th, 6th, 7th and 8th quadrant.

– “BOUNDARY FACE XXXX” . . . Faces on the spherical surface of the internal structure object.

– “BOUNDARY FACE XXXX num” . . . Faces of the partial region on the spherical surface of the
internal structure object.
num = 00, 01, 02, 03, 10, 11, 12, 13 correspond to the following partial regions respectively, the
first, second, third, 4th, 5th, 6th, 7th and 8th quadrant.

4.3. GENERATION OF INPUT UDF BY MILK 41

• In the case of “CIRCLE”.

– “ALL FACE XXXX”
. . . All the faces that are contained in an internal structure object.

– “CENTER VERTEX XXXX” . . . Vertices on a medial axis of the internal structure object.

– “BOUNDARY VERTEX XXXX” . . . Vertices on the surface of the internal structure object.

– “BOUNDARY EDGE XXXX” . . . Edges on the surface of the internal structure object.

4.3 Generation of input UDF by MILK

Command to generate mesh data by using MILK

Usage : % milk3d5(milk2d5) -I input for MILK.udf -O output mesh data.udf

Copying generated mesh data into a UDF for a simulation

The mesh generated by MILK can be copied into other UDF files by the action ”export mesh”. An input
UDF file can be created by this script. The type of mesh (parameter.mesh parameter.type of mesh) can be
input by an engine as UNSTRUCTURED INPUT. For details, refer to “5.3 MeshFieldConvertor - the mesh
and field UDF converter”.

Chapter 5

Pre-processor

5.1 Modeler – the input UDF generator for Elastica and Milk

The modeler for Elastica and Milk are prepared in ”modeler.Elastica” and ”modeler.Milk” part of UDF defi-
nition. After input modeler UDF, by running the action ”run modeler”, ”run elastica modeler”,..., the input
UDF file is generated. Furthermore, the action ”run modeler and engine”, ”run elastica modeler and engine”,
”run milk modeler and engine”, ..., make the input UDF, save them, run the engine, and open the output
UDF automatically.

When using Elastica, if you’d like to import morphology and mesh data from another UDF file, import
field and mesh using the action ”import field” and set ”import” in ”modeler.Elastica.morphology.type of input”
of modeler UDF. And, if you’d like to import only the mesh data from another UDF file such as output UDF
of Milk, import mesh using the action ”import mesh” and set ”input” in ”modeler.Elastica.mesh.type” of
modeler UDF.

5.2 MuffinMujigen – a program to get dimensionless parameters
for MUFFIN

The MuffinMujigen.py is a Python script to get dimensionless parameters for MUFFIN engines. The Users
should understand the theoretical background of engines such as PhaseSeparation to use this utility. Please
refer chapters for theories of MUFFIN engines about the detail of dimensionless parameters.

5.2.1 The description of functions of non-dimensionized program

A non-dimension-ized program is a program which generates an output UDF file which read an input UDF
file in which the parameters are converted from, for example, the MKSA system to units to dimensionless
ones. Since, as for an output UDF file, an input UDF file is copied and a parameter portion is transformed
further, the former data of input are not destroyed. The overview of the flow of processing is as follows.

1. The basic parameters are read in the input UDF file, and PhaseSeparation or Electrolyte simulation
is judged.

2. The non-dimensionized unit are calculated from a basic parameter.

3. An input UDF file is copied and an output UDF file is created.

4. All the parameters for the non-dimensionized transformation turn dimensionless, and are outputted.

The interface of the non-dimensionized program

Usage : % python MuffinMujigen.py input dim.udf output nondim.udf

43

44 CHAPTER 5. PRE-PROCESSOR

5.3 MeshFieldConvertor – a mesh and field UDF convertor

The MeshFieldConvertor is a Python script which performs analysis, a data conversion, etc. between the
UDF file of two or more mesh data or field data. In the present version, it has the data conversion function
of the mesh and field data from ones of SUSHI to ones for MUFFIN, from ones of MUFFIN to ones for
SUSHI, or between ones of SUSHI, and between data of MUFFIN.

5.3.1 The function of MeshFieldConvertor

1. The engine type is automatically judged by the header data of UDF’s.

2. The used type of a mesh is judged automatically.

3. All the data of the field in UDF are searched automatically.

4. The correspondence relation of fields between MUFFIN and SUSHI, is automatically recognized. It
has a thesaurus of the name of the field currently used in each engine. For example, “phi” of SUSHI
corresponds to “VolumeFraction” of MUFFIN.

5. The data of fields which correspond in the thesaurus are automatically converted according to the
mesh type.

6. The conversion of the mesh data.

5.3.2 The interface of MeshFieldConvertor

Usage:
% python MeshFieldConvertor.py -i inputUDF { -ir input record No. } -o outputUDF { -or output record No.
} { -e execute program }

• inputUDF . . . The file name of an input UDF file.

• input record No. . . . The record number of the input UDF file. (default,-1)

• outputUDF . . . The file name of an output UDF file.

• output record No. . . . The record number of the output UDF file. (default,-1)

• execute program . . . The program to perform. (default,“convert”.)
Currently, -e convert and -e convert mesh can be used.

5.3.3 Zoom in/out of the field data between UDF(s) of SUSHI and MUFFIN

The data of a mesh parameter and a field are read from an output UDF of SUSHI. How to build the input
UDF of MUFFIN is explained in the following.

1. When you use the Python program directly from the comamnd line, see the usage described previously.

2. On GOURMET:
Edit the name and record number of input UDF file on MeshFieldConvertor.py and run. —————
———————————————————-
....
import muffinlib.MultiMeshFieldAnalysisLib
The name of input UDF file
import udf path=”/home/yamaue/....../cylinder3D b uot.udf”
The record number of input UDF file (-1 means the common data).
import udf record=1
....
————————————————————————-

5.4. CONVERSION OF MESH DATA FROM NASTRAN BULK FILE TO UDF 45

5.3.4 Zooming in/out of the field data by action operation

Zooming out of the field data from SUSHI

On GOURMET, when you click the right button of a mouse on the UDF path (field) of the data of fields
of a UDF data of MUFFIN, a ”zoom out from sushi()” menu will appear. By selecting this you can convert
the mesh and field data. At the time of run, the dialog opens, which asks an input UDF path and the record
number of a SUSHI UDF.

Zooming in of the field data to SUSHI

On GOURMET, when you click the right button of a mouse on the UDF path (field) of the data of fields of
a UDF data of MUFFIN, a ”zoom in to sushi()” menu will appear. By selecting you can convert the mesh
and field data. At the time of run, the dialog opens, which asks an output udf path and the record number
of a SUSHI UDF.

5.4 Conversion of mesh data from NASTRAN BULK file to UDF

It is possible to convert mesh data of the NASTRAN BULK file format into the mesh data of UDF data of
MUFFIN (a type of common mesh data format for MUFFIN and SUSHI) by using the file converter function
of GOURMET and a Python script specially programmed for MUFFIN.

The procedure of the file conversion consists of the following two steps.

1. Create the mesh data of common UDF form by the file converter of GOURMET.

2. Generate partial regions for the converted mesh data by a python program (nastran/MakePartialRegions.py).

5.4.1 Mesh data conversion on GOURMET

The conversion to the common UDF mesh data on GOURMET

1. Select “ConvertFile...” from the “File”, and a ”ConvertFile” dialog menu opens.

2. Input a mesh data file in the NASTRAN BULK file format on the “Data File:” text field of the menu.

3. Choose a file “$PF ENGINE/python/nastran/nastranbulkrule.txt”, which is the filter to convert NAS-
TRAN BULK format into common UDF form, for “Rule File:” text field of the menu.

4. Choose a file “$PF ENGINE/def udf/muffin3.udf”, which is the UDF definition part of MUFFIN3, for
“Input UDF:” text field of the menu.

5. Input the Output UDF file name in “Output UDF:” text field of the menu.

6. Push “O.K.” and the conversion is performed.

The partial region generation program execution on GOURMET

1. Open the mesh data converted into the common UDF form on GOURMET.

2. Open (“Load”) the python program ”$PF ENGINE/python/nastran/MakePartialRegions.py” for the
partial region generation and excute it (“Run”).

3. The mesh data is edited by attaching the suitable name for the partial region name etc and saved.

5.4.2 The conversion program execution on console

You can convert a mesh data from of NASTRAN BULK format into MUFFIN common UDF form from a con-
sole (MS-DOS window or UNIX terminal) using a Python program for conversion “$PF ENGINE/python/nastran/filefilter.py”
Usage: python filefilter.py bulkdata.dat outdata.udf [def.udf]

• bulkdata.dat . . . The file name of a NASTRAN BULK file data.

46 CHAPTER 5. PRE-PROCESSOR

• outdata.udf . . . The file name path of an output UDF file.

• def.udf . . . (optional) The definition part of the UDF data.
It is set to “muffin3.udf” by default.

The mesh data of UDF form are opened by GOURMET after conversion-program run, and it is edited
by attaching the suitable name for the partial region name etc and saved.

Chapter 6

Post-processor

6.1 MeshFieldPlot - an analysis and plot tool for MUFFIN

A Python script MeshFieldPlot.py includes a plot program of the spatial distribution and an analysis program
of the spatial correlation function of a field.

By running MeshFieldPlot.py in the Java Python window of GOURMET, you can analyze the space
distribution data of the section of the field of common UDF or the surface and create a GraphSheet, and in
the Plot window of GOURMET you can plot the data using gnuplot.

MeshFieldPlot.py also has an interface to the spatial correlation functional-analysis program “spcf” of
SUSHI, and you can plot the data by gnuplot in the Plot window of GOURMET.

6.1.1 Function of MeshFieldPlot.py

1. Data extraction and a GraphSheet creation on a cross section of the spatial distribution of a field data.

2. Data extraction and GraphSheet creation on a surface of the spatial distribution of a field data.

3. Data extraction and GraphSheet creation on a line segment of the spatial distribution of a field data.

4. The spatial correlation analysis of a field and a GraphSheet creation using spcf of SUSHI

6.1.2 Interface of MeshFieldPlot.py

1. Interface

(a) Constructor : MeshFieldPlot()
Creation of MeshFieldPlot object.

(b) Method : field(name,component = 0,region = ”, cplane=[], cline=[])
A spatial distribution data analysis is carried out on a cross section, a surface, or a line segment
of a field. Generate a GraphSheet.
Argument description

• name . . . The name of a field (can not omit)

• component . . . The number of the component of the field to be analyzed (the default value is
0)

• region . . . The region name of a section or the surface to be analyzed (the default value is ”).
Applicable for structured lattices (REGULAR, RECTANGULAR) and all the unstructured
lattices.

• cplane . . . Specification of the cross section and/or the surface to be analyzed (the default
value is []).
Applicable for a structured lattice (REGULAR, RECTANGULAR) and an unstructured
lattice (UNSTRUCTURED RECT). The data is given as cplane=[[point on plane],[normal
vector]].
ex.) cplane=[[0,0,0],[0,0,1]] : A cross section that passes the origin and is a face (XY plane)
perpendicular to the Z-axis.

47

48 CHAPTER 6. POST-PROCESSOR

• cline . . . Specification of the straight line to analyze (the default value is []).
Applicable for structured lattices (REGULAR, RECTANGULAR) and the unstructured lat-
tice (UNSTRUCTURED RECT). The data is given as cline=[[point on line],[direction vector]
].
ex.) cline=[[0,0,0],[0,0,1]] : a line that passes the origin and the direction is parallel to the
Z-axis.

(c) Method : spcf(name,component = 0,region = ”,cplane=[],direction=[],minmax=[])
An input file of spcf of SUSHI for analyzing the spatial correlation function of a field.
Argument description

• name . . . The name of a field (Indispensable)

• component . . . The number of the component of the field to be analyzed (the default value is
0)

• region . . . The region name of a cross section or a surface to be analyzed (a default value, ”).
Applicable for structured lattices (REGULAR, RECTANGULAR) and all the unstructured
lattices.

• cplane . . . Specification of the section and the surface to be analyzed (the default value is []).
Applicable for a structured lattice (REGULAR, RECTANGULAR) and an unstructured
lattice (UNSTRUCTURED RECT). The data is given as cplane=[[point on plane],[normal
vector]].
ex.) cplane=[[0,0,0],[0,0,1]] : A cross section that passes the origin and is a face (XY plane)
perpendicular to the Z-axis.

• direction . . . The direction vector in the case of calculating the correlation function about the
specific direction.
A default value is [] and an isotropic correlation function is calculated in this case.
ex.) direction=[0,0,1] : Correlation of a direction parallel to the Z-axis is calculated.

• minmax . . . Data clipping specification. Give a minimum value and a maximum value.
A default value is [] and no clipping.

2. Usage

(a) Analysis on a cross section, a surface, and a straight line for spatial distribution data of a field

Python script

Package MeshFieldPlot is imported.
from MeshFieldPlot import *
Construction of a MeshFieldPlot object.
plot = MeshFieldPlot()
About scalar field ’Concentration’ of a structured lattice,

cross-sectional data is analyzed by cplane specification.
#plot.field(’Concentration’,cplane=[[0.,0.,0.],[0.,0.,1.]])
About scalar field ’Concentration’ of a structured lattice,
surface data is analyzed by region specification.
plot.field(’FreeEnergy’,region=’YMIN’)
About vector field ’Displacement’ of an unstructured lattice,
surface data is analyzed by region specification.
#plot.field(’Displacement’,region=’ZMIN’)
About scalar field ’VolumeFraction’ of an unstructured lattice,
data is analyzed by straight line specification.
#plot.field(’VolumeFraction’,cline=[[0.,0.,0.],[0.,0.,1.]])

You can also load the MeshFieldPlot.py on the Python window of GOURMET, edit directly the
main function of the end of the script.

6.2. MESHFIELDSHOW - A DRAWING TOOL FOR MUFFIN 49

(b) The spatial correlation functional analysis of a field

Python script

Package MeshFieldPlot is imported.
from MeshFieldPlot import *
Construction of a MeshFieldPlot object.
plot = MeshFieldPlot()
About scalar field ’FreeEnergy’ of an unstructured lattice,
a space correlation function is analyzed.
plot.spcf(’FreeEnergy’)

You can also load the MeshFieldPlot.py on the Python window of GOURMET, edit directly the
main function of the end of the script.

6.2 MeshFieldShow - a drawing tool for MUFFIN

A Python script MeshFieldShow.py is a program which draws a mesh and a field of common UDF.

6.2.1 Function of MeshFieldShow.py

1. Drawing of the color contour on a cross section or a surface for a scalar field.

2. Drawing of the vector on the cross section and the surface for a vector field

3. The type of fields, such as a scalar field and a vector field, is judged automatically.

4. An engine type (SUSHI, MUFFIN) is judged from UDF header data, and it operates on UDF of each
different engine. It can be used with a common interface.

6.2.2 Interface of MeshFieldShow.py

1. Interface

(a) Constructor : MeshFieldShow()
Creation of MeshFieldShow object.

(b) Method : field(name,component=0,regions=[],cplanes=[],
minmax=[0,1],color att=1,arrow att=[0,1,0,1,0,0], skip att=0)
Draw a color contour of a scalar field and the vector of a vector field on a cross section or a region
(two or more specification is possible).
Argument description

• name . . . The name of a field (can not omit)

• component . . . The number of the component of the field to be drawn (the default value is 0)

• regions . . . The region name of a section or the surface to be drawn (the default value is ”).
Applicable for structured lattices (REGULAR, RECTANGULAR) and all the unstructured
lattices.
The data are given as regions=[’region name 1’, ’region name 2’, ... ’region name n’]
Specification of two or more regions is possible.
ex.) regions=[’ZMIN’,’ZMID’,’ZMAX’] : draw on three cross sections perpendicular to the
Z-axis.

• cplanes . . . Specification of the section and the surface to be drawn (a default value is []).
Applicable to a structures lattice (REGULAR, RECTANGULAR) and an unstructured lat-
tice (UNSTRUCTURED RECT). The data are given as cplanes=[[[point on plane],[normal
vector]], ..., [[point on plane],[normal vector]]].
Specification of two or more sections is possible.

50 CHAPTER 6. POST-PROCESSOR

ex.) cplanes=[[[0,0,0],[0,0,1]],[[0,0,0],[0,1,0]]] : draw on XY plane and XZ plane including the
origin.

• minmax . . . The minimum value and maximum of a scalar field (the default is [0,1]).

• color att . . . Specification of the color attribute of a scalar field (the default is 1).

• arrow att . . . Specification of the vector attribute of a vector field.
The data are given as arrow att=[R(ED),G(REEN),B(LUE),T(RANSPARENCY), radius of
arrowhead,length of arrowhead]

• skip att . . . The number of skips of the peak in a structured lattice to be drawn (the default
is 0).

(c) Method : mesh(color att=1,regions=[])
Draw mesh lattices of specified regions. Argument description

• color att . . . Specification of the color attribute of the line to draw a lattice (the default is 1).

• regions . . . The region name of a cross section or the surface in which a lattice (a default
value, [’ALL CELL’]) is drawn.
Applicable for structures lattices (REGULAR, RECTANGULAR) and all the unstructured
lattices.
The data are given as regions=[’region name 1’,’region name 2’,...’region name n’].
Specification of two or more regions is possible.
ex.) regions=[’ZMIN’,’ZMID’,’ZMAX’] : draw on three cross sections perpendicular to the
Z-axis.

(d) Method : frame(color att=0)
Draw the frame of a spatial region.
Argument description

• color att . . . Specification of the color attribute of the line to draw a frame (the default value
is 1).

2. Usage

Python script

Package MeshFieldShow is imported.
from MeshFieldShow import *
Construction of a MeshFieldShow object.
show = MeshFieldShow()

Scalar field ’phi’ of the structured lattice
of SUSHI is drawn by cplane specification.
#show.field(’phi’,cplanes=[[[0.,0.,0.],[0,0,1]],[[0.,0.,0.],[0,1,0]]])
Scalar field ’Concentration’ of the structured lattice
of MUFFIN is drawn by cplane specification.
#plot.field(’Concentration’,cplane=[[0.,0.,0.],[0.,0.,1.]])
Scalar field ’VolumeFraction’ of an unstructured lattice is drawn
by surface region specification.
#show.field(’VolumeFraction’, regions=[’ALL FACE’])
Vector field ’Displacement’ of an unstructured lattice is drawn
by surface region specification.
#show.field(’Displacement’,regions=[’ALL FACE’])
Scalar field ’FreeEnergy’ of an unstructured lattice is drawn
by cross-sectional specification of the surface and an inside.
#show.field(’FreeEnergy’,regions=[’ZMIN’,’ZMID’,’ZMAX’],minmax=[0.0,1.5])

You can also load the MeshFieldShow.py on the Python window of GOURMET, edit directly the main
function of the end of the script.

6.3. UDF2AVS - A CONVERTOR FROM UDF TO THE AVS FORMAT 51

6.3 udf2avs - a convertor from UDF to the AVS format

This is a Python program which transforms mesh and field data of the output UDF file from MUFFIN
engine into the form which can be displayed by the AVS (Application Visualization System).

Usage

python muffin3 udf2avs.py -d AVS-file-output-directory UDF-file

The directory to output an AVS file can be specified by the execution-time option “-d AVS-file-output-
directory”. The directory “AVS” is used when this option is omitted.

Generated files

The following files are areated in the directory AVS-file-output-directory.

• In the cases of output UDFs of the finite element method simulators (PhaseSepara-
tion FEM, Electrolyte FEM, MEMFluid, Elastica, GelDyna):

Files of the UCD (Unstructured Cell Data) form of AVS are created with the following names for every
output data of the field included in each record of UDF.

<Field-name><time-step-number>.inp

Here, <Field-name> is the name of fields, such as Velocity and VolumeFraction, and <step-number>
is the step number to which data were outputted. The number is an integer in 6 digits like “000100”
and “012000”.

• In the cases of output UDFs of the finite difference method simulators (PhaseSepara-
tion FDM, Electrolyte FDM):

The file of field file form and the main part file of data of AVS are built with the following names for
every output data of the field included in each record of UDF.

<Field-name><step-number>.fld
<Field-name><step-number>.dat

*.fld are files of the field file form of AVS and *.dat is the ASCII format data file which contains
data. <Field-name> is the name of fields, such as Velocity and VolumeFraction, and <step-number>
is the step number to which data were outputted, The number is an integer in 6 digits like “000100”
and “012000”.

Appendix A

Compiling MUFFIN

A.1 Setting of environment variables

1. The value of PF ENGINE is set as the top directory to which engines are installed.

2. The value of PF FILES is set as the top directory to which GOURMET is installed. An engine interface
library “libplatform“ under the directory is linked to engine binaries.

A.2 Compilation of MUFFIN

compiling in unix, linux, and cygwin environment

In the source directory of “MUFFIN5/src” in which sources the engines are placed, compile using Makefile.

% cd $(PF ENGINE)/MUFFIN5/src/muffin5 or muffin5ebeta
% make

53

Appendix B

System extension guide

B.1 Basic class libraries of MUFFIN

The source codes of MUFFIN base-class library are in below MUFFIN3/src/common/ directory. The main
header files and functional descriptions are as follows.

DYNAMICS/DynamicsManager.h DynamicsManager

DYNAMICS/PartialRegionCondition.h Partial Region (Boundary) condition

FIELD/FDM_SuperField.h Base class for FDM field.

FIELD/SuperField.h Base class for FEM field.

IO/IOPath.h Data of Input and Output file path.

IO/SuperStream.h Output field data with AVS form.

IO/PFIO/Imuffin3.h UDF Interface object of MUFFIN3.

IO/PFIO/Imuffin3param.h UDF Interface object of parameter file of MUFFIN3.

IO/PFIO/Imuffin3result.h UDF Interface object of summary file of MUFFIN3.

IO/PFIO/PFIO.h Manager of IO between UDF Interface object and MUFFIN.

MESH/CreateMesh.h Mesh Creator with various shapes.

MESH/ElementManager.h Manager of creation, delete and collect mesh elements.

MESH/RegisterVertices.h Creator of vertices in Delaunay triangulation.

MESH/RightTriangulation3D.h Mesh class (3D unstructured right triangulation).

MESH/SuperElement.h Base class of mesh elements.

MESH/SuperMesh.h Base class of mesh classes.

MESH/TriangleElement.h Mesh element class (triangle)

MESH/delaunaytriangulation.h Mesh class (2D Delaunay triangulation)

MESH/delaunaytriangulation3d.h Mesh class (3D Delaunay triangulation)

PARAM/IOParameterSet.h Manager of Parameter and Result data

SOLVER/FEMTetra.h Finite element class (tetrahedron).

SOLVER/FEMTriangle.h Finite element class (triangle).

SOLVER/FiniteElement.h Base class of finite element classes.

SOLVER/MATRIX/cg.h CG and ICCG solver.

UTIL/CheckMemorySize.h memory check function.

UTIL/MotherErr.h Base class for error classes.

UTIL/ProgramTimer.h cpu-time check function.

UTIL/StringHelperFunc.h Utility class for string.

UTIL/Sym2ndRankTensor.h data type class (symmetric 2nd-rank tensor)

UTIL/Vector3d.h data type class (vector)

UTIL/RND/rng.h Base class of random number generator classes.

UTIL/RND/twister.h random number generator class (MT).

UTIL/DOCMAKER/muffin3docmaker.cpp Source analyzer and Document maker for MUFFIN3.

UTIL/DOCMAKER/template_euc.tex Template file of output file for Document maker.

SCRIPT/gxxversion.sh Version check of compiler.

55

56 APPENDIX B. SYSTEM EXTENSION GUIDE

It is SuperField.h that is necessary for an engine development by generation of a class of a new field. It
will be shown that a generation of the class of a new field can be easily performed by inheriting classes in
this file.

It is better to understand SuperMesh.h and SuperElement(ElementManager.h).h further, when compli-
cated operation is desired and formation and analysis of the aggregate of arbitrary mesh elements are carried
out.

B.2 Compile options of basic class libraries of MUFFIN

When creating a new simulator, it is useful to reuse the following files, such as a main function of the new
simulator, by a little corrections.

MUFFIN3/src/Elastica/Makefile

MUFFIN3/src/Elastica/MUFFIN3.cpp main function

MUFFIN3/src/Elastica/Global_Variable.h header of main function

MUFFIN3/src/Elastica/Fields/Fields.h header of fields

Here, we describe a case that a simulator named MyDynamics with the following fields is created.

• AField

• BField

• CField

A source code is built as follows. For Makefile, MUFFIN3.cpp, Global Variable.h, and Fields.h, copy the
above-mentioned files.

MUFFIN3/src/MyDynamics/Makefile

MUFFIN3/src/MyDynamics/MUFFIN3.cpp main function

MUFFIN3/src/MyDynamics/Global_Variable.h header of main function

MUFFIN3/src/MyDynamics/Fields/Fields.h header of fields

MUFFIN3/src/MyDynamics/Fields/AField.h (and .cpp)

MUFFIN3/src/MyDynamics/Fields/BField.h (and .cpp)

MUFFIN3/src/MyDynamics/Fields/CField.h (and .cpp)

Add the following lines to Makefile.

For MUFFIN3 MyDynamics

ifeq "$(THIS_TARGET)" "MyDynamics"

#---------- In the case of FEM.

#override MACRO += -D__UNSTRUCTURED_MESH__ -D__LAGRANGE_PICTURE__

override MACRO += -D__UNSTRUCTURED_MESH__ -D__EULER_PICTURE__

SRC = $(SRC001) $(SRC004) $(SRC005) $(SRC006) $(SRC007) $(SRC009) $(SRC010)

#---------- In the case of FDM.

#override MACRO += -D__STRUCTURED_MESH__ -D__EULER_PICTURE__ -D__FDM__

#SRC = $(SRC001) $(SRC005) $(SRC006) $(SRC007) $(SRC010)

SRCM = MUFFIN2.cpp

SRCS = AField.cpp BField.cpp CField.cpp

TARGET = mydyn3

endif

B.2. COMPILE OPTIONS OF BASIC CLASS LIBRARIES OF MUFFIN 57

The “Field Creation” portion of MUFFIN3.cpp should be changed to the following lines.

//----------------------<<Field creation>>-----------------------

// create fields

AField af ;

BField bf ;

CField cf ;

// Registration of fields in dynamics manager

a_Universe.RegisterField(&af);

a_Universe.RegisterField(&bf);

a_Universe.RegisterField(&cf);

Fields.h should be changed as follows.

#include ‘‘AField.h’’

#include ‘‘BField.h’’

#include ‘‘CField.h’’

The compile option used by Makefile and its effect are described below.

B.2.1 Discretization methods and compile options

The method (the finite difference method (FDM), the finite element method (FEM), etc.) of discretization
differs by each simulator, and the methods of reservation of the data of the field in the MUFFIN3 differ
according to it. The method (FDM or FEM) of the discretization is specified by the compile option of
simulators as follows.

• the finite difference method (FDM) . . . FDM

• the finite element method (FEM) . . .When there is no compile option of FDM .

B.2.2 Mesh types and compile options

The method of a simulation picture or discretization differs by each simulator, and the mesh type which can
be used is determined according to them. The type of a mesh to be used is specified by the compile option
as follows.

• Structured mesh (FDM simulator) . . . STRUCTURED MESH

• Unstructured mesh (FEM simulator) . . . UNSTRUCTURED MESH Furthermore, it is possible to
introduce the following meshing algorithms at a compile option.

– 2D Delaunay triangulation . . . DELAUNAY2D MESH

– 3D Delaunay triangulation . . . DELAUNAY3D MESH

By specification of these options, only a mesh generator required for each type is compiled. If there is no
specification, since the compile link of the mesh generator of all types will be carried out together, module
size becomes very (unnecessarily) large and a compile time also becomes long.

And only when there is a unstructured lattice UNSTRUCTURED MESH macro (there is no structure
lattice STRUCTURED MESH macro correctly), mesh structure data are outputted in UDF.

58 APPENDIX B. SYSTEM EXTENSION GUIDE

B.2.3 Simulation picture and compile options

Mesh structure data are outputted on UDF only with an unstructured lattice. Distribution of the output
to the common or record data of these mesh structure data is dependent on the simulation picture, and is
controlled by the compile option.

• Euler picture . . . EULER PICTURE
All data are outputted to common data.

• Lagrange picture . . . LAGRANGE PICTURE
Vertices data are outputted to record data. Edges, faces and cells data are outputted to common data.

• Adaptive mesh . . . ADAPTIVE MESH
All data are outputted to record data.

If it compiles without these compile options, all mesh data will be outputted to both of common data
and record data of UDF, and output-data size will become large.

The existence of the output of the neighbor element information on a mesh is controlled by
NEIGHBOR DATA IO of the compile option of a source file PFIO.cpp. When this compile option is

specfied, the neighbor element data are outputted to UDF.

B.3 System Extension Tutorial

The class of a new field includes SuperField.h and is defined by inheriting Class PhysicalField. An interface
which is preparing AField.h with how to write the class of a field at an example is explained below. The
following is an introductory edition and explains the fundamental function about acquisition of the param-
eter which SuperField offers, acquisition of the data of other fields, and the conditions of a partial region
(boundary) boundary condition.

//---

// AField.h by T.Yamaue

//---

#ifndef _AFIELD_INCLUDED_

#define _AFIELD_INCLUDED_

#include "SuperField.h"

class AField : public PhysicalField<double> // This type of field is double.

{

public:

// Default constructor.

AField(void):PhysicalField<double>("AField") // Name of field.

{ SetFunctionName(); }

virtual int Evolve00(void) // (1Step) evolution command (SOLVE:NONSENSE_SUM)

{

// You can get other fields by name.

SuperField& b_field = Field("BField"); // type of BField -> double (assume)

SuperField& c_field = Field("CField"); // type of BField -> Vector (assume)

// You can get parameters by name.

double param_double = Parameter().value("Double_Parameter");

string param_string = Parameter().string_value("String_Parameter");

bool param_bool = Parameter().bool_value("Bool_Parameter");

// You can get mesh elements by the follow method,

// vector<SuperElement*> SuperField::ObjList(void).

for (vector<SuperElement*>::const_iterator i = ObjList().begin() ;

B.3. SYSTEM EXTENSION TUTORIAL 59

i != ObjList().end() ; i++) {

value(*i) // You can get this field value by value(SuperElement*).

= param_double + b_field.value(*i)

// You can get other fields (double type) value

// by value(SuperElement*) method.

+ (c_field3.value(*i, OVector)).x ;

// You can get other fields (vector or tensor type) value

// by value(SuperElement*, OVector/OSym2ndOrderTensor/,...) method.

}

return 1 ;

}

virtual int Evolve01(void) // (1Step) evolution command (SOLVE:NONSENSE_EMPTY)

{ return 1 ;}

virtual int Initialize00(void) // initialization command (INITIAL:NONSENSE_EMPTY)

{ return 1 ;}

protected:

void SetFunctionName(void)

{

// Register name of commands.

SetSolverName("SOLVE:NONSENSE_SUM") ; // name of evolve00.

SetSolverName("SOLVE:NONSENSE_EMPTY") ; // name of evolve01.

SetInitializingFuncName("INITIAL:NONSENSE_EMPTY") ; // name of initialize00.

}

};

#endif

About a required field, the class of such a field is built and a simulator is made. Then, registration of the
class of a field and registration of procedure are performed in the dynamics manager section of Input UDF.
Refer to the input UDF description in detail.

