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Chapter 1

What is GelDyn?

The Gel Dynamics Simulator named GelDyn is the finite-element-method (FEM) simulator treating the
large deformation dynamics of gels, accompanying the change of external stimuli, such as, temperature,
pressure, e.t.c., and the load of body forces, such as gravity, and surface forces.

The main features are listed below.

1. Target

e Swelling, deswelling and deformation of polymeric gels.
e Solvent flow (diffusion) in polymeric gels with both permeable and impermeable surfaces.

e Both 2D and 3D shapes are supported.
2. Dynamics

e The stress-diffusion coupling model of polymer gels.

e The collective diffusion model of gel networks. (for comparison)

3. Simulation Scheme
The finite element method using the linear triangle (2D) and/or tetrahedron (3D) interpolation.

e The explicit time evolution using non-linear elasticity minimizer. (explicit solvers)

e The implicit time evolution for linearized gel models using matrix solver. (implicit solvers)
4. Solvers

The explicit stress-diffusion coupling solver. (for both 2D and 3D system)

The explicit collective diffusion solver. (for both 2D and 3D system)

The implicit stress-diffusion coupling solver. (for 3D system)

The implicit collective diffusion solver. (for 3D system)

The elasticity dynamics solver. (for 3D system)
5. Design of gels

e Design of shapes.

e Design of morphology. ...concentration of polymer, x-parameter,
moduli (the crosslinking number density), concentration of counter ions

6. Stimuli for the volume phase transition and deformation

Change of temperature

Change of x-parameter

Change of solvent (water) pressure on permeable surfaces

Change of volume forces (gravity) and surface forces
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7. Boundary Conditions

e Pressure of pure solvent (water)

— Permeable surfaces (dirichlet)

— Impermeable surfaces (neumann)
e Displacement (velocity) of polymer network

— Fixed surfaces or surfaces moving with constant velocity (dirichlet)
— Load of surface forces

8. Applications

Disposable diapers and sanitary napkins (super-water absorbents)

Temperature sensitive gels

Drug delivery systems (DDS)

Actuators, sensors and switching devices



Chapter 2

Theoretical Background of GelDyn

2.1 Dynamics of Gels

2.1.1 Overview

Gels are cross-linked networks of polymers swollen with a liquid and have both the liquid-like and solid-like
properties, because a gel has a shear modulus though the major constituent is a liquid. The dynamics of
gels has been described by the collective diffusion model of gel networks, [1, 2] which well reproduces the
swelling phenomena in one axis, such as spherical gels. But the collective diffusion model of gel networks
can’t reproduce the swelling phenomena in two or three axes and the non-liner deswelling phenomena, such
as surface skin formation and stagnation of deswelling.

Recently, several models, which are based on the two fluids model, [3] have been proposed as dynamics of
gels. [3, 4] Here we have constructed the simulation scheme for large deformation of gels and developed the
gel dynamics simulator using the stress-diffusion coupling model of gels, [5] in which the general deformation
of polymer networks, the continuity of solvent and the coupling between solvent diffusion and network stress
are considered. We have also developed the gel dynamics simulator using the collective diffusion model of
gel networks for comparison.

2.1.2 Notation of parameters and definitioin of variables

Notation of symbols for Geldyn simulator are as follows:
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Notation of parameters H Meaning of parameters ‘

d

U1
kT
Ns

v

&b

Ps
Pp

g
B

Dimension of system (2 or 3)

Volume of a monomar unit (ex. v; = 3.0 x 1072m3 for standard NIPA gels)
Thermal energy per 1 particle. ( 1kpT = 4.12 x 10721 J at T = 298K(25°C) )
Viscosity of solvent ( = 0.89 x 1072 Pa - sec = 0.89 x 10~2 Poise for water )
Exponent (1/2 for theta-solvent and 3/5 for good-solvent)

Blob size of gels

Mass density of pure solvent

Mass density of pure polymer

Gravity acceleration

Magnitude of elastic logarithmic term

Notation of variables

[

Meaning of variables

xr

Zo
u(x)
o(x)
¢o(x)

vs(x)
vp(x)
p(z)
F{z}
oij()
Wij(x)
p(x)
J(z)
x(x)
vo(x)
I/io(ili)
C()
K(z)
p(x)

Coordinate of material point of polymer
Coordinate of material point of polymer in the reference state
Displacement of polymer

Volume fraction of polymer

Volume fraction of polymer in the reference state
(0.07 for std NIPA)

Velocity of solvent

Velocity of polymer (== u)

Pressure of solvent

Free energy of gels

Cauchy stress tensor of polymer network

Finger strain tensor of polymer network

Mass density of gels (= pp¢ + ps(1 — @)

Flux of solvent

Polymer-solvent interaction parameter
Crosslinking number density in the reference state
Counter ion number density in the reference state
Friction coefficient between polymer and solvent
Isotropic bulk modulus of gels

Isotropic shear modulus of gels

2.1.3 Dimensionless expression for parameters and variables

In this section, we describe units for Geldyn and dimensionless expressions by the units. We will use the
MKSA unit system throughout this section.

Units for dimensionless physical quantities

’ Physical quantity \ unit \ meaning
length x l system size (ex. = 1.0mm = 1.0 x 1073m )
crosslinking number density 1 V1 0.036 (ex. vy = 1.2 x 102"m =3 for std NIPA)
ion number density v v 0.072 (ex. v = 2.4 x 10"m =3 for std NIPA)
energy density and stress 17kpT [vy
friction coefficient ((¢) o = ((d0) | ¢/Go = (¢/0)*/B—D, (( =~ 6mn,§, > o ¢?/BV—D)
time ¢ T T =(ol2 — d)vy /kgT
velocity v v* vt =1/T
pressure p p* P =Nw/T
mass density p p* (ex. mass density of water p = 1.0g/em® = 1.0 x 103kg/m?)

2.1.4 Collective diffusion model of gel networks

The dynamics of polymer gels should be discussed from the stand point of the dynamics of polymer solutions.
However, since the polymer gels have elastic properties due to crosslinking by chemical bonds (chemical gels)
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and/or some kinds of interaction (physical gels), such as hydrogen bonding or hydrophobic interaction, the
dynamics of polymer gels is well described in terms of the theory of elasticity. [6] T.Tanaka, et. al. first
developed a theory of the collective diffusion dynamics of gel networks, named ” Tanaka-Fillmore’s theory”.
2
The equation of motion of elastic gel networks is described as
0u V.ot Cé)u (2.1)
—_— - T —_ —_— .
P o1 PI =5

Here, the first term of the right-hand side represent the elastic term and the last term of the right-hand side
the contribution of the friction between the network and solvent molecules. In most cases, the acceleration
term is much smaller than the other terms and the equation of the collective diffusion dynamics of gel

networks is rewritten as follows. 5
u

2.1.5 Stress-diffusion coupling model of gels

The dynamics of polymer gels has to be discussed from the stand point of the dynamics of polymer solutions.
Recently, several models, which are based on the two fluids model and consider the dynamic coupling between
polymer network stress and solvent diffusion, [3] have been proposed as dynamics of gels. [3, 4]

Here, we explain the stress-diffusion coupling dynamics of gels based on two fluids model. The equations
of motion of gels are described as follows.

C(Up - 'Us) = _(ZSVp +V.-o+ pp¢g (23)
C(vs —vp) —(1—=¢)Vp+ps(1—)g

The incompressibility of gels are written as
V- (¢pvp, + (1 — p)vs) = 0. (2.5)

eq.(2.3) and eq.(2.4) makes the mechanical balance equation between the pressure of solvent and the stress
of polymer network.
Vp=V .o +pg (2.6)

Here, p is the average mass dencity of gels and defined by

p=ppd+ ps(l— )

2.2 Free Energy and Stress Tensor of Gels

The general free energy of gels includes three terms as follows.
F:Fmim+Fion+Fel (27)

Here, F,;, is the mixing free energy of solvent and polymer networks.
Friz = / A%z f,n(¢) (2.8)
\4

Definite expression of the mixing free energy density f,(¢) is Flory-Huggins type or Ginzburg-Landau type:

e Flory-Huggins type
fm =1 =¢)In(l - )+ x¢(1 - ¢) (2.9)
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e Ginzburg-Landau type
1 S P
— (= _ - — 2.1
f= (5 =x)9" + 0" + 159 (2.10)

Fion is the translational entropy of counter ions of polyelectrolytes. Here, v;9 denotes the density of counter

ions in the reference state. 5 5
N N 9
F,, /V d wylo(éf’o) In (¢0) (2.11)

F,; is the elastic energy term for general network deformation.

F, = /V d%%(uw —2BIn %) (2.12)
_ dp O V0 ¢
= /Vd xfbo 5 (trtW —2B1In ¢0) (2.13)
_ .Y _ 12
= /Vd x2(trW 2B1In ¢0> (2.14)

In this term, W;; is the finger strain tensor defined as follows.

- dﬂ:l d,rj
a d.’EOk d{,COk

g (2.15)
Here, xy denotes the cartesian coordinates in the reference state, v the crosslinking number density, vg
the crosslinking number density in the reference state, B the magnitude of elastic logarithmic term, ¢ the
network volume fraction and ¢y the network volume fraction in the reference state. Volume fraction of the
polymer network is related to the finger strain tensor as ¢ = gbodetW_%.

We deform the gel infinitesimally as € — @ + w. Then the change of the free energy may be expressed
in the term of the Cauchy stress of polymer network o in the form,

oF = /ddilwn]—(oij)ui —/ddxvjaijui = /ddl'aijSUi (216)
Lj
Therefore, the stress tensor of polymer network is described as follows.
vy
—0ij :[ Ofm = fm ]%’ - VOE(WU — (B+ =2)8y;) (2.17)
%o 2

Isotropic bulk modulus K and shear modulus p of gels, which are needed in the implicit scheme of gels, are
described as follows.

K = ¢2f,’,’l+1/o[(2—1)(%)1_2/d—(3+%})%] (2.18)
po= w(Ly (2.19)

bo

2.3 Boundary Conditions of Geldyn

There are the following in the boundary condition (partial region conditions) which can be imposed on a
field in Geldyn.

2.3.1 Overview of boundary conditions

e Periodic boundary condition :

Possible only in the mesh of the UNSTRUCTURED_RECT type. In Geldyn, since the periodic bound-
ary is treated geometrically and a periodic boundary condition will be automatically applied to all
physical quantity if a mesh is made into a periodic, it is not necessary to specify clearly in Input UDF.
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e Dirichlet condition :
The conditions which impose a fixed value to a subregion.

We use the large penalty number method for dirichlet boundary conditions in the implicit solvers. [7]

e Neumann condition :

Give the direction component of a normal of the surface of the gradient vector of physical quantity. It is
not necessary to give clearly the Neumann conditions (natural boundary conditions) whose component
of a normal direction at the border plane of the form of n - V f = 0 is zero in the discretization by the
finite element method.

2.3.2 Boundary conditions of Pressure p

The boundary conditions which can be applied to a pressure field are as follows.

e Periodic boundary condition
It can be applied, only when a mesh configuration type is UNSTRUCTURED_RECT. The following
equation is imposed when a periodic boundary condition is imposed in the x directions.

p(z,y,2) = p(x + Ls,y, 2)

Imposing a periodic boundary condition also in the direction of y, or the direction of z, the same
equation is imposed to each direction.

e Permeable surfaces (Dirichlet condition)
Apply value pgy of a pressure of solvent for a permeable surface.

p($> |Boundary = Do

In order to give such a Dirichlet boundary condition to a pressure field, input ”D_PERMEABLE” into
a condition name and the value of the pressure field on a boundary into the head data of the value of
conditions.

This boundary condition is applied in a method of Polymer Stress field for the explicit stress-diffusion
coupling solver and in a method of Displacement field for the implicit stress-diffusion coupling solver.

e Impermeable surfaces (Neumann condition)
Apply zero pressure gradient for a impermeable surface.

n- vp(m)lBoundary =0

In order to give such a Neumann boundary condition to a pressure field, input "N” into a condition
name (“N_IMPERMEABLE” for impermeable surfaces) and the value of the gradient of pressure field
on a boundary into the head data of the value of conditions.

This boundary condition is applied in a method of Flux field for the explicit stress-diffusion coupling
solver and in a method of Displacement field for the implicit stress-diffusion coupling solver.

2.3.3 Boundary conditions of Displacement u (Polymer Velocity v,)

The boundary conditions which can be set up to a displacement field are as follows.

e Periodic boundary condition
It can be applied, only when a mesh configuration type is UNSTRUCTURED_RECT. The following
equation is imposed when a periodic boundary condition is imposed in the x directions.

u(z,y,2z) = u(x + La,y, 2)

When a periodic boundary condition is also imposed in the direction of y, or the direction of z, the
same equation is imposed to each direction.
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e Fixed surfaces or surfaces moving with constant velocity (Dirichlet condition)

The boundary fixed or moved by constant velocity v,o can be expressed with the following Dirichlet
boundary conditions.

/U;D(xv Y, Z)|wall = Upo

For specifying the velocity of the boundary, input “D_VX”(Specify X component), “D_VY”(Specify
Y component) or “D_VZ”(Specify Z component) into a condition name, and input a velocity into the
value of conditions. Or input "D_VEC” into a condition name and input three values, X, Y, and Z
component of a velocity into a value in an array.

This boundary condition is applied in a method of Displacement field for any solver.

Load of surface forces (Neumann condition)
The load of surface force on gels can be expressed with the following Neumann boundary conditions.

n- (U - pI)‘Boundary =T

For specifying the load of the boundary, input “N_LOAD” into a condition name, and input three
values, X, Y, and Z component of a force into the value of conditions.

This boundary condition is applied in a method of Polymer Stress field for the explicit stress-diffusion
coupling solver and in a method of Displacement field for the implicit stress-diffusion coupling solver.

2.4 Simulation Scheme for Dynamics of Gels

The two simulation schemes for the stress-diffusion coupling model are expected as follows.

1.

Separation of time scale of the diffusion of solvent and elastic deformation. [4]
— The explicit scheme (solver) for the stress-diffusion coupling model.

. Minimize Rayleighian based on two fluid model by Onsager’s theorem for energy dissipation. [3, §]

— The implicit scheme (solver) for the stress-diffusion coupling model.

2.4.1 Explicit scheme for collective diffusion model of gel networks

The collective diffusion model of gel networks described as eq.(2.2) is simple relaxation process of free energy
of gels. Therefore eq.(2.2) is rewritten as the follow interal equation.

ox

5
or 10 [ d s d—1,_ .7 .
5 ¢ g [F /Vd xpg - ox /Sd T - dx (2.20)

From eq.(2.7), using the linear interpolation of the finite element method and the explicit time evolution,
eq.(2.20) is rewritten as follows.

& = ul/ot
IJI
Ze(a]) {_VLS% fe ddxo(¢f7/n(¢) - fm(¢)) + (%trw) ZI(G@) 70 fe ddSC()LI(:BO):|
VE!
Ze(91) d+1
D e(ev) 2ai(ee) p'gi [, d'aLi(x)L, () D e(es) 2a1(ee) T [, d"'aL(z)L, ()
+ +

Ve Ve
Ze(BJ) d+1 Ze(BJ) d+1

(2.21)

Here, I and J denote the vertex number and V. a volume (3D) or an area (2D) of a finite element.
Using eq.(2.21), we have developed the explicit solver for the collective diffusion of gel networks.
(ref. application examples 01, 02 and 03)
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2.4.2 Implicit scheme for collective diffusion model of gel networks

The Rayleighian for the collective diffusion model of gel networks eq.(2.2) is described as follows.

1
R{v,(t),z(t)} = / ddx[§§v§ +o0:D]— / d%zpg - v, — / 2T v, (2.22)
\% \%4 S
Here, the first term of right hand side denotes the energy dissipation by friction between polymer and solvent,
the second term the change of free energy, the third term the energy change by the volume force (gravity)
and the forth term the energy change by the surface force. D is deformation rate tensor of polymer and

defined as
1 8Upi 8’Upj

For the semi-implicit time evolution, polymer stress tensor o;; is written as follows.

D

ij

) (2.23)

011+ 61) = 015 (6) + 61[20(1) D + (K (£) — (1)) Dudy] (2.24)

Here, K, p and K — 2/du express the bulk modulus, shear modulus and lame number of gels at time .
From eq.(2.22) and eq.(2.24), the Rayleighian for the semi-implicit collective diffusion model linearized for
displacement of polymer u in time ¢ 4 0t is described as follows.

1 1 K
R{u,x(t),0t}dt = / ddxbéUQ—l—u(eij - E(Sije”)z— —elﬂ —/ dx(Vo+pg) -u—/ daT - (2.25)
\4

2 v S

Here, e is strain tensor for linear elasticity and defined as follows.

3 (2.26)

Using the linear elasticity (matrix) solver for FEM, we can minimize above functional and solve u and shape
in dt. Therefore, we have developed the semi-implicit solver for the collective diffusion of gel networks.
(ref. application examples 02)

2.4.3 Explicit scheme for stress-diffusion coupling model of gels

Here, by separating the time scale of diffusion of solvent and elastic deformation, [4] we have physically
reduced two fluid model egs.(2.3,2.4, 2.5) and constructed the simple non-linear simulation scheme for large
deformation of gels using the stress-diffusion coupling model of gels as the follows. [5]

From eq.(2.4), the solvent velocity related to the polymer velocity in gels is proportional to the gradient
of the solvent pressure from the Darcy’s law:

vy —v,=—C"'(1-¢)Vp (2.27)
Here, from the mechanical balance between solvent and polymer, the next equation is satisfied.
Vip = Vo (2.28)
The flux of solvent J related to the polymer is described as follows.
Ji = (Pvpi + (1 — @)vg) — vy
= —('(1-9¢)°V,oy (2.29)

Therefore, the time-evolution of volume fraction of the polymer network is calculated by the following
continuity equation using the euler picture:

0

§
59 = ~ViLij(9) Vo Z/dde(¢)(Vj0ji)(VlUkz)+/delii”i (2.30)

v 5Uik

where L;;(¢) = L(¢)d;; is the isotropic Onsager coefficient.
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The deformation of the network at each time is determined by the elastic force balance while keeping a
local volume fraction of gel in the moment, since the elastic force balance are satisfied instantaneously, on
the other hand the diffusion process is so slow. This procedure for the elastic force balance is realized by
minimizing the following elastic free energy using the langrange picture with the constraint term:

i@ t) = (2.31)
/ _ / / o ¢
F(x) —/Vddx (e’ — o7 + 55 ] (2.32)

Here, ¢',t denotes the virtual volume fraction of the polymer network and the virtual time for the elastic
force balance calculation process. The first term of the right hand side is the constraint term for keeping a
local volume fraction ¢(xg,t) of gel, when the coefficient « is large.

We formulate the explicit time evolution solver for egs.(2.30, 2.31, 2.29) using the linear interpolation of
the finite element method.

eq.(2.31) using FEM is similarly described as eq.(2.21), therefore, we describe, here, the FEM formulation
of eq.(2.30) as follows.

é"(z)d‘fl = > > S (VL)(ViLy)al > L(e" /ddeK
e(3J

e(3J) I(€e) i,J K(€e)

>N ZJInZ/dd ! (2.33)

e(€S) I(€e) i

+

Here, I and J denote the vertex number and V. a volume (3D) or an area (2D) of a finite element.
Using above equations, we have developed the explicit solver for the stress-diffusion coupling of gels.
(ref. application examples 03)

2.4.4 Implicit scheme for stress-diffusion coupling model of gels

Here, we have constructed the Rayleighian for the stress-diffusion coupling model of gels described as
eqs.(2.3,2.4, 2.5) [3] and have developed the semi-implicit solver for the stress-diffusion coupling dynam-
ics of gels.

v, €q.(2.3) +v,- eq.(2.4) leads the Rayleighian for the stress-diffusion coupling dynamics of gels as
follows.

R{(@(0). 0,0 p@(0) 20} = [ d'e[5¢(0, ~ 0 = - (60, + (1= 9)v) +.o: D]

- / ' (pppvp + ps(1— $)vs) - g

+ / " alp(gv, + (1= 9)v,) -n— (0-n) v, (234)

Here, the first term of right hand side denotes the energy dissipation by friction between polymer and solvent,
the second term the incompressibility condition, the third term the change of free energy. D is deformation
rate tensor of polymer and defined as eq.(2.23). Using the boundary condition between polymer stress,
solvent pressure and surface forces described as

(c—pl) n=T

eq.(2.34) is rewritten as follows.
R{@(0) vy l0) o) 20} = [ s[5 0P(Vp— g ~1¥ v, 40D
- / d"z(ppd + ps(1 = 9))g - vp

- / d= 12T - v, (2.35)
S
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For the semi-implicit time evolution, polymer stress tensor o;; is written as follows.
2
913 (t +8) = 013 (1) + 8t [24(0) Dy + (K (1) = =u(t)) Dby (2.36)

Here, K, p and K — 2/dp express the bulk modulus, shear modulus and lame number of gels at time ¢.
Therefore, Rayleighian for the semi-implicit stress-diffusion coupling dynamics linearized for pressure of
solvent p and displacement of polymer w in time ¢ + §t is described as follows.

RU@(®), 00 p(a(t). @) = [ a5 = 0P (V0 + L= 0R(V0) - (p.9) 19 -ufbt +-0 s /o1

1 K
+ / dd.T{,U/(eij — =bijen)’ — —ep }/ot
v d 2

- / d2(ppd + pa(1 - 6))g - /6t

\4

— / A2 - u /ot (2.37)
S

Here, e is strain tensor for linear elasticity and defined as eq.(2.26). Using the linear (matrix) solver for FEM,
we can minimize above functional and solve p, u and shape in time ¢t 4 §t. Therefore, we have developed the
semi-implicit solver for the stress-diffusion coupling of gels.

(vef. application examples 04 and 05)






Chapter 3

Sample problems of GelDyn

3.1 Sample Problems for Swelling Dynamics of Geldyn

This chapter shows the applications of gel dynamics simulator - Geldyn - by the finite element method for
deformation dynamics of polymer gels. Input and output UDF files corresponding to these applications
are dedicated to the directory MUFFIN/sample/Geldyn/EX01,EX02, .. according to the problem, below the
directory MUFFIN/sample/Geldyn of the distribution version of MUFFIN.

3.1.1 Application 01: Swelling of 2-dimensional slab gels and surface folding
Input UDF file:

MUFFIN/sample/Geldyn/EX01/EX01_in.udf

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

e Mesh ...type: UNSTRUCTURED_RECT, dimension : 2D, size : 64x8, division : 64x16, X-Periodicity.

e Parameters for swelling

’ Name of Parameters(KEY) \ Values ‘
NOIZE_OF_INITIAL_ DEFORMATION 1.0e — 2
UNIFORM_CROSSLINKING_DENSITY _IN_.REFERENCE_STATE | 0.025
UNIFORM_VOLUME_FRACTION_IN_REFERENCE_STATE 0.5
TYPE_OF_MIXING_FREE_ENERGY FLORY_HUGGINS
UNIFORM_CHI_PARAMETER_IN_INITIAL_STATE -20.0

e Boundary conditions
Fix the lower boundary “BOUNDARY_VERTEX_YMIN”.

’ partial region \ field \ condition \ values \
] BOUNDARY_VERTEX_YMIN \ Displacement \ D_VEC \ 0.0, 0.0 ‘

e Fields to be used
Chi, Concentration, DerivedFreeEnergy, Displacement, FingerTensor, FreeEnergy, Moduli, and Vol-
umekFraction

e Dynamics and Method ... Collective Diffusion Model of Gel Networks using Explicit Solver.

Initialization procedure” INITIALIZE: COLLECTIVE_DIFFUSION_OF _GEL_NETWORKS?” is defined
as follows.

13
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’ field \ command for initialization
Chi INITTIALIZE:CHI_PARAMETER
Concentration INITTALIZE:ION_CONCENTRATION
Moduli INITTALIZE:MODULI

VolumeFraction | INITTALIZE:VOLUME_FRACTION
FingerTensor INITTALIZE:FINGER_STRAIN_TENSOR
FreeEnergy SOLVE:TOTAL_ENERGY

Displacement MOVE:POSITION_OF_VERTEX BY_RANDOM

Time evolution procedure” EVOLVE:COLLECTIVE_DIFFUSION_OF _GEL_NETWORKS?” is defined

as follows.

’ field \ command for evolution ‘
FingerTensor SOLVE:FINGER_STRAIN_TENSOR
VolumeFraction SOLVE:BY_FINGER_STRAIN_TENSOR
FreeEnergy SOLVE:TOTAL_ENERGY
DerivedFreeEnergy | SOLVE:DERIVED_TOTAL_ENERGY
Displacement MOVE:BY_COLLECTIVE_DIFFUSION

Results of simulation

The example which displays the volume fraction field by the view function of GOURMET is shown in
Fig.3.1.1. From the left figure in time ¢ = 0.0,120.0,140.0, and 160.0 are displayed. Action named
“SHOW_SWELLING_RATIO” on GOURMET is used for a display.

Figure 3.1: Application 01 of Geldyn : Swelling of 2-dimensional slab gels and folding pattern formations on
surface

3.1.2 Application 02: Swelling of 3D plate gels and pattern formation compar-
ison with implicit solver

Input UDF file:

For the explicit solver, MUFFIN/sample/Geldyn/EX02/EX02-1_in.udf.
For the implicit (matrix) solver, MUFFIN/sample/Geldyn/EX02/EX02-2_in.udf.

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

e Mesh ...type : UNSTRUCTURED_RECT, dimension : 3D, size : 16x16x8, division : 16x16x4, XY-
Periodicity.

e Parameters for swelling
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| Name of Parameters(KEY) | Values
NOIZE_OF _INITIAL_ DEFORMATION 1.0e — 2
UNIFORM_CROSSLINKING_DENSITY_IN_ REFERENCE_STATE | 0.025
UNIFORM_VOLUME_FRACTION_IN_REFERENCE_STATE 0.5
TYPE_OF MIXING_FREE_ENERGY FLORY_HUGGINS
UNIFORM_CHI_PARAMETER_IN_INITTAL_STATE —20.0

e Boundary conditions
For “Explicit Solver”, fix the lower boundary “BOUNDARY_VERTEX_ZMIN”.
’ partial region \ field \ condition \ values ‘
| BOUNDARY_VERTEX_ZMIN | Displacement | D-VEC [ 0.0, 0.0, 0.0 |

For “Implicit Solver”, fix the lower boundary “BOUNDARY_VERTEX_ZMIN” and set permeable
condition on boundary “BOUNDARY_VERTEX_ZMAX”.

’ partial region \ field \ condition \ values ‘
BOUNDARY_VERTEX_ZMIN | Displacement | D_VEC 0.0, 0.0, 0.0
BOUNDARY_VERTEX_ZMAX | Pressure D_PERMEABLE | 0.0

e Fields to be used

For “Explicit Solver”, Chi, Concentration, DerivedFreeEnergy, Displacement, FingerTensor, FreeEn-
ergy, Moduli, and VolumeFraction are used.

For “Implicit Solver”, Chi, Concentration, Displacement, FingerTensor, FreeEnergy, Moduli, Volume-
Fraction, PolymerStress, VolumeForce, and Pressure are used.

e Dynamics and Method
... “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
... “Collective Diffusion Model using Implicit Solver”

Initialization procedure” INITIALIZE: COLLECTIVE_DIFFUSION_OF _GEL_NETWORKS?” is defined

as follows.

’ field ‘ command for initialization ‘
Chi INITIALIZE:CHI_ PARAMETER
Concentration INITTALIZE:ION_CONCENTRATION
Moduli INITIALIZE:MODULI

VolumeFraction | INITIALIZE:VOLUME_FRACTION
FingerTensor INITIALIZE:FINGER_STRAIN_TENSOR
FreeEnergy SOLVE:TOTAL_ENERGY

Displacement MOVE:POSITION_OF_VERTEX_BY_RANDOM

Time evolution procedure” EVOLVE:COLLECTIVE_DIFFUSION_OF _GEL_NETWORKS:IMPLICIT”
is defined as follows.

’ field \ command for evolution ‘

FingerTensor SOLVE:FINGER_STRAIN_TENSOR

VolumeFraction | SOLVE:BY_FINGER_STRAIN_TENSOR

FreeEnergy SOLVE: TOTAL_ENERGY

Moduli SOLVE:MODULI_OF _GELS

PolymerStress SOLVE:POLYMER_STRESS

PolymerStress APPLY:BOUNDARY_CONDITION

VolumeForce SOLVE:VOLUME_FORCE_BY_STRESS_AND_GRAVITY
Displacement MOVE:BY_COLLECTIVE_DIFFUSION:LINEAR_ELASTICITY

Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.2. From the left figure in time
t = 0.0,140.0, and 180.0 are displayed. Action named “SHOW_SWELLING_RATIO” on GOURMET is
used for a display.
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Figure 3.2: Application 02 of Geldyn : Swelling of 3D plate gels and Pattern formation

3.1.3 Application 03: Free swelling of 2D slab gels comparison of two dynamics
Input UDF file:

For the explicit collective diffusion of gel networks,
MUFFIN/sample/Geldyn/EX03/EX03-1_in.udf.

For the explicit stress-diffusion coupling of gels,
MUFFIN/sample/Geldyn/EX03/EX03-2_in.udf.
The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

e Mesh ...type : UNSTRUCTURED_RECT, dimension : 2D, size : 128x16, division : 128x16.

e Parameters for swelling

’ Name of Parameters(KEY) \ Values
NOIZE_OF_INITIAL_.DEFORMATION 1.0e — 3
UNIFORM_CROSSLINKING_DENSITY_IN_REFERENCE_STATE | 0.025
UNIFORM_VOLUME_FRACTION_IN_REFERENCE_STATE 0.9
TYPE_OF_MIXING_FREE_ENERGY GINZBURG_LANDAU
UNIFORM_CHI_ PARAMETER_IN_INITIAL_STATE 0.6

e Boundary conditions

For “Explicit Collective Diffusion Dynamics Solver”, you need to input nothing. (in default, all bound-
aries are permeable.)

For “Explicit Stress-Diffusion Coupling Dynamics Solver”, set all boundaries to permeable condition
for free swelling.

’ partial region \ field \ condition \ values ‘

BOUNDARY_VERTEX_XMIN | Pressure | D.PERMEABLE | 0.0
BOUNDARY_VERTEX XMAX | Pressure | D PERMEABLE | 0.0
BOUNDARY_VERTEX_YMIN | Pressure | D. PERMEABLE | 0.0
BOUNDARY_VERTEX_YMAX | Pressure | D PERMEABLE | 0.0

e Fields to be used

For “Explicit Collective Diffusion Solver of Gel Networks”, Chi, Concentration, DerivedFreeEnergy,
Displacement, FingerTensor, FreeEnergy, Moduli, and VolumeFraction are used.

For “Explicit Stress-Diffusion Coupling Solver”, Chi, Concentration, DerivedFreeEnergy, DerivedIn-
compressibility, Displacement, Flux, FingerTensor, FreeEnergy, Incompressibility, Moduli, Volume-
Fraction, PolymerStress, and Pressure.
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e Dynamics and Method
... “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
... “Stress-Diffusion Coupling Model using Explicit Solver”

Initialization procedure” INITTALIZE:STRESS_DIFFUSION_COUPLING_OF_GELS” is defined as fol-

lows.

’ field \ command for initialization \
Chi INITIALIZE:CHI_ PARAMETER
Concentration INITIALIZE:ION_CONCENTRATION
Moduli INITIALIZE:MODULI

VolumeFraction | INITIALIZE:VOLUME_FRACTION

FingerTensor INITTALIZE:FINGER_STRAIN_TENSOR

FreeEnergy SOLVE:TOTAL_ENERGY

Displacement INITTIALIZE:MINIMIZER_FOR_LOCAL_EQUILIBRIUM
Displacement MOVE:POSITION_OF _VERTEX_BY_RANDOM

Time evolution procedure” EVOLVE:STRESS_DIFFUSION_COUPLING_OF_GELS” is defined as fol-

lows.

’ field \ command for evolution ‘

FingerTensor SOLVE:FINGER_STRAIN_TENSOR

VolumeFraction | SOLVE:BY _FINGER_STRAIN_TENSOR

FreeEnergy SOLVE:TOTAL_ENERGY

PolymerStress SOLVE:POLYMER_STRESS

PolymerStress APPLY:BOUNDARY_CONDITION

Flux SOLVE:BY_PRESSURE_COUPLING_WITH_STRESS_AND_GRAVITY
VolumeFraction | SOLVE:BY _SOLVENT _FLUX

Displacement MOVE:LOCAL_EQUILIBRIUM_WITH_INCOMPRESSIBILITY

Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.3. From the left figure in time
t = 0.0 and 2000.0 are displayed. Action named “SHOW_SWELLING_RATIO” on GOURMET is used for
a display.

Figure 3.3: Application 03 of Geldyn : Free swelling of 2D slab gels.

3.1.4 Application 04: Free Swelling of 3D long rod gels comparison of two
dynamics

Input UDF file:

For the explicit collective diffusion of gel networks,
MUFFIN/sample/Geldyn/EX04/EX04-1_in.udf.

For the implicit stress-diffusion coupling of gels,
MUFFIN/sample/Geldyn/EX04/EX04-2_in.udf.
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The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

e Mesh ...type : UNSTRUCTURED_RECT, dimension : 3D, size : 4x4x32, division : 16x16x32.

e Parameters for swelling

] Name of Parameters(KEY) \ Values \
NOIZE_OF_INITIAL_DEFORMATION 1.0e — 3
UNIFORM_CROSSLINKING_DENSITY_IN_REFERENCE_STATE | 0.025
UNIFORM_VOLUME_FRACTION_IN_REFERENCE_STATE 0.9
TYPE_OF_MIXING_FREE_ENERGY GINZBURG_LANDAU
UNIFORM_CHI_ PARAMETER_IN_INITIAL_STATE 0.6

e Boundary conditions

For “Explicit Collective Diffusion Dynamics Solver”, you need to input no boundary condition. (in
default, all boundaries are permeable.)

For “Implicit Stress-Diffusion Coupling Dynamics Solver”, set all boundaries to permeable condition
for free swelling.

’ partial region \ field \ condition \ values

BOUNDARY_VERTEX _XMIN | Pressure | D_.PERMEABLE | 0.0
BOUNDARY _VERTEX XMAX | Pressure | D PERMEABLE | 0.0
BOUNDARY_VERTEX_YMIN | Pressure | D. PERMEABLE | 0.0
BOUNDARY_VERTEX_YMAX | Pressure | D PERMEABLE | 0.0
BOUNDARY_VERTEX_ZMIN | Pressure | D.PERMEABLE | 0.0
BOUNDARY_VERTEX ZMAX | Pressure | D_.PERMEABLE | 0.0

e Fields to be used

For “Explicit Collective Diffusion Solver of Gel Networks”, Chi, Concentration, DerivedFreeEnergy,
Displacement, FingerTensor, FreeEnergy, Moduli, and VolumeFraction are used.

For “Implicit Stress-Diffusion Coupling Solver”, Chi, Concentration, Displacement, FingerTensor,
FreeEnergy, Moduli, VolumeFraction, PolymerStress, and Pressure.

e Dynamics and Method
... “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
... “Stress-Diffusion Coupling Model using Implicit Solver”

Initialization procedure” INITIALIZE:STRESS_DIFFUSION_COUPLING_OF_GELS:IMPLICIT” is de-
fined as follows.

’ field \ command for initialization ‘
Chi INITIALIZE:CHI_PARAMETER
Concentration INITTIALIZE:ION_CONCENTRATION
Moduli INITTALIZE:MODULI

VolumeFraction | INITIALIZE:VOLUME_FRACTION
FingerTensor INITTALIZE:FINGER_STRAIN_TENSOR
FreeEnergy SOLVE: TOTAL_ENERGY

Displacement MOVE:POSITION_OF _VERTEX_BY_RANDOM

Time evolution procedure”’ EVOLVE:STRESS_DIFFUSION_COUPLING_OF _GELS:IMPLICIT” is de-
fined as follows.
’ field \ command for evolution ‘

FingerTensor SOLVE:FINGER_STRAIN_TENSOR

VolumeFraction | SOLVE:BY _FINGER_STRAIN_TENSOR

FreeEnergy SOLVE:TOTAL_ENERGY

Moduli SOLVE:MODULI_.OF _GELS

PolymerStress SOLVE:POLYMER_STRESS

Displacement MOVE:BY_STRESS_DIFFUSION_COUPLING:LINEAR_ELASTICITY
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Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.4. From the left figure in time
t = 0.0 and 1000.0 are displayed. Action named “SHOW_SWELLING_RATIO” on GOURMET is used for
a display.

Figure 3.4: Application 04 of Geldyn : Free swelling of 3D long rod gels.

3.1.5 Application 05: Free Swelling of 3D large disk gels comparison of two
dynamics

Input UDF file:

For the explicit collective diffusion of gel networks,

MUFFIN/sample/Geldyn/EX05/EX05-1_in.udf.
For the implicit stress-diffusion coupling of gels,

MUFFIN/sample/Geldyn/EX05/EX05-2_in.udf.

The description of Input UDF file:

Here, a simulation is performed using the value of the nondimensional parameter explained in the theoretical
section.

e Mesh ...type : UNSTRUCTURED_RECT, dimension : 3D, size : 32x32x4, division : 32x32x16.
e Parameters for swelling .. .same as Application 04.

e Boundary conditions ...same as Application 04.

Fields to be used ...same as Application 04.

e Dynamics and Method
... “Collective Diffusion Model using Explicit Solver” is the same as “Application 01”.
... “Stress-Diffusion Coupling Model using Implicit Solver” is the same as “Application 04”.

Results of simulation

The example which displays the volume fraction field is shown in Fig.3.1.5. From the left figure in time
t = 0.0 and 1000.0 are displayed. Action named “SHOW_SWELLING_RATIO” on GOURMET is used for
a display.
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s

Figure 3.5: Application 05 of Geldyn : Free swelling of 3D large disk gels.



Chapter 4

Operation Guide of GelDyn

4.1 Input Parameters of Geldyn

4.1.1 Solver control parameters of Geldyn

Name of Parameters

‘ Meanings and notations in theory

INTERVAL_OF _MINIMIZER
-OUTPUT

Interval of monitoring for minimizer.

MAX_ITERATION_OF_MINIMIZER

Max iteration of minimizer.

DT_FOR_LOCAL_EQUILIBRIUM
_MINIMIZER

DT for minimizer
in the explicit stress-diffusion coupling solver.

DT _FOR_STATIC_EQUILIBRIUM
_MINIMIZER

DT for “SIMPLEMIN” minimizer
in the explicit static equilibrium solver.

ENERGY_WEIGHT_IN_MINIMIZER

Weight of elastic energy
in the explicit stress-diffusion coupling minimizer.

INCOMPRESSIBILITY WEIGHT
IN_MINIMIZER

Weight of error of incompressibility (large number)
in the explicit stress-diffusion coupling minimizer.

MATRIX_SOLVER

Linear equation (matrix equation) solver name
for implicit solvers to be used.
Either “ICCG” or ”CG”. Default is “ICCG”.

CONVERGENCE_CRITERION
_FOR_CG_1

Convergence criterion for CG solver of linear equation.
When the norm of residue vector is less than this
criterion, calculation is judged to have converged.

The default value is 0.5 x 1076

CONVERGENCE_CRITERION
_FOR_-CG_2

Another convergence criterion for CG solver of linear
equation. When the ratio of norm of residue vector
and right hand side vector is less than this criterion,
calculation is judged to have converged. The default
value is zero, and it means that this criterion is

not applied. If fixed displacement condition,

which is treated by the penalty method, is applied,
this criterion should be set to zero.

PENALTY _NUMBER
_FOR_DIRICHLET_BC

A penalty number to handle Dirichlet condition
(a very large number).
The default value is 10'3.

ELEMENTS_PER_MATRIX_ MERGE

In composition procedure of a matrix (stiffness matrix)
for displacement calculation, the matrix may not be
composed for all elements at once, but can be composed
incrementally for groups of elements. The number of
elements of the groups is specified by this parameter.
The default is 5000. The size of memory for matrix
composition can be reduced if number of elements is

21
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‘ larger than value of this parameter.

4.1.2 Physical parameters of Geldyn

Name of Parameters

‘ Meanings and notations in theory

|

SEED_OF_RANDOM_NUMBER

Seed of rundom number for initial deformation by random.

NOIZE_OF INITIAL_DEFORMATION

Magnitude of initial deformation by random.

EXPONENT_NU

Exponent v for volume fraction dependency to blob size.
v equals 1/2 for #-solvent and 3/5 for good-solvent.

MAGNITUDE_OF_ELASTIC_LOGTERM

Magnitude of elastic logarithmic term. (default 0.0)

TYPE_OF MIXING_FREE_ENERGY

Type of mixing free energy of gels to be used.
Either “FLORY_HUGGINS” or ”GINZBURG_RANDAU”
Default is “GINZBURG_RANDAU”.

GRAVITY X X component of gravitational acceleration vector.
GRAVITY.Y Y component of gravitational acceleration vector.
GRAVITY_Z Z component of gravitational acceleration vector.
GRAVITY gravity acceleration vector given as an array.

ie.) [ gx, gv, 9z ]

MASS_DENSITY

mass density of polymer and solvent
(mass density when volume fraction is 1.0).

UNIFORM_VOLUME_FRACTION
IN_REFERENCE_STATE

Uniform volume fraction in reference state.
If this parameter does’t exist, UDF input field data
(“VolumeFraction”) are applied.

UNIFORM_CROSSLINKING_DENSITY
IN_REFERENCE_STATE

Uniform crosslingking number density in reference state.
If this parameter does’t exist, UDF input field data
(1st component of “Moduli”) are applied.

UNIFORM_SHEAR_-MODULUS

Uniform isotropic shear modulus for implicit solver.
If this parameter does’t exist, UDF input field data
(2nd component of “Moduli”) are applied.

UNIFORM_BULK_MODULUS

Uniform isotropic bulk modulus for implicit solver.
If this parameter does’t exist, UDF input field data
(3rd component of “Moduli”) are applied.

UNIFORM_CHI_PARAMETER
AIN_INITIAL.STATE

Uniform polymer-solvent interaction parameter

(in initial state).

If this parameter does’t exist, UDF input field data
(1st component of “Chi”) are applied.

STIMULI_ OF_QUENCH

Type of stimuli for quench to be used.

Either “CHI” (change x-parameter field)

or "TEMPERATURE” (change temperature).
Default is “CHI”.

TEMPERATURE_IN_INITIAL_STATE

Temperature of system in initial state (defore quench).
Input this parameter, if ”TEMPERATURE” is selected
as STIMULI_.OF_QUENCH.

TEMPERATURE_IN_FINAL_STATE

Temperature of system in final state (after quench).
Input this parameter, if ”TEMPERATURE” is selected
as STIMULI_.OF _QUENCH.

UNIFORM_CHI_.PARAMETER
AIN_FINAL_STATE

Uniform polymer-solvent interaction parameter

in final state (after quench), when ”CHI” is selected
as STIMULI_.OF_QUENCH.

If this parameter does’t exist, UDF input field data
(2nd component of “Chi”) are applied.

UNIFORM_ION_CONCENTRATION
IN_REFERENCE_STATE

Uniform ion concentration (in initial state).
If this parameter does’t exist, UDF input field data
(1st component of “Concentration”) are applied.
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4.1.3 Analysis results of Geldyn

’ Name of Results

\ Meanings and notations in theory

TOTAL_FREE_ENERGY

Total free energy of gels

TOTAL_ELASTIC_FREE_ENERGY

Total elastic energy of gels

TOTAL_ERROR_OF_INCOMPRESSIBILITY

Total error of incompressibility of gels for the ex-
plicit stress-diffusion coupling solver

4.2 Fields and Commands for Fields of Geldyn

4.2.1 List of Fields for Geldyn

Name of Field

|

Meanings and notations in theory

Displacement Displacement (Velocity) of polymer network (essential)

FingerTensor Finger tensor of polymer network (essential)

VolumeFraction Volume fraction of polymer (essential)

Moduli The crosslinking number density, bulk and shear modulus (essential)

Chi Polymer-solvent interaction parameter (essential)

Concentration Counter ions concentration (essential)

FreeEnergy Free energy density of gels (for the explicit solvers)

PolymerStress Polymer network stress tensor (for the stress-diffusion coupling solvers
and the implicit solver of the collective diffusion solver)

Pressure Pressure of solvent (for the stress-diffusion coupling solvers)

Flux Flux of solvent (for the stress-diffusion coupling solvers)

VolumeForce Volume force of gels (for the implicit collective diffusion solver)

DerivedFreeEnergy Derived free energy on vertex (for the explicit stress-diffusion coupling
solver)

Incompressibility Error of incompressibility of gels (for the explicit stress-diffusion cou-
pling solver)

DerivedIncompressibility | Derived error of incompressibility of gels on vertex (for the explicit
stress-diffusion coupling solver)

4.2.2 List of Commands for Geldyn

VolumeFraction : Volume fraction of polymer - commands

’ VolumeFraction \

Name

Initialization

"INITIALIZE:VOLUME_FRACTION”

Time evolution

"SOLVE:BY_FINGER_STRAIN_TENSOR”

Time evolution

"SOLVE:BY_SOLVENT_FLUX”

1. VolumeFraction - initialization commands

Name

?INITIALIZE:VOLUME_FRACTION”

Function

Initialize volume fraction of polymer
from morphology input data or uniform parameter.
If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter

UNIFORM_VOLUME_FRACTION_IN.REFERENCE_STATE

2. VolumeFraction - time evolution commands

Name

”SOLVE:BY _FINGER_STRAIN_TENSOR”

Function

Solve volume fraction of polymer by finger strain tensor

Dependent field

FingerTensor
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”SOLVE:BY_SOLVENT_FLUX?”

Function One step time integration of equation for volume fraction
Dependent field Flux

Dependent parameter | DT

Name

Displacement : Displacement of polymer network - commands

Displacement \ Name

"INITTALIZE:MINIMIZER _FOR_LOCAL_EQUILIBRIUM”
"MOVE:POSITION_OF_VERTEX”
"MOVE:POSITION_OF_VERTEX_BY_RANDOM”
"MOVE:BY_COLLECTIVE_DIFFUSION”
"MOVE:GO_TO_STATIC_EQUILIBRIUM”
"MOVE:LOCAL_EQUILIBRIUM_WITH_INCOMPRESSIBILITY”

"MOVE:BY _COLLECTIVE_DIFFUSION:LINEAR _ELASTICITY”
"MOVE:BY_STRESS_DIFFUSION_COUPLING:LINEAR_ELASTICITY”
"MOVE:BY_LINEAR_ELASTICITY_DYNAMICS”

Initialization

Time evolution
Time evolution
Time evolution
Time evolution
Time evolution
Time evolution
Time evolution
Time evolution

1. Displacement - initialization commands

Name

PINITIALIZE:MINIMIZER _FOR_LOCAL_EQUILIBRIUM”

Function

Initialize minimizer for the explicit stress-diffusion coupling solver

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

MINIMIZER
MINIMIZER_REGION_MIN_X
MINIMIZER_REGION_MAX X
MINIMIZER_REGION_MIN_Y
MINIMIZER_REGION_MAX_Y
MINIMIZER_REGION_MIN_Z
MINIMIZER_REGION_MAX_7

2. Displacement - time evolution commands

Name "MOVE:POSITION_OF_VERTEX”

Function | Move position of vertices and deform mesh with dirichlet BC

Name "MOVE:POSITION_OF_VERTEX BY RANDOM?”
Function Move position of vertices by randomize with dirichlet BC

Dependent parameter
Dependent parameter

SEED_OF_RANDOM_NUMBER
NOIZE_OF _INITIAL_ DEFORMATION

Name "MOVE:BY _COLLECTIVE_DIFFUSION”

Function Solve the explicit collective diffusion solver with dirichlet BC
Dependent field FreeEnergy

Dependent field DerivedFreeEnergy

Dependent field VolumeFraction

Dependent field FingerTensor

Dependent parameter | DT

Dependent parameter

EXPONENT_NU
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Name "MOVE:GO_TO_STATIC_EQUILIBRIUM?”

Function Solve the static equilibrium shape and deform with dirichlet BC
Dependent field FreeEnergy

Dependent field DerivedFreeEnergy

Dependent field VolumeFraction

Dependent field FingerTensor

Dependent parameter | MINIMIZER

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

MINIMIZER_REGION_MIN_X
MINIMIZER_REGION_MAX_X
MINIMIZER _ REGION_MIN_Y

MINIMIZER _REGION_MAX_Y

MINIMIZER _REGION_MIN_Z
MINIMIZER_REGION_MAX_7
INTERVAL_OF_MINIMIZER_OUTPUT
MAX_ITERATION_OF_MINIMIZER
DT_FOR_STATIC_EQUILIBRIUM_MINIMIZER

Name "MOVE:LOCAL_EQUILIBRIUM
_WITH_INCOMPRESSIBILITY”
Function Solve the explicit stress-diffusion coupling solver with dirichlet BC

Dependent field
Dependent field
Dependent field
Dependent field
Dependent field
Dependent field

FreeEnergy
DerivedFreeEnergy
Incompressibility
DerivedIncompressibility
VolumeFraction
FingerTensor

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

ENERGY_WEIGHT_IN_MINIMIZER
INCOMPRESSIBILITY WEIGHT_IN_MINIMIZER
INTERVAL_OF_MINIMIZER_OUTPUT
MAX_ITERATION_OF_MINIMIZER
DT_FOR_LOCAL_EQUILIBRIUM_MINIMIZER

Name "MOVE:BY _COLLECTIVE_DIFFUSION
:LINEAR _ELASTICITY”
Function Solve the implicit collective diffusion solver with BC

Dependent field
Dependent field
Dependent field

VolumeForce
Moduli
VolumeFraction

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

MATRIX_SOLVER
ELEMENTS_PER_MATRIX_MERGE
PENALTY_NUMBER_FOR_DIRICHLET _BC
DT

EXPONENT_NU
CONVERGENCE_CRITERION_FOR_CG_1
CONVERGENCE_CRITERION_FOR_CG_2




26 CHAPTER 4. OPERATION GUIDE OF GELDYN

Name "MOVE:BY_STRESS_DIFFUSION_COUPLING
:LINEAR _ELASTICITY”
Function Solve pressure and deformation by the implicit stress-diffusion coupling

solver with BC

Dependent field Pressure
Dependent field Moduli
Dependent field VolumeFraction
Dependent field PolymerStress

Dependent parameter | MATRIX_SOLVER

Dependent parameter | ELEMENTS_PER_MATRIX_MERGE
Dependent parameter | PENALTY_NUMBER_FOR_DIRICHLET_BC
Dependent parameter | DT

Dependent parameter | EXPONENT_NU

Dependent parameter | CONVERGENCE_CRITERION_FOR_CG_1

Dependent parameter | CONVERGENCE_CRITERION_FOR_CG_2

Dependent parameter | GRAVITY

Dependent parameter | GRAVITY_X
Dependent parameter | GRAVITY_Y
Dependent parameter | GRAVITY_Z

Dependent parameter | MASS_DENSITY

Name

"MOVE:BY _LINEAR_ELASTICITY_DYNAMICS

Function

Solve the linear elasticity dynamics with BC

Dependent field

VolumeForce

Moduli
MATRIX_SOLVER

Dependent field
Dependent parameter
Dependent parameter | ELEMENTS_PER_-MATRIX_MERGE
Dependent parameter | PENALTY_NUMBER_FOR_DIRICHLET_BC
Dependent parameter | DT

Dependent parameter | CONVERGENCE_CRITERION_FOR_CG_1
Dependent parameter | CONVERGENCE_CRITERION_FOR_CG_2

3. Displacement - partial region condition (boundary condition) commands

’ Partial region condition \ meanings and parameters

D_VEC Set velocity on vertices in specified partial region(fixed displace-
ment condition). Give a 3-dimensional vector. Conditions
"D_VX”"”D_VY” and "D_VZ” are prepared for cases in which not
all displacement vector components should be fixed.

D_VX X component of fixed velocity vector.

D.VY Y component of fixed velocity vector.

D_.VZ 7 component of fixed velocity vector.

N_LOAD Set load on vertices in specified partial region(fixed load condition).
Give a 3-dimensional vector.

N_LOAD_NORMAL Set load on vertices normal direction of specified partial region(fixed
load condition).
positive: outer direction, negative: inner direction.

FingerTensor : Finger tensor of polymer network - commands
] FingerTensor \ Name
Initialization "INITTALIZE:FINGER_STRAIN_TENSOR”

Time evolution | ”SOLVE:FINGER_STRAIN_TENSOR”

1. FingerTensor - initialization commands
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Name ?INITIALIZE:FINGER_STRAIN_TENSOR”
Function | Initialize finger strain tensor and set reference mesh shape

2. FingerTensor - time evolution commands

Name ”SOLVE:FINGER_STRAIN_TENSOR”
Function | Solve finger strain tensor by present mesh shape

PolymerStress : Polymer network stress tensor - commands

’ PolymerStress \ Name

Time evolution | ”"SOLVE:POLYMER_STRESS”

Time evolution | "APPLY:BOUNDARY_CONDITION”

1. PolymerStress - time evolution commands

Name ”SOLVE:POLYMER _STRESS”

Function Solve polymer network stress tensor by finger strain tensor
Dependent field VolumeFraction

Dependent field FingerTensor

Dependent field Chi

Dependent field Moduli

Dependent field Concentration

Dependent parameter | MAGNITUDE_OF_ELASTIC_LOGTERM

Dependent parameter | TYPE_OF_MIXING_FREE_ENERGY

Name ”APPLY:BOUNDARY _CONDITION”

Function Apply boundary condition from BC of pressure and load of displacement
Dependent field | Pressure

Dependent field | Displacement

Pressure : Pressure of solvent - commands

1. Pressure - partial region condition (boundary condition) commands

’ Partial region condition \ meanings and parameters ‘

D_PERMEABLE set a constant value (Dirichlet condition) for permeable surface. (only
stress-diffusion coupling)

Other surfaces are considered as impermeable wall.

(cf. In the collective diffusion model, all surfaces are considered as
permeable ones.)

Flux : Flux of solvent - commands

’ Flux \ Name

| Time evolution | "SOLVE:BY_PRESSURE_COUPLING_WITH_STRESS_AND_GRAVITY”

1. Flux - time evolution commands
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Name ”SOLVE:BY _PRESSURE_COUPLING
_WITH_STRESS_AND_GRAVITY”

Function Solve flux of solvent with gravity and BC
Dependent field VolumeFraction

Dependent field PolymerStress

Dependent field Pressure

Dependent field
Dependent parameter

Displacement
EXPONENT_NU

Dependent parameter | GRAVITY

Dependent parameter | GRAVITY_X
Dependent parameter | GRAVITY_Y
Dependent parameter | GRAVITY_Z

MASS_DENSITY

Dependent parameter

VolumeForce : Volume force of gels - commands

’ VolumeForce \ Name

"SOLVE:VOLUME_FORCE_BY_STRESS_AND_GRAVITY”
"SOLVE:VOLUME_FORCE_BY_GRAVITY”

Time evolution
Time evolution

1. VolumeForce - time evolution commands

Name ”SOLVE:VOLUME _FORCE_BY_STRESS_AND_GRAVITY”
Function Solve volume force of gels by gravity and gradient of polymer stress

Dependent field

VolumeFraction

Dependent parameter

Dependent field PolymerStress
Dependent parameter | GRAVITY
Dependent parameter | GRAVITY_X
Dependent parameter | GRAVITY_Y
Dependent parameter | GRAVITY_Z

MASS_DENSITY

Name ”SOLVE:VOLUME _FORCE_BY_GRAVITY”
Function Solve volume force of gels by gravity

Dependent field VolumeFraction

Dependent parameter | GRAVITY

Dependent parameter | GRAVITY_X

Dependent parameter | GRAVITY_Y

Dependent parameter | GRAVITY_Z

Dependent parameter | MASS_DENSITY

Moduli : The crosslinking number density, bulk and shear modulus - commands

’ Moduli \ Name ‘

Initialization

"INITIALIZE:MODULI”

Time evolution

"SOLVE:MODULI_.OF_GELS”

1. Moduli - initialization commands

Name

”INITIALIZE:MODULI”

Function

Initialize crosslingking number density in reference state,
or shear and bulk modulus

from input field data or uniform parameter

If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter
Dependent parameter
Dependent parameter

UNIFORM_CROSSLINKING_DENSITY_IN_ REFERENCE_STATE
UNIFORM_SHEAR_MODULUS
UNIFORM_BULK_MODULUS
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2. Moduli - time evolution commands

Name ”SOLVE:MODULI_OF_GELS”

Function Solve isotropic bulk and shear modulus field of gels.
Dependent field VolumeFraction

Dependent field Chi

Dependent field Concentration

Dependent parameter | MAGNITUDE_OF_ELASTIC_LOGTERM
Dependent parameter | TYPE_OF _MIXING_FREE_ENERGY

Chi : Polymer-solvent interaction parameter - commands

’ Chi \ Name

Initialization "INITIALIZE:CHI_ PARAMETER”

Time evolution | "QUENCH:CHANGE_CHI_PARAMETER”

1. Chi - initialization commands

Name ?INITIALIZE:CHI_ PARAMETER”

Function

Initialize y-parameter from input field data or uniform parameter
If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter

UNIFORM_CHI_PARAMETER_IN_INITIAL_STATE

2. Chi - time evolution commands

Name

"QUENCH:CHANGE_CHI_ PARAMETER”

Function

Change temperature or y-parameter field and quench the system.

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

STIMULI_.OF_QUENCH
TEMPERATURE_IN_INITIAL_STATE
TEMPERATURE_IN_FINAL_STATE
UNIFORM_CHI_PARAMETER_IN_FINAL_STATE

Concentration : Counter ions concentration - commands

’ Concentration \ Name

[ Initialization | "INITIALIZE:ION_CONCENTRATION”

1. Concentration - initialization commands

Name ?INITIALIZE:ION_CONCENTRATION”

Function Initialize counter ions concentration
from input field data or uniform parameter
If uniform parameter doesn’t exist, field data is inputted.

Dependent parameter | UNIFORM_ION_CONCENTRATION_IN_REFERENCE_STATE

FreeEnergy : Free energy and elastic energy of gels - commands

’ FreeEnergy \ Name

Time evolution | ”SOLVE:TOTAL_ENERGY”

Time evolution | "SOLVE:ELASTIC_ENERGY”

1. FreeEnergy - time evolution commands
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Name ”SOLVE: TOTAL_ENERGY”
Function Solve free energy of gels and analyze the total free energy

Dependent field
Dependent field
Dependent field
Dependent field
Dependent field

VolumeFraction
FingerTensor
Chi

Moduli
Concentration

Dependent parameter | MAGNITUDE_OF_ELASTIC_LOGTERM
Dependent parameter | TYPE_OF_MIXING_FREE_ENERGY

Dependent result

TOTAL_FREE_ENERGY

Name

”SOLVE:ELASTIC_ENERGY”

Function

Solve elastic energy of gels and analyze the total elastic energy

Dependent field
Dependent field
Dependent field

VolumeFraction
FingerTensor
Moduli

Dependent parameter | MAGNITUDE_OF_ELASTIC_LOGTERM

Dependent result

TOTAL_ELASTIC_FREE_ENERGY

Incompressibility : Error of incompressibility of gels - commands

’ Incompressibility \ Name ‘

’ Time evolution \ ?SOLVE:INCOMPRESSIBILITY” ‘

1. Incompressibility - initialization commands

2. Incompressibility - time evolution commands

Name

”SOLVE:INCOMPRESSIBILITY”

Function

Solve error of incompressibility of gels
and analyze the total error of incompressibility

Dependent field

VolumeFraction

Dependent result

TOTAL_ERROR_OF_INCOMPRESSIBILITY

DerivedFreeEnergy

: Derived free energy on vertex - commands

’ DerivedFreeEnergy \

Name

Time evolution

"SOLVE:DERIVED _TOTAL_ENERGY”

Time evolution

"SOLVE:DERIVED_ELASTIC_ENERGY”

1. DerivedFreeEnergy - time evolution commands

Name

”SOLVE:DERIVED TOTAL_ENERGY”

Function

Solve derived free energy of gels on vertices

Dependent field
Dependent field
Dependent field
Dependent field
Dependent field

VolumeFraction
FingerTensor
Chi

Moduli
Concentration

Dependent parameter | MAGNITUDE_OF_ELASTIC_LOGTERM
Dependent parameter | TYPE_OF _MIXING_FREE_ENERGY

Name

”?SOLVE:DERIVED _ELASTIC_ENERGY”

Function

Solve derived elastic energy of gels on vertices

Dependent field
Dependent field
Dependent field

VolumeFraction
FingerTensor
Moduli

Dependent parameter | MAGNITUDE_OF _ELASTIC_LOGTERM
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DerivedIncompressibility : Derived error of incompressibility of gels - commands

] DerivedIncompressibility \ Name \
] Time evolution \ "SOLVE:DERIVED_INCOMPRESSIBILITY” ‘

1. DerivedIncompressibility - time evolution commands

Name ”SOLVE:DERIVED_INCOMPRESSIBILITY”
Function Solve derived error of incompressibility of gels on vertices
Dependent field | VolumeFraction

Dependent field | FingerTensor
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