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Chapter 1

Theoretical background of Elastica

A multiphase linear elastic simulator ”Elastica” has functions as follows.

e Static analysis of three dimensional linear elastic materials with multiphase structure under a stress
and distortion.

e A setup of an isotropic elasticity and anisotropic elasticity (axisymmetric anisotropy) is possible for
every component.

1.1 Basic equations of Elastica
The multiphase linear elasticity simulator Elastica has the functions as follows.

e Possible to treat a system in which two or more materials with different elastic properties (elastic
parameter) are mixed.

e An anisotropic elastic material can be treated. The system in which the component of isotropic
elasticity and anisotropic elasticity are mixed can also be dealt with.

e The deformation of the linear elastic material is calculated by the three-dimensional and two-dimensional
finite element method.

e Possible to use arbitrary shape of tetrahedrons as a mesh. The mesh can be generated internally or
can be inputted that created by a mesh generation tool of Muffin (Milk) as a Delaunay mesh, and you
can input mesh data generated for other finite element method programs.

e As the method of the specification of a deformation, a volume force, a surface stress and a fixed
displacement boundary conditions, and a volume expansion ratio can be used.

e Spatial distributions of the the displacement vector and distortion energy are obtained as calculation
results.

1.1.1 Principle of the calculation

The deformation free energy of a linear elastic material can be written as a functional of the displacement
vector distribution u(z) [1]

Flu(z)] :/Vddx%Dijkl(m)eijekl—/Vddxp(:c)giui(:c)—/s d4 T () u (), (1.1)

where d%z and d? 'z are the volume and surface element, respectively. The rule of taking the sum for the
same subscript of a tensor or vector is used. e;; is a strain tensor calculated from the displacement vector.
The strain tensor is calculated in the range of a very small deformation as follows:

1 6Uj 8uz
=5 (axi * axj) ’ (12)




2 CHAPTER 1. THEORETICAL BACKGROUND OF ELASTICA

p(x) is the mass density, g is the gravity acceleration. T'(x) is a surface stress (load) applied per unit area
on the surface. S; is the surface where the surface load is given. d is the dimensionality of space. The
elasticity-tensor D;;; is the 4th rank elastic modulus. Because the strain tensor e;; is symmetric for ¢ and
J, it is useful to define D;jx; to be symmetric for the exchange of subscripts (¢,7) and (k,!). The number
of the components which are not zero among D;jx; changes according to the degree of the anisotropy of an
elastic material. In the case of an isotropic elastic material, the number of non-zero elements of Djjy; is
two, and the equation of free energy becomes as

Flu@] = [ ddx{G«s) (;5) +K§w)<eu>2K<w>a<m>eu}
7/ ddxp(a:)giui(w)f/ d e Ty, (), (1.3)
1% S

where K (x) is the bulk modulus, G(x) is the shear modulus and a(x) is the volume expansion ratio.

In dealing with the system of a mixture of materials with different elastic parameters, D;;; is calculated
from the elasticity-tensor Df},, and a volume fraction field U (x) of component « which constitutes a
material as

Ukl Zngkl\Il (14)

The deformation of an elastic material is determined by a displacement vector distribution w(x) which
gives the minimum of the free energy F. The minimum of the free energy is defined as a stationary point
for a virtual displacement vector distribution du(x).

0F[du] = /Vddeijkl(a:)ekﬁeijf[/ddxp(m)giéuiffg ddilx’ﬂ-(a)ﬁui
/ddeml(a:)%iéu»—/ dzp(x)gidu; — | daTy(x)du,
V 1] axl ax] T V (2 3 St K3 T

(1.5)
where 6F[du] is the difference of the free energy between the situations affecting a displacement vector

distribution w(x) and affecting u(x) + du(x).
In the case of an isotropic elastic material, the equation (1.5) is simplified as

d 1 /0u;  Ouj\ 1 % K(z) . Ou Adu;
/Vd a:{2G(a:) (2 oz, + oz, 5” 0, 5 6”6 2 K(x)a(x) oz,

—/ ddmp(m)gi(;ui—/ d4 Ty () duy
\%4 St

OF[0u]

= 0 (1.6)
Here, the following relation is used:
1
(eij - déije”) 61']' = 0. (17)
The stress tensor is defined as
oF 1
Oij = De 2G(w)(e” - géije”) + K(x)éije” - K(w)a(m)&m (18)
ij

1.1.2 Discretization by the finite element method

Using the finite element method, the force balance equation (1.5) or (1.6) can be solved. A component of the
displacement vector in a finite element mesh is expressed by a linear combination of a linear interpolation
function L;(x) which has the value 1 at node I which constitutes the element.

x) = Li(x)uf (1.9)
I
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In the free energy equation expressed by this displacement vector, we can get a linear equations for an
unknown variable u!, by imposing the following condition

oF

T
du;

=0. (1.10)

For an isotropic elastic material, the linear equation for an element e becomes as

d
J i k

= Keae(viL]) + Zp{gi {/dde[L,]} + ZT{] |:/ ddleILJ:| s (1.11)
J € J

€

2
Ve Z Z G, {(VZLJ . V]L[)UJI + (VjL] . VJL])’LL;]} + <Ke — Ge> Z (VkLJ . VZL]) ui

where V. is the volume of the element, K., G, and a. are the element averages of the bulk modulus, the
shear modulus and the volume expansion ratio, respectively, and J is the index of nodes which constitutes
the element. Quantities calculated in parenthesis [...] on the left hand side are components of a matrix for
the linear equation. The actual equations are obtained by addition of both sides of this equation over all
the elements to which node I belongs. A displacement vector is calculated by solving the obtained linear
equations using the conjugate gradient method.

1.1.3 Treatment of anisotropic elastic material
The anisotropy of an elastic material appears according to the type of a crystal. For example,
e axisymmetric:
It has an anisotropy in a specific spatial axis direction, besides isotropic for perpendicular directions.
e orthorhombic:

It has a different elastic modulus for each of three orthogonal spatial axis directions.

Elastica can treat materials with axisymmetric anisotropy. The direction of a main axis can be given
arbitrarily. The elastic coefficient with an orthotropy or a higher asymmetry is expressed as the coefficient
matrix C which generally connects stress-tensor ¢;; and strain-tensor e;; as follows.

Oza Cii Ci2 Ciz3 0 0 0 [
Oyy 012 022 023 0 0 0 Eyy
0.2 |Ciz Caz Cszz 0 0 0 €z
ol 10 0 0 Cu 0 0] e (1.12)
Oz 0 0 0 0 055 0 Crx
Ozy 0 0 0 0 0 066 Exy

In the case of an axisymmetric elastic material, the C' matrix can be expressed using five independent
parameters n, I, k,m, and u(s) as follows (when the axis of anisotropy is set as x-axis).

Opa n l l 0 0 0| |ews
Oyy I E+m k—m 0 0 0f [ey
0| |l E=m kE+m 0 0 0] |es
oy| |0 0 0 m 0 0f |ey (1.13)
Oz 0 0 0 0 pu 0| |ew
Oy 0 0 0 0 0 pf [ewy

Although the equation (1.13) serves as an expression in a case that the principal axis of an anisotropy is in
agreement with a specific axis of coordinates. Generally the axis of coordinates at a time of a simulation is
not necessarily in agreement with a principal axis. Moreover, we may encounter a material which is a mixture
of components having different axes of an anisotropy. So, in Elastica, directions of axis of an anisotropy can
be taken arbitrarily. Making n; the unit vector along a principal axis of axisymmetric anisotropic material,
the elastic energy density f can be expressed as follows.
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f = Dilei)?® + Da(ninjei;)* + Dsley - ninje;) + Damgeq - nyeqr, + Dsegjeq;
1
= 5 [2D15ij5kl —+ 2D2nmjnknl —+ D3(5ijnknl —+ 5kmmj) —+ D4(5iknjnl —+ 5jmink) + D5(5ik6jl + 53k52l)]
€ij€kl

1

5 Dijkicijen (1.14)
Coefficients D1, Do, D3, Dy, and D5 can be connected with five elastic parameters in the equation (1.13).
Using this expression, we can calculate a deformation of the linear elastic material having arbitrary anisotropy
axis directions. The following relations are obtained by correspondence of the coefficient of the equation

(1.13) and expressions o;; = f—f under ng; = 1,ny =n, = 0.

€ij

Dy = (k—m)/2 (1.15)
Dy, = (n+k—m)/2—-1—p (1.16)
Dy = l—k+m (1.17)
Dy, = p—m (1.18)
Ds = m (1.19)

A finite element discretization equation for u! using the elastic energy can be written in the following form
as a generalized form of the equation (1.11). This equation can be applied to both isotropic and anisotropic
elastic materials.

VEZ ZZDijlejLIVZLJ u,{
J il

=> plg U dde,LJ} +y 1/ [/ dd—le,LJ} (1.20)
J e J e

1.1.4 Treatment of mixed system of components with different symmetry

The Elastica can treat a mixed system of isotropic elastic materials and anisotropic ones. In the Elastica, the
elasticity tensor is treated as a weight averaged elasticity tensor of each component by the volume fraction
of each component as the equation (1.4).

*Z ljkl\IJ €ijCkl (1.21)

Therefore, in generation of a finite-element matrix, the matrix for the elasticity tensor D, U, is generated
for every component, and the matrix for the mixture is generated by taking the sum of those matrices. So
FElastica can treat any mixture of the materials with any anisotropy.

1.1.5 Spatial distribution of anisotropy axis

The elasticity tensor in an element is obtained from the anisotropic elastic tensor Dijkl(nK ) expressed as
a function of the anisotropy axis vector n€ at the node K and volume fraction Wy at the node K by the
interpolation as

Dijn(x Z L () Dijra (n™ ) W (1.22)

The left-hand side of the equation (1.20) is rewritten as

> Z ZZ( ikt (R )‘I/K/eddeK(m)> ViLiViLy| puj

K

- Z Z ZZ( Dijri(n )‘I’K> ViLiViLy| pui (1.23)

K
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where p. is the number of the nodes which constitute an element. This equation means that we can make
matrix for a mixture by taking a summation over node K for matrices created by using piDij w(nf) Uk as
an anisotropic elasticity tensor at each node K which may have a different anisotropy axis.

1.1.6 Boundary condition

The boundary condition which can be dealt with by Elastica is a “fixed displacement boundary condition”
and a "surface load condition”. When the surface of the system is composed as S = 5, + S,

e on fixed displacement boundary S, :

e on surface load boundary S; :
O'l'j’flj = Tz (125)

For a free surface, the surface load is zero. In the finite element method, such a free surface can be
treated naturally by doing nothing on the surface.

1.1.7 Processing of fixed displacement boundary condition

In the Elastica, the fixed boundary condition is realized by the penalty number method (Yagawa and
Yoshimura [2], p.50). In this method, even for the nodes which constitutes fixed displacement boundary
condition, a matrix composition process is performed according to the equation (1.11) as if the displace-
ments on the nodes are unknown. Next, taking a big number « as a penalty number, « is added to the
diagonal elements of the matrix for displacements on the fixed displacement boundary u!, and ! is added
to the corresponding components of a right-hand-side vector. The fixed displacement boundary condition
can be taken in by solving the obtained linear equation.






Chapter 2

Sample problems of Elastica

2.1 Sample problems of Elastica

In this section, we show 11 samples of Elastica. Input UDF files and output files corresponding to these
applications are prepared in a directory of the Muffin distribution as a sub-directory according to the problem.

2.1.1 Application 01 : Simple shear deformation

e 3D
1) Shear deformation of an isolated cube. (non-periodic) (EX01/EX01_cube_in.udf)
Usage : muffinbe_elastica -1 EX01_cube_in.udf -O EX01_cube_ou.udf
2) Simple shear deformation. (periodic) (EX01/EX01_bulk_in.udf)
Usage : muffinbe_elastica -1 EX01_bulk_in.udf -O EX01_bulk_ou.udf

e 2D
1) Shear deformation of an isolated square. (non-periodic) (EX01/2D/EX01_square2d_in.udf)
Usage : muffinbe_elastica -1 EX01_square2d_in.udf -O EX01_square2d_ou.udf
2) Simple shear deformation. (periodic) (EX01/2D/EX01_bulk2d_in.udf)
Usage : muffinbe_elastica -I EX01_bulk2d_in.udf -O EX01_bulk2d_ou.udf

2.1.2 Application 02 : Load to a long rod

e 3D : Load to a long rod (EX02/EX02_in.udf)
Usage : muffinbe_elastica -1 EX02_in.udf -O EX02_ou.udf

e 2D : Load to a long square (EX02/2D/EX02_2d_in.udf)
Usage : muffinbe_elastica -1 EX02_2d_in.udf -O EX02_2d_ou.udf

2.1.3 Application 03 : Shear Deformation of two components phase separation
system

Shear Deformation of two components phase separation system, which are calculated by PhaseSepara-
tion. FEM using Flory Huggins model without flow. (EXAMPLE 03 of PhaseSeparation FEM)

1. Open EXO03.in.udf, and using the action ”import_fields”, import EX03/EX03_ou.udf of PhaseSepara-
tion .FEM.

2. Calculation
Usage : muffinbe_elastica -I EX03_in.udf -O EX03_ou.udf

2.1.4 Application 04 : Compress two components lamellar phase calculated by
SUSHI

Compress two components lamellar phase, which are imported from 1D calculation of blend_uot.udf of
SUSHI.
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1. Open EX04_in.udf, and using the action ”import_fields_1d”, import blend_uot.udf of SUSHI.

2. Calculation
Usage : muffinbe_elastica -1 EX04_in.udf -O EX04_ou.udf

2.1.5 Application 05 : Load to two component cylinder phase calculated by
SUSHI

Load to upper surface (Z-max surface) of two component cylinder like phase separation body, which are
imported from susi3_cylinder3D_uot.udf of SUSI3.

1. Open EXO05_in.udf, and using the action ”import_fields”, import susi3_cylinder3D_uot.udf of SUSHI.

2. Calculation
Usage : muffinbe_elastica -1 EX05_in.udf -O EX05_ou.udf

2.1.6 Application 06 : Shear deformation of a cube including sphere like rubber.
I

Shear deformation of a material which includes one sphere like rubber. Phase separation structure is gener-
ated by initial procedure, named "ONE_SPHERE”.
Usage : muffinbe_elastica -1 EX06_in.udf -O EX06_ou.udf

2.1.7 Application 07 : Shear deformation of a cube including sphere like rubber.
II

Shear deformation of a material which includes one sphere like rubber. Grid is generated using Milk and
phase separation structure is applied by PartialRegionCondition (region_condition[]).

1. Generate a mesh by Milk.
Usage : milk5_3d -1 EX07_milk_onesphere_in.udf -O EX07_milk_onesphere_ou.udf

2. Open EX07.in.udf, and using the action ”import_mesh”, import EX07_milk_onesphere_ou.udf.
3. Calculation
Usage : muffinbe_elastica -1 EX07_in.udf -O EX07_ou.udf
2.1.8 Application 08 : Surface modulation of a thin film lamellar phase

Surface modulation by volume expansion and shrink of a thin film of periodic two components lamellar
phase, which are imported from blend_uot.udf of SUSHI.

1. Open EX08_in.udf, and using the action ”import_fields_1d”, import blend_uot.udf of SUSHI.
2. Calculation
Usage : muffinbe_elastica -1 EX08_in.udf -O EX08_ou.udf
2.1.9 Application 09 : Bending of bi-metal

Bending of a bilayer film by volume expansion and shrink of each layer. Mesh is prepared using only the
mesh generation of Elastica.

1. Generate a mesh :
Usage : muffinbe_elastica -1 EX09_meshgenerate_in.udf -O EX09_meshgenerate_ou.udf

2. Open EX09_in.udf, and using the action ”import_mesh”, import EX09_meshgenerate_ou.udf.

3. Reload the UDF, and load and run the python command ”make_bilayer.py” to generate bilayer struc-
ture.

4. Calculation
Usage : muffinbe_elastica -1 EX09_in.udf -O EX09_ou.udf
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2.1.10 Application 10 : Shrinking of a thin film on hard substrate with notch

Shrinking of a film (K=G=1) contacted with hard substrate (K=G=1000) with a hard rectangular notch.
Mesh is prepared using only the mesh generation of Elastica.

1. Generate a mesh :
Usage : muffinbe_elastica -I EX10_meshgenerate_in.udf -O EX10_meshgenerate_ou.udf

2. Open EX10_in.udf, and using the action ”import_mesh”, import EX10_meshgenerate_ou.udf.

3. Reload the UDF, and load and run the python command ”make_bilayer_with_notch.py” to generate
bilayer structure with notch.

4. Calculation
Usage : muffinbe_elastica -I EX10_in.udf -O EX10_ou.udf

5. Analyze the stress distribution along a axis by the python command ”stress_analysis.py”.

2.1.11 Application 11 : Deformation of a half spherical shell under the negative
pressure

Deformation of a half spherical membrane (K=G=1) under the negative pressure. Bottom line (surface) is
clumped on the substrate. Mesh is prepared using Milk (EX12 of MILK).

1. Generate a mesh :
Usage : milk5_3d -I EX11_milk_in.udf -O EX11_milk_ou.udf

2. Open EX11_in.udf, and using the action ”import_mesh”, import EX11_milk_ou.udf.

3. Calculation
Usage : muffinbe_elastica -1 EX11_in.udf -O EX11_ou.udf

2.2 Detail procedures of analysis using Elastica

Detail procedures of analysis are explained for application 3 and application 5.

2.2.1 Application 3: Isotropic linear elastic analysis by a morphology from
PhaseSeparation simulator

[Problem setting]

1. Input a morphology of the phase separation structure (with no flow) by the Flory-Huggins free energy of
two component system (50:50) calculated by the PhaseSeparation FEM simulator as shown in Fig.2.1.

2. Both components have an isotropic elasticity.

3. Set a bulk modulus and a shear modulus of the first component (color red) to 10, and set those of the
second component (color blue) to 40.

4. Apply a shear by putting displacement on the upper boundary perpendicular to the Y-axis into +X
direction and the lower boundary into -X, and simulate deformation.

5. The color contour of the state of a deformation and a free energy are drawn.

[Sample UDF files]

e Output UDF file from PhaseSeparation FEM:
MUFFIN5/sample/muffinbebeta/PhaseSeparation_FEM/EX03/EX03_out.udf

e Input UDF file: MUFFIN5/sample/muffinbebeta/Elastica/EX03/EX03_in.udf

e Output UDF file: MUFFIN5/sample/muffin5ebeta/Elastica/EX03/EX03_ou.udf
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[Making input UDF file]

1. Open an input UDF of Elastica MUFFIN5/sample/muffinbebeta/Elastica/EX03/EX03_in.udf on
GOURMET.

2. Pop-up another Editor window by selecting GOURMET’s "NEW WINDOW” menu item, and open
an output UDF of the example 3 of PhaseSeparation_ FEM simulator
MUFFIN5/sample/muffinbebeta/PhaseSeparation_FEM/EX03/EX03_out.udf. You can view a phase
separation structure as shown in Fig.2.1 by drawing the volume fraction field data of the last record
(No.5). To draw the figure, right-click on “EX03_out.udf” in the left window of GOURMET, and select
and execute “show_field” from the pop-up menu (Select z-sections as region).

Figure 2.1: Elastica (linear elasticity) example 3: Morphology as an input (from example 3 of PhaseSepara-
tion . FEM )

3. We convert the morphology data.
In the editor window for MUFFIN5/sample/muffinbebeta/Elastica/EX03/EX03_in.udf, right-click
on “EX03_in.udf” in the left window of GOURMET), and select and execute “import_fields” from the

pop-up menu.

4. Then set parameters for conversion in the dialog. Set “import_udf_path” to the output UDF of Phas-
eSeparation_FEM simulator,
MUFFIN5/sample/muffinbebeta/PhaseSeparation_FEM/EX03/EX03_ou.udf, and set “import_record_no”
to 5 as shown in Fig.2.2. You can select the file by right-click on the text box. Set “save_as” to
EX03_2_in.udf, because you already opened EX03_in.udf.

Names Values
import_udf filepath |[C:\OCTAS\ENGINES\WMuffinS\sample\muffin5ebeta\PhaseSeparation\EX03\EX03_ou.udf

import _record_no 5

save_as EX_03_2_in.udf

Figure 2.2: Elastica (linear elasticity) example 3: Zooming parameters input dialog

5. After finishing conversion, file EX03_2_in.udf will be created but we still use EX03_in.udf because
this file already has converted data.

6. Next, set parameters. You need to change ”mesh parameters” (parameter.mesh_parameter) as shown
in Fig.2.3.This is because the mesh of Phaseseparation . FEM uses periodic boundary condition but

following calculation of Elastica does not use it.

7. Set those in ”physical parameters” (parameter.physical_parameter[]).Input as the following table.
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¢ [ mesh_parameter
sef type
¢ [ axes(]
¢ [ axes[0]
¢ 4 values]]
4 values[0]
4 values[1]
4 values[2]
¢ 3 axes[1]
¢ 4 values[]
4 values[0]
4 values[1]
4 values[2]
¢ [ axes[2)
¢ 4 values]
4 values[0]
4 values[1]
4 values[2]
¢ ¢ periodic]]
¢ periodic[0]
£ periodic[1]
§ periodic[2]

Mesh - -
select UNSTRUCTURED_RECT
MeshAxis ar... - .
MeshAxis

double array .
double 1.0
double 32.0
double 31.0]
MeshAxis -
double array :
double 1.0
double 32.0]
double 31.0
MeshAxis -
double array -
double 1.0
double 3.0
double 2.0
int array -
int 0
int 0
int 0

Figure 2.3: Elastica (linear elasticity) example 3: Mesh parameter

’ Parameter \ Value \ Meanings
NUMBER_-OF_COMPONENTS | 2 2 component system
MODULUS_ANISOTROPY .0 Isotropic 1st component has isotropic elasticity
MODULUS_ANISOTROPY -1 Isotropic 2nd component has isotropic elasticity

BULK_-MODULUS

[10, 40](array)

Bulk modulus. 10 for 1st component, 40 for 2nd

SHEAR_MODULUS

[10, 40](array)

Sear modulus. 10 for 1st component, 40 for 2nd

8. Next set boundary conditions. The partial region (boundary) condition part (region_condition.condition]])

should be specified as follows.

’ Condition \ Partial region \ field \ condition name \ value ‘
conditionl | BOUNDARY_VERTEX_YMIN | Displacement | D_-VEC [—5.0,0.0,0.0]
condition2 | BOUNDARY_VERTEX_YMAX | Displacement | D_-VEC [+5.0,0.0,0.0]

These conditions mean applying +5.0 displacement in the X-direction on the upper surface perpen-
dicular to the Y-axis (BOUNDARY_VERTEX_YMAX). —5.0 displacement on the bottom X-direction
on the upper surface perpendicular to the Y-axis (BOUNDARY_VERTEX_YMIN). It is giving a shear
deformation. (D_VEC is the meaning of the Dirichlet conditions of displacement)

[Running the Simulator]

Execute Elastica by the command
muffinbe_elastica -1 EX03_in.udf -O EX03_ou.udf

[Drawing of the result]
1. Open the resultant output UDF file on GOURMET, move to a record after deformation (record No.1).

2. Let’s try viewing a color contour output of the volume fraction field. Right-click on “EX03_ou.udf”
in the left window of GOURMET, and select and execute “show_field” from the pop-up menu. You
will get a contour figure like Fig.2.4 (the left part). The red part is the softer first component and
the blue part is the harder second component. Comparing with the morphology view of the record
0 before deformation, we can see that the hard blue part retains its shape, but the soft red part has
larger deformation.

3. Next, let’s try viewing a color contour output of the free energy. Right-click on “EX03_ou.udf” in
the left window of GOURMET, execute “show_field” from the pop-up menu and select ”FreeEnergy”
field. You will get a contour figure like Fig.2.4 (the right part). It can be observed that the free energy
(strain) has concentrated on the interface between the two phases.
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Figure 2.4: Elastica (linear elasticity) example 3: Morphology after displacement and free energy.

2.2.2 Application 5: Input of a morphology from SUSHI and anisotropic linear
elasticity analysis

[Problem setting]

1. Input a morphology of the cylinder structure of phase separation of the di-block copolymer system (the
ratio of length 5:15) calculated by the SUSHI simulator. Cylinder structure is parallel to the Z-axis.

2. Both components are axisymmetric anisotropic elastic materials, and make the axis of an anisotropy
parallel to the Z-axis (axis of the cylinder morphology structure).

3. The first component (component which compose red cylinders) are hard in the Z-direction and soft
in X- and Y-direction. Specifically, five elastic parameters (see theory section 1.1.3) are set into
(n,l,k,m, ) = (100,20,10,5,5). On the other hand, the second component (blue sea) is soft in
Z-direction, and hard in X- and Y-direction. Five elastic parameters are set into (n,l,k,m,u) =
(20, 20,100, 5, 5).

4. Apply a load on the upper face perpendicular to the Z-axis in +7 direction. The bottom boundary
perpendicular the Z-axis is fixed without displacement, so the material is stretched in Z direction.

5. The color contour of the state of a deformation and a strain energy is drawn.

[Sample UDF files]
e Anoutput UDF file from SUSHI: MUFFIN5/sample/muffinbebeta/Elastica/EX05/sushi3_cylinder3D_uot.udf
e Input UDF file: MUFFIN5/sample/muffinbebeta/Elastica/EX05/EX05_in.udf

e Output UDF file: MUFFIN5/sample/muffinbebeta/Elastica/EX05/EX05_out.udf

[Making input UDF file]

1. Open an input UDF of Elastica MUFFIN5/sample/muffinbebeta/Elastica/EX05/EX05_in.udf on
GOURMET.

2. We convert the morphology data.
In the editor window for MUFFIN5/sample/muffinbebeta/Elastica/EX05/EX05_in.udf, right-click
on “EX05_in.udf” in the left window of GOURMET), and select and execute “import_fields” from the
pop-up menu.

3. Then set parameters for conversion in the dialog. Set “import_udf_path” to the output UDF of
SUSHI MUFFIN5/sample/muffinbebeta/Elastica/EX05/susi3_cylinder3D_uot.udf, and set “im-
port_record_no” to 1. You can select the file by right-click on the text box. Set “save_as” to EX05_2_in.udf,
because you already opened EXO5_in.udf.

4. After finishing conversion, file EX05_2_in.udf will be created but we still use EX05_in.udf because
this file already has converted data.
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5. Next, set parameters. You need to set those in ”physical parameters” (parameter.physical_parameter|]).

Input as the following table.

’ Parameter \ Value \ Meanings
NUMBER_OF_COMPONENTS | 2 2 component system
MODULUS_ANISOTROPY .0 Axisymmetric 1st component has axisymmetric anisotropy
MODULUS_ANISOTROPY -1 Axisymmetric 2nd component has axisymmetric anisotropy

MODULUS_0

100, 20, 10, 5, 5] (array)

moduli of the 1st component

MODULUS_1

20, 20, 100, 5, 5] (array)

moduli of the 1st component

MODULUS_AXIS_0-0

anisotropy axis of the 1st component(Z-axis)

MODULUS_AXIS_1.0

0.0,0.0, 1.0](array)

anisotropy axis of the 2nd component(Z-axis)

AXISYMMETRIC_MODULUS
_EVALUATION_AXES

[
[
[0.0,0.0,1.0](array)
[
[

1.0,0.0,0.0,
0.0,1.0,0.0,
0.0,0.0, 1.0](array)

calculate free energy quadratures
for averaged axisymmetric moduli evaluation
for X,Y and Z direction here.

6. Next set boundary conditions. The partial region (boundary) condition part (region_condition.condition]])

should be specified as follows.

’ Condition \ Partial region \ field \ condition name \ value ‘
conditionl | BOUNDARY_VERTEX_ZMIN | Displacement | D_-VEC [0.0,0.0,0.0]
condition2 | BOUNDARY_FACE_ZMAX Displacement | N.LOAD [0.0,0.0,10.0]

These conditions mean applying load of 10.0 in the Z-direction on the upper surface perpendicular to
the Z-axis (BOUNDARY_FACE_ZMAX), and fix the displacement of the lower surface perpendicular
to the Z-axis (BOUNDARY_FACE_ZMIN). The string D_VEC means the Dirichlet conditions of the
displacement, and N_LOAD means a Neumann condition for the displacement.

[Running the Simulator]

Execute Elastica by the command
muffinbe_elastica -1 EX05_in.udf -O EX05_ou.udf

You will get numeric values like the following lines on the standard output by running the input UDF

on Elastica.

====== total free energy : 4956.54
====== strain multiple for K : 82.8955
====== sgtrain multiple for G : 263.137

energy term for anisotropic modulus evaluation

== axis (1, 0, 0 )

coeff 0 = 165.791
coeff 1 = 5.51128
coeff 2 = -26.5938
coeff 3 = 0.402436
coeff 4 = 318.401
== axis ( 0, 1, 0 )
coeff 0 = 165.791
coeff 1 = 5.71867
coeff 2 = -26.919
coeff 3 = 0.831829
coeff 4 = 318.401
== axis (0, 0, 1)
coeff 0 = 165.791
coeff 1 = 294.217
coeff 2 = 219.304
coeff 3 = 28.1567
coeff 4 = 318.401

free energy maximum =

2.96863 at ( O,

15, 0 )
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displacement ( 1.26046e-13, -1.25515e-13, 3.17924e-13 )
====== free energy minimum = 0.817829 at ( 6, 7, 0 )
displacement ( 1.17777e-14, 1.76429e-14, 6.33716e-13 )

These are free energy coefficient described in (1.14) for each axes given by the parameter AXISYMMET-
RIC_MODULUS_EVALUATION_AXES. These values are included in output UDF.

[Drawing the result]
1. Open the result output UDF file on GOURMET, move to a record after deformation(record No.1).

2. Let’s try viewing a color contour output of the volume fraction field. right-click on “EX05_ou.udf”
in the left window of GOURMET and execute “show_field” from the pop-up menu. You will get a
contour figure like Fig.2.5 (the left part). The red part is first component and the blue part is the
second component. Comparing with the morphology view of the record 0 before the deformation, we
can see that the red cylinder part, which is hard in stretching direction but soft in the perpendicular
directions, reduces its radius, and the blue part, which is soft in stretching direction but hard in the
perpendicular directions, has more displacement than cylinder parts and shrinking in sides.

Figure 2.5: Elastica (linear elasticity) example 5: Morphology after displacement and free energy.

3. Next, let’s try viewing a color contour output of the free energy. Right-click on “EX05_ou.udf” in the
left window of GOURMET, and execute “show_field” from the pop-up menu and select ” FreeEnergy”
field. You will get a contour figure like Fig.2.5 (the right part). It can be observed that the strain has
concentrated in the harder red parts near the fixed displacement face.

4. Figure 2.6 shows the free energy ditribution on the interface after the deformation, and the parameter
set for the visualization. By setting isosurface_cap to off, deformed interfacacial structure is shown.
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Values
VolumeFraction| v

INNER_VERTEX | »

range 0

Figure 2.6: Elastica (linear elasticity) example 5: Free energy on the interface after the deformation.






Chapter 3

Operation guide of Elastica

3.1 Commands and parameters for fields of Elastica

3.1.1 List of fields for Elastica

Name of Parameters | Meanings and notations in theory
Displacement Displacement vector u

FreeEnergy Free energy(deformation free energy) f
VolumeFraction Volume fraction v,

Stress Stress tensor o

3.1.2 Input parameters of Elastica

Solver parameter

’ Name of Parameters Meanings and notations in theory

CONVERGENCE_CRITERION_FOR_CG_1 Convergence criterion for CG solver of linear
equation. When the norm of residue vector is less
than this criterion, calculation is judged to have
converged. The default value is 0.5 x 1076

CONVERGENCE_CRITERION_FOR_CG_2 Another convergence criterion for CG solver of
linear equation. When the ratio of norm of residue
vector and right hand side vector is less than this
criterion, calculation is judged to have converged.
The default value is zero, and it means that this
criterion is not applied. If fixed displacement con-
dition, which is treated by the penalty method, is
applied, this criterion should be set to zero.

MATRIX_SOLVER Linear equation (matrix equation) solver name
to be used. Either “ICCG” or "CG” Default is
“ICCG”.

PENALTY_NUMBER_FOR_DIRICHLET _BC | A penalty number to handle Dirichlet condition
(a very large number). The default value is 103

ELEMENTS_PER_MATRIX_MERGE In composition procedure of a matrix (stiffness
matrix) for displacement calculation, the matrix
may not be composed for all elements at once,
but can be composed incrementally for groups of
elements. The number of elements of the groups is
specified by this parameter. The default is 5000.
The size of memory for matrix composition can
be reduced if number of elements is larger than
value of this parameter.

17
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Physical parameter

|

Name of Parameters

Meanings and notations in theory

NUMBER_OF_COMPONENTS

number of components

AVERAGED_VOLUME_FRACTION

averaged volume fraction as initial value 1,0. Value for
each component is given as an parameter array element.

GRAVITY X X component of gravitational acceleration vector.
GRAVITY.Y Y component of gravitational acceleration vector.
GRAVITY _Z 7 component of gravitational acceleration vector.
GRAVITY gravity acceleration vector given as an array. ie.) [ gx,

gy, gz]

MASS_DENSITY

mass density of each component (mass density when vol-
ume fraction is 1.0).

AXISYMMETRIC_MODULUS
_EVALUATION_AXES

arbitrary number of 3-dimensional axis vector.

Each vector is used as ”imaginary” axis vector for which
averaged parameters (quadratic form of strain tensor el-
ements which appear with Dj in expression of deforma-
tion free energy), used to calculate anisotropic moduli
data, are calculated assuming that calculation system have
anisotropy axis into the direction of the vector.

MODULUS_ANISOTROPY _a

anisotropy of component «. A strings either ”Isotropic”
(isotropic elastic material) or ” Axisymmetric” (axissymet-
ric anisotropy) can be specified. If no string is given for
component «, the component is treated as an isotropic
material.

BULK_-MODULUS

isotropic bulk modulus of of each component. Value for
each component is given as an parameter array element.

SHEAR_MODULUS

isotropic shear modulus of of each component. Value for
each component is given as an parameter array element.

MODULUS_«

moduli of component a.

For isotropic components, 2 values are given as bulk mod-
ulus and shear modulus in this order.

For anisotropic components, 5 values are given as (n, [, k,
m, ) in this order.

MODULUS_AXIS_o_i

When component « is anisotropic, give an axis vectors for
the component. The index 7 is an integer starts from zero,
if n axis vectors are necessary, you must give vectors from
i =0to:=mn—1 as parameters. Currently, axissymetry
is the only supported anisotropy, so only parameter with
1 = 0 is necessary.

3.1.3 Boundary conditions (partial region conditions) of Elastica

The following partial region conditions are all for the displacement vector field.

Partial region condition \ treatment

D_VEC Set displacement on vertices in specified partial region(fixed dis-
placement condition).  Give a 3-dimensional vector.  Conditions
"D_VX”"D_VY” and "D_VZ” are prepared for cases in which not all
displacement vector components should be fixed.

D_VX X component of fixed displacement vector.

D_VY X component of fixed displacement vector.

D_vz X component of fixed displacement vector.

N_LOAD Set load on vertices in specified partial region(fixed load condition). Give
a 3-dimensional vector.
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3.1.4 Commands and parameters for fields of Elastica

Displacement : displacement field - commands

Displacement

|

Name

Initialization

"INITIALIZE:TO_ZERO”

Time evolution

"SOLVE:LINEAR _ELASTICITY:ISOTROPIC”

Time evolution

"SOLVE:LINEAR_ELASTICITY:ANISOTROPIC”

Time evolution

"MOVE:POSITION_OF_VERTEX”

Analysis

"OUTPUT:AVS”

Evaluation

"EVALUATE:TRUE”

1. Displacement - initialization commands

Name ?INITIALIZE:TO_ZERO”

Function | Set field values to zero.

2. Displacement - time evolution commands

Name

”SOLVE:LINEAR_ELASTICITY:ISOTROPIC”

Function

Calculate displacement of isotropic elastic material.

Dependent field
Dependent field

Displacement
VolumeFraction

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

NUMBER_OF_COMPONENTS
CONVERGENCE_CRITERION_FOR_-CG_1
CONVERGENCE_CRITERION_FOR_CG_2
DIMENSION_OF_SPACE
MATRIX_SOLVER
ELEMENTS_PER_MATRIX_MERGE
GRAVITY

GRAVITY X

GRAVITY.Y

GRAVITY_Z

MASS_DENSITY
PENALTY_NUMBER_FOR_DIRICHLET BC
MODULUS_ANISOTROPY _«
BULK_MODULUS

SHEAR_MODULUS

MODULUS_«

MODULUS_AXIS_a_i
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Name

”SOLVE:LINEAR_ELASTICITY:ANISOTROPIC”

Function

Calculate displacement of anisotropic elastic material.

Dependent field
Dependent field

Displacement
VolumeFraction

Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter
Dependent parameter

NUMBER_OF_COMPONENTS
CONVERGENCE_CRITERION_FOR_CG_1
CONVERGENCE_CRITERION_FOR_CG_2
DIMENSION_OF_SPACE
MATRIX_SOLVER
ELEMENTS_PER_MATRIX_ MERGE
GRAVITY

GRAVITY X

GRAVITY.Y

GRAVITY Z

MASS_DENSITY

PENALTY _NUMBER_FOR_DIRICHLET _BC
MODULUS_ANISOTROPY _«
BULK_-MODULUS

SHEAR_-MODULUS

MODULUS_«

MODULUS_AXIS_a_i

Name

"MOVE:POSITION_OF _VERTEX”

Function

Move mesh points applying displacement field vector.

Dependent field

Displacement

3. Displacement - analysis commands

Name

?OUTPUT:AVS”

Function

Output calculation results on an AVS format file(field-data).

Dependent field

Displacement

Dependent parameter

DIMENSION_OF_SPACE

4. Displacement - evaluation commands

Name

"EVALUATE: TRUE”

Function

Always return ”true” flag. This function is used to perform an analysis command
with a constant time step interval.

FreeEnergy : free energy field - commands

’ FreeEnergy \ Name
Time evolution | "SOLVE:LINEAR_ELASTICITY”
Analysis "OUTPUT:AVS”
Evaluation "EVALUATE: TRUE”

1. FreeEnergy - time evolution commands
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Name ”SOLVE:LINEAR_ELASTICITY”
Function Calculate free energy.

Dependent field Displacement
Dependent field VolumeFraction

Dependent parameter | NUMBER_OF_COMPONENTS

Dependent parameter | MODULUS_ANISOTROPY _«
Dependent parameter | BULK_MODULUS
Dependent parameter | SHEAR_MODULUS
Dependent parameter | MODULUS_«

Dependent parameter | MODULUS_AXIS_«_i

Dependent parameter | AXISYMMETRIC_MODULUS_EVALUATION_AXES

2. FreeEnergy - analysis commands

Name ?OUTPUT:AVS”

Function | Output calculation results on an AVS format file(field-data).

3. FreeEnergy - evaluation commands

Name "EVALUATE: TRUE”

Function | Always return ”true” flag.

interval.

This function is used to perform an analysis command with a constant time step

VolumeFraction : volume fraction field - commands

’ VolumeFraction \ Name

Initialization PINITIALIZE:ONE_COMPONENT”
Initialization "INITIALIZE:TWO_COMPONENT”
Initialization ?INITIALIZE:UNIFORM”

Analysis "OUTPUT:AVS”

Evaluation "EVALUATE: TRUE”

1. VolumeFraction - initialization commands

Name ?INITIALIZE:ONE_COMPONENT”

Function Initialize as one component system (¢g = 1)

Dependent parameter \ NUMBER_OF_COMPONENTS

Name ?INITIALIZE:TWO_COMPONENT”

Function Initialize as two component system (1)1 = 1 — 1)

Dependent parameter \ NUMBER_OF_COMPONENTS

Name ?INITIALIZE:UNIFORM?”

Function Initialize as a multi-component uniform mixture system.

Dependent parameter | NUMBER_OF_COMPONENTS
Dependent parameter | AVERAGED_VOLUME_FRACTION

2. VolumeFraction - analysis commands

Name ?OUTPUT:AVS”

Function | Output calculation results on an AVS format file(field-data).
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3. VolumeFraction - evaluation commands

Name "EVALUATE: TRUE”

Function | Always return "true” flag.

This function is used to perform an analysis command with a constant time step
interval.

Stress : stress tensor field - commands

’ Stress \ Name
Time evolution | ”SOLVE:STRESS”
Evaluation "EVALUATE: TRUE”

1. Stress - time evolution commands

Name ”SOLVE:STRESS”
Function Calculate stress tensor.
Dependent field Displacement
Dependent field VolumeFraction

Dependent parameter | NUMBER_OF_COMPONENTS

Dependent parameter | AXISYMMETRIC_.MODULUS_EVALUATION_AXES
Dependent parameter | MODULUS_ANISOTROPY _«

Dependent parameter | BULK_-MODULUS

Dependent parameter | SHEAR_MODULUS

Dependent parameter | MODULUS_«

Dependent parameter | MODULUS_AXIS_«v_i

2. Stress - evaluation commands

Name "EVALUATE: TRUE”

Function | Always return "true” flag.

This function is used to perform an analysis command with a constant time step
interval.
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