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Chapter 1

Introduction

OCTA is developed to be a prototype system for computer aided material design. OCTA is aiming at the
simulation technology brought by the collaboration of various simulation programs. OCTA consists of four
simulation engines each dealing with certain characteristic aspect of the material. To explore the possibility
of OCTA we conducted a project AMUSE(Advanced Materials design Using Simulation Engines) in which
a certain test material is studied by utilizing the collaboration of engines.

As the test material, we chose Polypropylene(PP) materials which consists of PP and elastomers(EPR,
SEBS etc.). An important objective of the PP material design is to make stiff and tough. For this objective,
the following properties must be controlled.

x Orientation of the polypropylene crystallite.

* Tie molecules related to the molecular weight and tacticity of polypropylene.
* Morphology of a polypropylene/elastomer blend.

x Conformation at a polypropylene/elastomer interface.

Thus we paid attention to the PP crystal, the morphology in the blend of PP and elastomers and the
interface between them. The outline of AMUSE is shown in Fig.1.1.

1. Study of mechanical properties of semicrystalline polymer.
A method of generating the initial semicrystalline lamella structure is developed. By zooming from
the structure calculated by SUSHI, to COGNAC, we propose the forecasting model of elasticity of
the polypropylene crystal in consideration of the amorphous layer. The elastic modulus calculated by
COGNAC can be used in MUFFIN as a material parameter(a zooming from COGNAC to MUFFIN.).

2. Prediction of bulk elasticity of polypropylene/elastomer blends.
MUFFIN can calculate an elastic modulus of the material having some morphology. SUSHI can
simulate the morphology of polypropylene/elastomer blend system. Therefore, elastic modulus of bulk
material can be predicted by zooming from SUSHI to MUFFIN.

3. Prediction of interfacial strength of polypropylene/elastomer blends.
A method of generating the initial structure of polymer chain at an interface is developed. By zooming
from SUSHI to COGNAC, we study the interfacial properties of polypropylene/elastomer blend system
influenced by the interfacial thickness and the conformation at an interface.
Obtained interfacial strength may be used to predict the mechanical properties of bulk material re-
flecting the physical properties at an interface(future work).
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Figure 1.1: Outline of AMUSE. 1. Calculation of elastic modulus of the semicrystalline lamella structure
obtained by zooming. Influence of crystallite orientation exerted on bulk elasticity is also examined. 2.
Prediction of bulk morphology and elastic modulus by zooming from SUSHI to MUFFIN. 3. Study of
interfacial strength influenced by chain conformation at an interface obtained by zooming from SUSHI to

COGNAC.



Chapter 2

Lamella structures of semi-crystalline
polymers

2.1 Introduction

Semi-crystalline polymers generally form lamella structures of alternating crystalline and amorphous phases.
Typical thickness of these phases are 100-500A for crystalline phase and 50-200A for amorphous phase.
Chains in amorphous portion can be classified into (i) loop-, (ii) bridge-, (iii) tail- and (iv) free-chains. It
has been known that in order for amorphous phases to be occupied by amorphous chains with an adequate
density, tight loop chains have to dominate the chain population distribution. It is considered that the
chain structures in the amorphous phase is related to mechanical properties of such materials containing
semi-crystalline polymers. Computational approach to this problem should play an important role because
of the difficulties in experimental access to the chain structures.

In the AMUSE, it is planned to perform a unique computational analysis for the elastic modulus of lamella
structures of semi-crystalline polyolefin materials, where COGNAC and SUSHI are used cooperatively. Fur-
thermore, passing the results to MUFFIN, it would be enabled to simulate the mechanical properties of
larger scale structures including phase separated domains.

Here we consider the limiting case that the polymer chains are infinitely long. Then, the only possible
type of chains in amorphous phases are either loop- or bridge-chains. In the following sections, results for
chain populations obtained by using SUSHI calculation (even analytic expression is found in this limit)
are given. Next, we show that the results of SUSHI can be used as a guide to generate the initial chain
configuration of semi-crystalline lamella structures for COGNAC simulation by “lamella generator”. Then
we demonstrate the COGNAC simulation for deformations of the lamella structures. The resulting chain
structures at large strains as well as the elastic modulus are shown[1].
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2.2 Analysis of chain conformation in amorphous phase

2.2.1 Mean field calculation

In the beginning of 1980s, the population of loop- and bridge- chains in amorphous phases are analyzed in
terms of random walk model [2, 3]. In the present work, we solved a set of self-consistent field equations
governing the chain structures in the amorphous phases. A melt condition ensuring the constant chain
density within the amorphous phases is imposed in a self-consistent way.

We set the model as the following. Let us consider two walls separated by distance d and the amorphous
chains are distributed between the walls with a constant density. The problem is to derive the chain length
distribution when the chain ends are attached either of the two walls (Fig. 2.1). Note that no free ends exist
since the infinite chain length is assumed.

crystal amorphous crystal
loop

2

ZD bridge

0 d X

Figure 2.1: infinite-chain-length model of semi-crystalline polymers.

Let us consider an amorphous chain having the length s and starting on the left hand side wall. The end
distribution, Q) (s, ) of the chain is given by the diffusion equation,

2
%Q(L)(s, x) = %VQQ(L) (s,x) =V () Q(L)(s,x) (2.1)

with the initial condition,
oBN0,z) = d(x —¢) (2.2)

Here, € is a small constant and we eventually take a limit of e—0. V (z) is a Lagrange multiplier for the
local melt condition. The end distribution of the chain starting on the right hand side wall can be obtained
in the same way. Let us denote the number of the left-hand-side and right-hand-side loop-chains per area as
n%)(m) and n&R) (m), respectively. The number of bridge-chains per area is also denoted as ny(m). When

the chain distribution ({néL) (m)}, {n§R) (m)}, {nb(m)}) is given under the condition

S mb? {nf” (m) + nf™ (m) + ny(m)} = d, (2.3)

the volume fraction d)@L) (s,z | m) of the s-th segment of the left-hand-side loop chains with the length m

becomes
o (s, | m) = C{F (m)QH) (5, 2) Q) (m — 5, ), (2.4)

where CéL)(m) is the normalization constant given by

L
n$" (m)

ST o) (2.5)

Cy (m) =

The same is true for the volume fractions of the loop-chain on the opposite side and the bridge-chain. The
problem is to find the distribution ({néL) (m)}, {néR) (m)}, {nb(m)}) which minimize the free energy. This
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can be done by solving the grand canonical ensemble setting the chemical potential of the chain proportional
to m. Hence, we just replace the right-hand-side of eq.(2.5) by a constant C' which is independent of m.
Below, we denote the total loop distribution as ny(m) = n&L)( )+ n(R)( ).

Using the above model, we solved the distributions of the loop- and bridge-chains for d = 5,6,7,8 and
plotted in fig.2.2, fig.2.3, respectively. The distribution of the loop-chains is dominated by the tight loop

04 e g 0.003 [+ 1+ o e
0'35?\\ """"" A —d=5] 0.0025 F -y :
g 03—
€ 025 T -3 002 -
-2 s e 8 = E oo015-
’é‘ 15 £ : : : E < r
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m

Figure 2.2: The number of loop-chains with the Figure 2.3: The number of bridge-chains with the
length m per unit area in the amorphous phase. length m per unit area in the amorphous phase.

population and decreasing monotonically. On the other hand, there is a peak in the distribution of the
bridge-chains. Furthermore, for mb? < d?, ny(m) show power-law decay with the exponent —3/2, while for
mb? > d?, both ng(m) and ny,(m) decays exponentially. This implies the existence of the scaling law

n(m)b* = m_3/2g(mb2/d2) (2.6)
for both ng(m) and ny(m).

2.2.2 Analytical solution

We further derived analytic solutions for ny(m) and n,(m) as an infinite series. First, it can be easily shown
that the external field V(z) can be written as

V(z)={6(x—e)+d(x—d+e)}/CY2 (2.7)

This means the chains inside the amorphous phase behaves as just Gauss chains. The end distribution of
the chains starting on « = ¢ and x = d — € can be represented by

oW (s, z) Zsm (pﬁg) sin (%)exp (—%) (2.8)

2 1. TEN . T 272 sb?
QR (s,2) = p Z (=1)" 'sin (%)sm (pT)exp (_p e >, (2.9)

p=1

respectively [4]. Determining the normalization constant as it satisfies the condition

m

Z STl (5,2 [ m) + 6 (s, | m) + gy(s,x | m)} =1, (2.10)

m=1 s=1

and taking the limit of e—0, the number of loop- and bridge-chains per unit area can be obtained as

T2b p2rimb?
ne(m) = oF p2exp (—W> (2.11)
p=1
72b p2m2mb?
ny(m) = oF (=)~ Tn2exp ( W) (2.12)
p=1

The analytic solutions (2.11) and (2.12)are plotted for d = 5,b = 1 as well as the numerical results in
fig.2.4,fig.2.5, respectively, showing good agreement between these.
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2.3 Mechanical properties of semi-crystalline polymer

In this section, it is reported that the relationship between the mechanical properties and the morphology
of the lamella structures of semi-crystalline polymer by molecular mechanics (MM) and molecular dynamics
(MD)simulations. Isotactic polypropylene was chosen for the target. To calculate elastic moduli for both
of large and small deformations, firstly we determined potential parameters of the bead-spring model by
MM assuming that the density and moduli of lamella structure are determined the potential as well as that
of pure crystal. Secondly to handle Three-dimensional realistic structure of the lamella, we developed a
novel method to generate the system. Thirdly we investigated elastic moduli of lamella systems using MM
for small deformation cases, and compared the results with series/parallel model. Moreover, stress-strain
behavior under large deformation were investigated by MD.

2.3.1 Model and Method
Model used in this study is bead-spring model of the type of Grest and Kremer[5], and each bead in the

system obeys following equation of motion which Clarke and Brown[6] developed:

R, = 2 { hh 'R, (2.13)

3
where R, p, and m are the coordinate, the moment, and the mass of bead, respectively. Transformation
matrix h make up from the basis vectors, h = (a, b, ¢) which determine the shape of the cell. h and current
pressure P are controlled by:

h= 2.14
M (2.14)
1 = pPiPi

P:—§ L A 2.1
Vi:l( m; T RiE) (2.15)

where Py, M, and f are target pressure tensor, the constant, and force, respectively. Also Temperature
is controlled by loose coupling method[7]. Potential used in this study consists intramolecular part and
intermolecular part as follows:

(i)Bond interaction between neighboring beads i and j,

Ul(rij) = =3k R§-In(1 = (F)%) i < Ro
(e rij > Ro,

Tij

Ul(rij) = 4e(:Z)12 — (%)6 +0.25 1y <260
0 Tij > 2%0',

(ii)Nonbond interaction for all except neighboring beads,

{ Ulrij) = 4¢(G5)" = GH)° + Ushist 7ij < Ocutoy s
0 Tij > Ocutof f

It is well known that results of MM and MD calculation are significantly affected by the parameters in
intramolecular part and intermolecular part (for example, o, € etc. in Eq.(2.3.1)). To simulate realistic sys-
tem, we try to determine these parameters by considering experimental results for structure and mechanical
properties as follows:

1. Building up of initial structure of pure crystal.

2. Equilibration of the system by MM and MD, with various potential parameters and densities of system
which are built by changing the isotropic pressure of the systems.

3. Calculation of elastic moduli under small deformation by MM for each potential parameter.

4. Determination of the potential parameter by comparison of the modulus with experimental data.
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With the set of potential parameters obtained by above procedures, elastic moduli for lamella structure are
obtained by MM as well as stress-strain behavior under large deformation by MD. For these simulations, a
novel generating method of lamella structure on three-dimensional periodic boundary cell is proposed. In
the later sections, detail explanation for each step shall be described.

All simulations presented in this study were done by COGNAC. The three-dimensional periodic boundary
conditions were applied. MD simulations were carried out in the reduced unit, in which o, €, and m are
taken as the unit of length, energy, and mass, respectively. The unit of time 7, pressure p and density p are
given by 7 = a(m/e)*5, p = ¢/03, and p = m/p>. The temperature kgT was set at 0.1¢, which is sufficiently
lower than the melting point. The equation of motions is solved using the velocity Verlet algorithm with the
time step 6t = 0.0017.

2.3.1.1 Determination of potential parameters

Generation of crystal

In this study, elastic moduli of the material are discussed for pure crystal system to determine the potential
parameter used for overall MD calculation of lamella. To generate pure crystal system, initially we put 100
linear chains consisting 10 beads aligned to one specific direction in a periodic boundary cell of 100 x 100 x100.
Two ends of each chain were connected across the cell by the minimum image distance to achieve infinite
molecular weight. (Hence here any effect of defect due to chain ends is not considered.) The system was
equilibrated using MD simulation with various potential parameters and pressure. Examined conditions are
shown later with calculation results on Table 2.1. After equilibration, energy of the system was minimized
by MM simulations.

Calculation of elastic moduli

The pure crystal system generated by the previous procedure was deformed with small strains less than
0.002 to calculate elastic moduli by MM. Elastic moduli are derived from stiffness matrix C;;. For an
isotropic material such as an amorphous polymer, C;; can be expressed by Lamé constants A, p as follows,

A+ 2p0 A A 0 0 0
A A4 2p0 A 0 0 0
_ A A A4+2u 0 0 O
Cy=| j ; o L0 0 (2.16)
0 0 0 0 u O
0 0 0 0 0 u
The tensile (Young’s) modulus E and the Poisson’s ratio v are given by
3N+ 2p A
=y, v=——. 2.17
PN+ 4 201+ \) (2.17)
When the material is planar isotropic, C;; is given by five constants, k, £, m, n, and p,
n l l 0 0 O
{ k+m k—m 0 0 O
| k-=-m kE+m 0 0 O
Ci=1lo o 0 m 0 0 (2.18)
0 0 0 0 pu O
0 0 0 0 0 u
The tensile modulus E; and the Poisson ratio v; in ordered direction are given by
ZQ
Ei=n-— Z (2.19)
and
v = i (2.20)
DTS '

On the other hand, the tensile modulus F5 and the Poisson ratio v» in isotropic directions are given by
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_4dm(nk — (%)

b= hem e (2.21)
and )
~n(k—m)—{

v = T (2.22)

Under the small deformations in which the Hooke’s law can be applied, the stiffness coefficients are given
by[8],

_oi|  _ 1 %A 19Uk,
8€j Te; VE) 867;863‘

= — 2.2
VE) 861'86]' ( 3)

T,e;,e
1€i,€5 RIRS

where € is the strain tensor and A is the Helmholtz free energy (A = U — T'S). In this equation, the
entropic contributions are neglected. Consequently the stiffness matrix can be calculated from the second
derivatives of potential energy U,,;, of energetically minimized structures using MM simulations.

Based on above discussion, elastic moduli were calculated by MM simulations where the strain was
applied by deformation of periodic boundary. Note that here we did not employ affine manner to eliminate
the effect of destruction of inner structure of the system, and that the system volume was not conserved
because the boundary deformation was performed for each axis of the cell independently. Applied strain was
varied within +0.002 for each direction.

Comparison with experimental data

To determine the optimum set of the potential parameters, we compare the calculated moduli with exper-
imental values. Direct comparison is, however, not available because the relation between absolute values
of the moduli and the parameters is complicated, and to determine it, one should perform tremendous cal-
culation to obtain large number of material constants. To escape from above difficulty, we focused on the
ratio of the tensile moduli in the c-axis and in the transverse directions, a == % Value of o was compared
with an experiment[9] and suitable potential parameters and density were chosen for MD simulation. The
obtained set of the parameters was examined also for an amorphous system consisting one long chain with
1000 beads in periodic boundary by MM.

2.3.1.2 Generating lamella structure

In this section, a novel method to generate lamella structure of semi-crystalline polymer in three-dimensional
molecular dynamics simulations. Though various studies have been reported on molecular simulation of
lamella, the most of them discussed only the amorphous structure confined in between two crystalline sur-
faces. For example, Dimarzio, Guttman and Hoffman|[2][3] analyzed the population of loop and bridge
in amorphous phase between two crystalline phases by random walk model. Gautam, Balijepalli, and
Rutledge[10] investigated the topology of the interface between the crystalline phase by off-lattice Monte
Carlo simulations. Brown and Clarke[11] built amorphous structures by using random walk between the
interfaces of crystalline phase with suspended short chains. In this study, however, our target is realistic sit-
uation where crystalline lamella is elongated with coexisting amorphous potion. To achieve such a situation,
we developed a method to generate lamella structure with amorphous. The outline of the method is shown
below.

1. The long period of the semi-crystalline lamella I and the length of crystalline phase L. are specified.
2. The densities of crystal phase p. and amorphous phase p, are specified.
3. One end of a chain is placed at arbitrary position in the amorphous phase.

4. From the chain end, position of the sequential beads are determined by random walk within the
amorphous phase, without any intermolecular interaction.

5. If position of a bead goes into a crystalline phase, the helical structure of crystal will be generated
until the end reaches to the opposite side of the boundary between crystal and amorphous.
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6. According to the conformational distribution of loop and bridge obtained in the previous section(2.2)
based on the mean field theory, additional beads are generated to create the loop or bridge. Note that
the number distribution of the loop also obeys the theoretical one.

7. Step 5-6 are repeated until the number of the beads reaches to the set value. To eliminate defect in
crystalline phase, if the chain end is placed in a crystalline phase, the chain is removed and the process
is restarted from Step 3 until both of the chain ends are placed in the amorphous phase.

8. Step 3-7 are repeated for the required number of molecules.

9. When the density of either crystalline or amorphous phase differ from setting density by a certain
criteria, all molecules in the system is regenerated from Step 3.

10. When above procedures are finished successfully, the excluded volume effect is introduced gradually
through the intermolecular potential by MD.

The details of the Step 6 newly developed for COGNAC are explained below. First, the density d, of the
whole amorphous chain which is a sum of the loop and bridge chains obtained from the mean field calculation
is given by Eq.2.24.

Z {ni(m) + np(m)} x m

d 2.24

a La ( )
Here, n;(m) and n,(m) are the existence probabilities of loop and bridge chain of chain length m obtained
by the mean field calculation respectively. L, is the thickness of an amorphous phase. If the existence
of free chain, which is not involved in the crystal phase, and the tail chain are ignored, d, normalized by
crystal density will turn into 1.0. The density of crystalline phase/amorphous phase can be set up separately.
Therefore, the probability p, where one chain goes into amorphous phase from crystalline phase, and the
probability py where one chain does not go into the amorphous phase but returns to crystalline phase (tight
folding) are given by eqs.2.25 and 2.26 respectively from the given amorphous density/crystal density ratio
rq.

j{:{n¢ m) 4 ny(m)} (2.25)

F=1-pa (2.26)

The summation term of eq.2.25 corresponds to the number of chains in the amorphous phase par one
chain in the crystalline phase if tail chains are ignored, and becomes p, in the case of r; = 1 . However, in
this method, there is no distinction of a tight folding and the loop chain of length 1, and supposing that a
tight folding always has the amorphous portion of length 1. In this case, density d, (= rq) of all amorphous
phases is given by eq.2.27.

) [paZ{nz m) + np(m)} x m} [1 —pa »_ {nu(m) + ny(m )}}
d, = I (2.27)
Here, the first term in right-hand side comes from the amorphous phase based on the mean field theory
and the second term comes from the tight folding. p, and ps are derived from eq.2.27 and given by

Pa = ralq — 1 (2.28)
Z{m ) +np(m)} x m—{n(m) +ny(m)}
pr=1-pa (2:29)

Actually, when a chain is extended to the end of a crystalline phase in the process of chain generation, the
molecular structure (loop chain/bridge chain, and degree of polymerization m) generated as an amorphous
part of the chain is chosen by the Monte Carlo method based on n;(m) and n,(m) obtained by the mean field
theory. However, in order to take a tight folding into consideration, the ps obtained by egs.2.28 and 2.29 is
added to n;(1) obtained by the mean field theory and the summation is used as probability distributions.
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The coordinate of an amorphous part of length m in a chain is generated at random, and the trial is repeated
until the end segment will reach proper position for loop/bridge conformation.

2.3.1.3 Calculation of elastic moduli for lamella

To obtain overall elastic moduli of the lamella, MM calculation was performed for a system consisting two
chains with 500 beads for each. (Hereafter we denote this system as small system.) We set L = 150, L. = 100,
0. = 1.110, and 0, = 1.00 as initial conditions. Using the scheme presented in the previous section, we
generated lamella structures with the determined potential in rectanglar unit cell of 150 x 7.90 x 7.9¢.

MD with constant pressure was carried out by changing external pressure up to obtain proper densities
for the crystalline phase p. and amorphous phase p,, since it is necessary to eliminate anisotoropic pressure
of the system and to relax the overall contortion of the system. If p. and p, remained unchanged for 20007,
the system is assumed to be equilibrated.

Note that after equilibration of the system the cell deformed spontaneously: it shrinks to c-axis direction
and elongates to the perpendicular direction.

To this system MM simulation was applied with small deformation ranging within ¢ = £0.002. We
calculated the moduli assuming that the lamella structures were planar isotropic, i. e. the perpendicular
directions to c-axis of the crystal are isotropic.

2.3.1.4 Observation of stress-strain behavior of lamella

In order to investigate the stress strain behavior at large deformations by MD, we generated larger system
than that for the MM study to obtain elastic moduli in linear regime. The system consists 4 chains with
1200 beads. (Hereafter we denote this system as large system.) We set L = 200, L. = 150, and 0. = 1.110,
and o, = 1.00 as initial conditions. As well as the MM case, lamella structure was generated by the scheme
based on the mean field calculation in unit cell of 200 x 14.90 x 14.90, and it deformed spontaneously during
the equilibration. After the equilibration, it was elongated in c-axis direction (= z direction) of crystalline
phase with the strain rate ¢ = 0.0167 ! up to strain ¢ = 1.0 by MD simulation. During the elongation,
pressure in the perpendicular directions to the elongation was controlled, i.e. the lengths of a-axis and b-
axis of the unit cell were changed independently to keep the pressure constant, while the angles of the unit
cell were fixed.
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2.3.2 Results and Discussion
2.3.2.1 Optimal potential parameters

The snapshot of a minimized crystal model used for elastic moduli calculation was shown in Fig.2.6.
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Figure 2.6: Snapshot of a minimized crystal of isotactic polypropylene

The averaged tensile modulus of five independent initial conditions was shown in Table2.1.

Table 2.1: Tensile moduli of the crystal model and the amorphous model compared with the experimental
results and the result of Theodorou and Suter of polypropylene

crystal densityp. pressureP ocuioryr Lo k E. E; a=E./E,
m/o%)  lefe®) [0 lo] le/o? [¢/o?] [¢/0?]
C1 1.00 -3.5 1.5 1.5 30 323.3 10.7 30.2
C2 1.06 -1.3 1.5 1.5 30 1000.1 80.7 12.5
C3 1.11 0.35 1.5 1.5 30 1068.1 103.7 10.3
C4 1.00 -5.5 2.0 1.5 30 935.4 40.1 23.3
Ch 1.06 -4.0 2.0 1.5 30 997.3 60.9 16.4
C6 1.11 -2.0 2.0 1.5 30 1052.9 91.7 11.5
exp. 33.3[GPa] 2.9[GPa] 11.5
amorphous densityp. pressureP  ocutors Ro k E,
le/o°]
Al 1.01 -2.0 2.0 1.5 30 25.3
calc. 94.5

(reduced value)

One can see that when the density of system p. is 1.11p and the cutoff distance ocyioff is 2.00, the suitable
ratio of modulus « for experimental one[9] is obtained. The result for an amorphous case is also presented
from calculation with the same set of the parameters. Though it is discrepant from the earlier result|[8]
quantitatively, comparing with the moduli of crystalline, we can say that obtained result for amorphous is
reasonable because in this study we focus on the effect of cooperation of coexisting two phases in the lamella
on mechanical response, not on the accurate determination of the potential parameters and absolute values
of the moduli.

2.3.2.2 Tensile moduli of lamella

A snapshot of the equilibrium structure of the small system is shown in Figure 2.7.
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Figure 2.7: Snapshot of the structure of PP semi-crystalline lamella consisting of 2 chains with 500 beads.

ni sores ol

4 E. H E, |

@ a

d’ oy ¢' ETID

H parallel medel

Lpﬁﬁ 'E:

@ urt

Figure 2.8: Complex mechanical model:(a) series model,(b)parallel model.

The lengths of crystalline phase and amorphous phase obtained after the equilibration were 8.50 and
4.40 respectively reflecting the fact that both phases shrank a little in c-axis direction of crystalline phase.
It is noteworthy that several distorted and irregular structure in the crystal due to kink conformation,
penetration of the amorphous chain, interfacial defects, etc., are observed. The averaged tensile modulus
of five independent initial structures obtained by MM is shown in Table 2.2. Also we analyzed two tensile
moduli using the series and parallel models (Figure 2.8). Each modulus of the two models is defined as
follows:

(a) Series model,

E Y (lamella) = ¢ery B + amoEy "t (2.30)

(b) Parallel model,
Ei(lamella) = ¢ery Bt + GamoFa (2.31)

where E., FE; and E, are the tensile modulus in the c-axis and in the transverse direction of crystal and
in amorphous (see Table2.1), and ¢cry and ¢amo are volume fractions of crystalline phase and amorphous
phase, respectively. These were compared with the averaged tensile modulus of realistic structure in Table
2.2.

It is emphasized that both of E.(lamella) and Ei(lamella) are well described by the series model. It
is peculiar result for the system where crystal and amorphous construct lamella structure. Assuming the
situation where the crystal is surrounded by the amorphous, one can easily understand above result so that
one possible explanation is interpenetration of the chains in between two phases, as shown in Fig.2.7. It is
considered that these distorted structures in the crystalline phase affect the decrease of the tensile modulus
in the transverse direction more strongly than in the c-axis direction.
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Table 2.2: Comparison of the tensile moduli of the lamella structures of semi-crystalline PP with those
estimated from analytical equations of series and parallel model.
E.(lamella) Ei(lamella)

le/o?] le/o?]

realistic lamella structure 71.0 46.3
series model 70.5 48.6
parallel model 701.7 68.9

2.3.2.3 Stress strain behavior

A snapshot of the equilibrium structure of the large system is shown in Figure 2.9(a). The lengths of the
crystalline phase and the amorphous phase obtained after the equilibration were 12.80 and 4.60, respectively.
Sequential figures during elongation by MD are also presented.

aj

Figure 2.9: Snapshot of the structure of PP semi-crystalline lamella consisting of 4 chains with 1200 beads
under elongation in the z direction: (a)straine = 0 (equilibrium structure),(b)e = 0.06 (at yield point),(c)e =
0.30, and (d)e = 1.0.

The stress in elongational direction (Stress_zz) as a function of strain was shown in Figure refstressstrain-
curve. It is observed that the stress steeply increase before a certain strain around 6%, and after the strain
the stress gradually decreases to around 1/5 of the peak value. This suggests yield behavior of the sys-
tem. Corresponding to this observation, the snapshot in Fig.2.9(b) indicates the structural breakage of the
crystal. The tensile modulus calculated from the initial slope of the curve and the modulus of the series
model were 89.1p and 89.9p respectively. Consequently we have again verified that the tensile modulus in
the c-axis direction of crystalline phase is expressed by a series combination of the moduli of pure crystal
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Figure 2.10: Stress-strain curve of PP semi-crystalline lamella model under elongation in the z direction.

and amorphous (see Table2.1).

The stress again increases beyond 30% of strain and it is observed that loose tie molecules in amorphous
phase became tight and stretched (see Figure 2.9(d)). The shape of the curve in Figure 2.10 was remarkably
close to that of the stress-strain curve of typical semi-crystalline polymer such as isotactic polypropylene[12].
This means that the lamella structure which we generated is close to the realistic structure of semi-crystalline
polymer and it is possible to reproduce the mechanical properties of polymer.
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2.4 Conclusion

1.

The mean field simulation of the distribution of loop/bridge chains of amorphous layer between crys-
talline layers was performed using the infinite chain model of amorphous layer. Furthermore, the
analysis solution which reproduces the probability of the loop/bridge chains of amorphous layer be-
tween crystalline layers was obtained.

Using the analysis solution from mean field theory, a novel method to generate the lamella structure
of semi-crystalline polymer in three-dimensional cell was developed for COGNAC.

The potential parameters of the bead-spring model were determined to reproduce the experimen-
tal results of the ratio of the tensile moduli in the c-axis and the transverse directions of isotactic
polypropylene crystal.

Molecular mechanics and dynamics simulations were performed to calculate the mechanical properties.
The shape of the stress-strain curve was remarkably close to that of typical semi-crystalline poly-
mer. This means that the lamella structure which we generated is close to the realistic structure of
semi-crystalline polymer and it is possible to reproduce the mechanical properties of polymer. The
relationship between yielding and the lamella structures of semi-crystalline polymer will be studied in
future.

Tensile moduli in the c-axis direction and the transverse direction of the crystalline phase are described
by the series model. Assuming the situation where the crystal is surrounded by the amorphous, one
can easily understand above result so that one possible explanation is interpenetration of the chains
in between two phases.



Chapter 3

Bulk elasticity of
polypropylene/elastomer blends

3.1 Introduction

Most of general-purpose polyolefin materials are used as polymer blend systems of different species of poly-
mers to get new functions such as the strength, toughness and surface texture. It is known that these polymer
blend systems show complicated phase separated structures such as dispersed droplets, fibers and bicontin-
uous structures depending on the interaction between components, the fraction of blend and the process
conditions in blending[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. It is also found that such phase separated
structures strongly influence the mechanical properties, for example, the Young’s modulus, tensile strength
and impact strength [13, 14, 15, 16]. Therefore, it is important to understand the relation between phase
separated structures and mechanical properties. In order to understand this relation, it is indispensable to
grasp phase separated structure correctly, but that is sometimes difficult experimentally. For A/B blend
systems, the bicontinuous phase exists at a limited region between A droplet/B matrix and the B droplet/A
matrix in the phase diagram. However this region is altered by the slight change of physical conditions
such as temperature[17, 18, 19, 20, 21]. Furthermore, near the phase transition point, the identification
of structure itself becomes difficult. So it is not easy to investigate the relation between phase separated
structures and mechanical properties experimentally. On the other hand, in the computer simulation, it is
easy to set up various structures and conditions and to change them. For example, it is easily possible to
replace both components without changing the structure for a two components system.

Using the our developed simulator ”MUFFIN” | we investigate the relation between some phase separated
structures and mechanical physical properties for polyolefin materials[24]. Moreover, the effect of crystal
components which cannot be disregarded in polyolefin materials is also investigated under the phase separated
conditions. General-purpose polyolefin materials such as polyethylene and polypropylene are crystalline
polymers, which influence the mechanical property due to the significantly large elasticity for the direction
of molecular axis [9, 25].

3.2 Model and calculation

We investigate the averaged elastic modulus for various phase separated structures. In order to estimate
the averaged elastic modulus, it is necessary to calculate the strain free energy under imposing some dis-
placements. Generally, the free energy F' for a linear elastic body can be expressed as a functional of a
displacement vector field w;(2) with the following equation

Flu(z)) = /V f(@)av
- / p(@)gis(@)dV (3.1)
\%
—/ T;(x)u;(x)dS,
St

15
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1

flz) = §Dijkl(a7)eij@kl7 (3.2)

where dV and dS are the body and surface integral respectively and the repeated indices are summed over.
Djjni(x), p(x), g, T;(x), S¢ are the local elastic modulus, the mass density, the acceleration of gravity, an
external surface load per unit area, the surface being imposed a load respectively. e;; is the strain tensor
calculated from the displacement vector and it can be expressed as

1 8’(1,]' 8uz
€ij = = . 3.3
i 2<axi+axj (8:3)
Polymeric materials are used as polymer blend system of different species of polymers in many industrial
applications. In order to treat these systems, it is necessary to treat the mixture of components which have

different elastic moduli each other. In our calculation, D;j;x () is expressed using the elastic modulus tensor
D¢y and volume fraction W*(z) for a component « as

Diju(x) =Y Dy ¥ (). (3.4)
[e3
Using this expression, both an isotropic and anisotropic material can be treated. Of course, the mixture of

isotropic and anisotropic materials also can be calculated.
The equilibrium deformation of elastic body can be obtained by minimizing the energy F' as

oF = /Dijkl(m)ekléeijdv
1%
—/ p(x)gidu;dV
v
_ / T (2)5u;dS
St

Ouy, O0u;

- / p(x)gidu;dV
v

St
= 0.

The strain free energy density f(x) for the isotropic and anisotropic elastic body is described below.
Total strain free energy F' in the whole system can be calculated by the body integral of f(x).

Isotropic elastic body

In the case of the isotropic elastic body such as an amorphous polymer, f(x) can be expressed as

K(z)

2
f(z) =G(x) <eij - é%@lz) + (en)?, (3.6)

where G(x) is the shear modulus and K(x) is the bulk modulus. These moduli are calculated using the
values G* and K for a component « and eq.(3.4).
Anisotropic elastic body

In our developed simulator, the systems we can treat are restricted to uniaxial anisotropic elastic bodies.
The stress tensor o;; can be expressed using the strain tensor e;; and elastic moduli, &, I, m, n, ;1 as

fo n l l 0 0 0 [

Oyy Il k+m k—m 0 0 O Eyy

fo _ Il k—-m k+m 0 0 0 € (3.7)
Oy 0 0 0 m 0 0 €yz |’ '
o 0 0 0 0 w O €rn

Oy 0 0 0 0 0 pn oy
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where the z-axis is set as the anisotropic axis. The strain free energy density f(x) can be expressed as
f(:l:) = {Dl (a:)éijékz + Dg(m)ninjnknl

1
+§D3($)(5ijnknl + Orinin;)
1
+§D4($)(5iknjnl + djming) (3.8)

1
+§D5($)(6ik5jl + 6jk6il)}eijekl7

where the coefficients Dy, Ds, D3, Dy, and D5 have the following relations to n, I, k, m, and p,

p, - k-m
2
Ds = l—k+m (3.9)
Dy = p—m
Dy = m.

In order to calculate the equilibrium state for anisotropic elastic materials, it is necessary to give the
moduli and the anisotropic axis for each component. Additionally, to get the strain free energy as a result
of simulation, it must be given that which direction is assumed to be an anisotropic axis as a whole system.

3.3 Results and discussion

3.3.1 Analysis of simulation results

The displacement vector and the strain energy can be obtained at each mesh point as a result of simulation.
Here, the way how to calculate the averaged elastic modulus using the result of simulations is described for
an isotropic and anisotropic elastic system.

Treatment as the isotropic elastic system

The system which is regarded as an isotropic structure is considered. In this case, the strain energy F' for
the whole system can be expressed from eq.(3.6)

an/{(eij _ éaije”)2}dv+F/ (%ekf)dv. (3.10)

where, the averaged moduli in the whole system are expressed with an overline. Since a set of three values,
F, f {(eij — ééije”)Q}dV, and f (%eka)dV is obtained as a result of simulation, the averaged moduli G
and K can be estimated using the resultant data for at least two independent deformations. Since eq.(3.10)
can be read as the following y = ax + b type equation

f {(eij - léijell)Q}dV_ F
- f(%edka)dV G+f(§ekk2)dV’ (3.11)

F:

G and K are given by a cross point of lines for various deformation modes.

In the estimation of the averaged moduli, the deformation of ”shear”, "uniaxial compression”, ”biaxial
compression”, and ”screw” to the direction of three axes of x, y, and z are carried out. The example of
analysis by this method is shown in Figure 3.1.

Treatment as the anisotropic elastic system

Here we focus on an anisotropic system which has an oriented cylinder structure or consists of the oriented
crystalline polymer. The way of estimation of the averaged moduli for anisotropic systems is almost the
same as that for isotropic systems. In the case of anisotropic system, there are five unknown moduli, n, [,
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Figure 3.1: Example of the estimation of G and K (In the case of bicontinuous structure, PP/Elastomer =
30/70). Lines are the results of simulations plotted by eq.(3.11). The cross point of lines is the averaged
elastic modulus (symbol shown in figure).

k, m, and u, and five coefficients, D1, Dy, D3, D4, and D5. In the similar fashion to the isotropic case, the

total strain energy F for the entire system can be expressed using averaged coefficients D; (i=1,...,5) as

F= El/(éijékleijekl)dv

+52/(ninjnknleijekl)dv (3.12)
— 1

+D3 3 dinkng + 5klninj)6ij€kl)dv
1

(
+Da / (3

+55/ (5(5ik5ﬂ + 5jk5il)€ij€kl)dv-

(
(

(5iknjnl + @mmk)eijekl) dVv

Since the total strain energy F and the each coefficient for D; can be obtained as a result of simulation, the
coefficient D; can be estimated using the results of simulations for at least five independent deformations.
The averaged elastic moduli 7, [, k, 7@ and 77 can be obtained by eq.(3.9). In this evaluation of the elastic
moduli, deformations of ”shear”, "uniaxial compression”, ”biaxial compression” to the direction of three
axes of z, y and z are carried out.

3.3.2 Prediction of the averaged elastic modulus

For the investigation of the influence of phase separated structures on elastic properties for polymer blend
systems, the estimation of the averaged elastic modulus was performed by using the multi-component elastic
body simulation. Here, the system is assumed to be Polypropylene(PP)/Elastomer polymer blend system
to compare the results of calculations with the ones of experiments [21].

3.3.2.1 Simulation conditions

In order to investigate the effect of differences of phase separated structures, two model structures are used.
One is the ”dispersed structure” where many droplets of the one minor phase disperse in the other major
phase, the other is the ”bicontinuous structure” where the components are interpenetrated at each other.
Additionally, two structures are used for the investigation of the effect of interface. One is the ”wide interface
(WI) structure” which is gotten from the simulation of our newly developed simulator "SUSHI” based on
the Self Consistent Field theory or on the time-dependent Ginzburg-Landau equation. The other one is
the "narrow interface (NI) structure” which is obtained by replacing the volume fraction of a component at
each mesh point with 0 or 1 by a threshold concentration without changing the structure and total volume
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fraction of each component for the WI structure. Each structure is drawn in Figure 3.2a)-c) where the
only minor component is shown. The simulations were carried out in the condition PP /Elastomer = 30/70
for all structures. For two model structures, the dispersed and bicontinuous structures, simulations were
also carried out in the case where the composition is reversed, namely, PP /Elastomer = 70/30. The elastic
moduli of the PP and Elastomer used here are shown in Table 3.1. We used the same elastic modulus for
each component as those in the reference [21] to compare the results of calculation with their experiment.

Figure 3.2: Structures used for the prediction of the bulk elastic moduli (The only minor component is
shown).

a) Dispersed structure
b) Bicontinuous structure
¢) Wide and Narrow interface structure

3.3.2.2 Calculation results

The averaged elastic moduli G and K for each structure obtained by the simulation are shown in Table 3.2.
Using G and K, E is calculated using the relation, E(= (9KG)/(3K + G)). The value of E are also shown
in Table 3.2. Moreover, these calculation results are compared with three models, which are parallel, Davies
[26], and series models defined by the following equations,

Parallel model:
E=¢1E1 + ¢poF5 (3.13)
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Table 3.1: Elastic moduli used for the prediction of averaged elastic moduli. (*E = (9KG)/(3K + G))

Component Symbol Elastic modulus
(MPa)
178.57
833.33
500) *
1.0033
100.00
3.0) *

PP

Elastomer(SEBS)

mHEQE=Q

Table 3.2: Results of prediction of averaged elastic modulus, G, K, E, and corresponding model
(PP /Elastomer = 30/70).

Structure G K FE model
(MPa) (MPa) (MPa)

Dispersed 1.25 148 3.75 Series

Bicontinuous 11.8 173 34.7 Davies

Wide interface 32.4 185 91.8
Narrow interface 17.7 137 51.0

Davies model:

EY5 = ¢ By MP 4 o B/ (3.14)
Series model: ) p P
1 2
— -z, .1
£ E + 7, (3.15)

The parallel model means that the moduli are given by the simple superposition using the volume fraction
of each component as the weight factor. If the additivity rule is realized, this system is considered to be
equivalent to a well mixed homogeneous material with the elastic modulus E. Since eq.(3.13) is the same
as eq.(3.4), the parts such as the interface where the components are mixed is equivalent to this model in
this simulation. On the other hand, the Davies and series models are strongly related to the structure of the
system. In many experimental results, Davies model is in agreement with the elastic modulus of bicontinuous
structure [27, 15, 28]. The series model is in agreement with the elastic modulus of dispersed structure [21].
The comparison between calculation results and each model is shown in Figure 3.3.

In the case of PP /Elastomer = 30/70, the averaged elastic modulus for bicontinuous structures is higher
than that of dispersed structures. The Young’s modulus of dispersed and bicontinuous structure are in
good agreement with the series and Davies models respectively. These results are also agreement with the
experimental results.

The elastic modulus of the WI structure is between the ones of the parallel model and of the Davies
model. This is because the WI structure consists of the bicontinuous structure and diffuse interface. On the
other hand, in the NI structure where the interface profile is step-like, the modulus decreases and approaches
to Davies model. This tendency is due to the reduction of the influence of an interface, and the increase of
the influence of the structure. This results means the importance of the width of interface in the polymer
blend systems.

In the case of the reversed volume fraction, PP/Elastomer = 70/30, the moduli of dispersed structure
increase and the values for both dispersed and bicontinuous structures become very close. The same tendency
is also seen in the experimental results [21]. This means that the physical properties for dispersed structure
change drastically depending on whether the component with the larger value of E is major or minor.

3.3.3 Calculation of the elasticity of crystalline polymer

It is known that crystalline polymers such as PE and PP have large elastic moduli to the direction of molecular
axis. If these polymers are crystallized under suitable conditions, the structure where the anisotropic crystal
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Figure 3.3: Comparison between calculation results of averaged Young’s modulus and some models. Opened
symbols are the results of this simulation, and Bold, normal, and dashed lines are parallel, Davies, and series
model respectively.

Table 3.3: Elastic modulus used for the calculation of elasticity of oriented crystallite.

Component Symbol  Elastic modulus
(MPa)
33396.4
438.251
1992.05
1141.73
377.300

0.50

2000

PP crystal

PP amorphous

NQE S ~3

part separated by an isotropic amorphous part was piled up will be formed. In this case, it has been
considered that the mechanical property changes depending on the degrees of orientation of crystallite parts.
In order to clarify this dependency, we investigate the mixture of isotropic and anisotropic materials using
eqs.(3.1)-(3.5).

3.3.3.1 Calculation conditions

We investigate the averaged elastic modulus for a material with the structure where the cubical crystal
domains are surrounded by an amorphous phase as shown in Figure 3.4. Generally, although the crystal
part are connected by tie molecules, this effect is neglected here. In order to investigate the influence of
orientation of molecular axis, two cases were considered, i.e., (i) the high orientational case, where the
anisotropic axis orient to z axis and (ii) the random case. In the high orientaitonal case, the evaluation of
the averaged modulus is carried out as an anisotropic system. On the other hand, in the random case, since
the system can be regarded as an isotropic material, it is analyzed as an isotropic system. The values shown
in Table 3.3 are used in the calculations. These values are obtained by "COGNAC” which is a simulator
treating the coarse grained molecular dynamics.

3.3.3.2 Calculation results

In the case of high oriented crystal PP, we obtained the averaged modulus E; = 1078 (MPa) to the direction
of molecular axis and Eq = 57.52 (MPa) to the direction of perpendicular to molecular axis. On the other
hand, in a non-oriented crystal PP, the averaged elastic modulus £ = 552.2 (MPa) is obtained.

In the high orientational case, E; is much smaller than n which is the modulus of the crystal to the
direction of the PP chains. This is due to the effect of the PP amorphous component with the small
modulus. The same tendency is shown in Ey. Although the similar decrease of the modulus also occurs in
the random case, the value of E is between E; and E5. This disagreement is considered to be generated
from the difference of the degree of orientation of molecules. Although the experimental result which can be
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Figure 3.4: Model Structure used for the simulation of crystalline polymer (The only crystal part is shown).

compared with simulation results directly was not found, it is thought that a tendency of simulation result
is plausible.

3.4 Conclusion

For polymer blend systems, the relations between phase separated structures and physical properties are
very important and complicated. But, it is not easy to understand these relations experimentally. On the
other hand, for simulation method, some different phase separated structures with the same volume fraction
can be made, and the reverse of component while keeping the phase separated structure can be carried out
easily. At this point, it is thought that the numerical approach like in the present study is very important
and must be a helpful to understand the relation between structures and mechanical properties.

In the case that the component with low Young’s modulus is the minority, the averaged Young’s modulus
for the bicontinuous structure is larger than that for the dispersed structure with the same volume fraction.
On the other hand, the one with high Young’s modulus is the minority, the values become almost the same.
In the case of the existence of a wide interface, the Young’s modulus is larger than the case of the narrower
interface. For the crystalline polymer, the elasticity increases as the order of orientation becomes higher.



Chapter 4

Interfacial strength of
polypropylene/elastomer blends

4.1 Method and simple application

4.1.1 Introduction

The structure and properties of polymer/polymer and polymer/inorganic interfaces play important roles to
mechanical properties such as adhesion and stickiness of polymer thin film. Furthermore, it is well known
that the interfacial strength affects bulk properties such as modulus and yield strength of polymer blend
and polymer/inorganic composite. In the case of polymer blends, blended polymers overlap each other at
the interface and form the interfacial region of certain thickness. The interfacial thickness and the chain
conformations of immiscible polymer blends depend on many factors, e.g. miscibility, molecular weight and
molecular weight distribution. To study the relation between the interfacial structures and properties of
immiscible polymer blend, we conducted coarse-grained molecular dynamics simulation[29].

4.1.2 Model and calculation

In our simulation, we used the bead-spring model of Grest and Kremer [5, 30]. For a blend of A/B ho-
mopolymer blend, the interaction potential U;;(r) between two beads of types i, j = {A, B} separated by a
distance r is given by

v =L e [{() - () - {E) - @) ey

0, T > Teut,

where €;; and o0 are the Lennard-Jones parameters between bead types ¢ and j, and r.y is a cutoff distance.
In the original work of Grest et.al.[30] for binary mixture of polymer blend, 7., is set to 21/64 which takes
into account only the repulsive part of the Lennard-Jones potential.

We used two values of 7.,; between unconnected beads; repr = 260 and re = 2.50, while e between
connected beads is set to 21/6¢ in all case.

The diameter of the Lennard-Jones potential, 044,045 and opp are set to 1.0 0. The energetic parameter
eaa and epp are set to 1.0e and eap is defined as eqp = € + de. Usually, in the case of 7., = 21/60, de
takes a positive value, since repulsive force between the different type of bead is larger than that between
the same type of bead. On the other hand, in the case of r.,+ = 2.50, de takes a negative value, since the
attractive force between different type of bead is smaller than that between the same type of bead. In both
case, when the absolute value of de becomes larger, the miscibility between beads A and B decreases and
the interfacial thickness becomes thiner.

The neighboring beads along the chains are connected by an unharmonic attractive interaction U (r):

2
_lpp2 Y
Uh(r) = sk Rg In [1 (Ro) } ’ r=Ro (4.2)
00, r > Ry

23
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where k is the spring constant, and Ry is the maximum extension of the spring. Following Grest and Kremer,
we chose the parameters k = 30.0¢/02 and Ry = 1.50. This potential prevents the chains from crossing each
other.

For the equation of motion, we used the following Langevin equation [5]

d*r, dr,,

—=F, - T— +W,(1), 4.3
where m is the mass of the beads, F,, is the force acting on the bead n, I" is the friction constant, and W, (t)
is a Gaussian white noise which is generated according to

(W, ()W () = 2kgTmI8,, I5(t —t'). (4.4)

The calculation is carried out in the reduced unit, in which o, € and m are taken as the unit of length,
energy and mass respectively. The unit of time is given by 7 = o(m/ e)l/ 2. The temperature kg7 is set to
1.0¢, and the friction constant T is set to 0.57~! for all cases. Mass of beads is set to my = mp = 1.0m.
The equation of motion is solved using the velocity Verlet algorithm with time step At = 0.0127.

The initial structure of polymer chain at interface is generated by the density biased Monte Carlo (DBMC)
method [31, 32] which generates chain configuration for MD simulation from the spatial distribution of each
segment of a chain in a phase separate state obtained by the SCF calculation [33, 34]. The chain length N
in the MD simulation is taken to be the same as that of the SCF calculation, which means that one segment
of the SCF calculation corresponds to one bead of the MD simulation.

In the case of the SCF calculation, one dimensional calculation is conducted and the Neumann (reflective)
boundary conditions are applied. To correspond the boundary conditions, staggered reflective boundary
conditions [32] for MD simulation are applied to the boundary perpendicular to the interface (z-direction)
and periodic boundary conditions are applied to the x,y-direction.

The chain structure and the stress-strain behavior of the interface are studied during elongation. The
unit cell length of z-direction is elongated with constant length at certain interval of time step (10-100At,
which depends on the elongation rate), while the unit cell lengths of x,y-direction are kept constant. The
position of beads is moved affinely at the time of deformation of the unit cell. The cutoff distance is set to
2.50 in the case of studying the behavior during elongation to take into account the effect of attractive force.

All calculations are done by a coarse-grained molecular dynamics program, COGNAC [32] and a dynamic
mean field program, SUSHI [35] that we have developed.

4.1.3 Results and discussion
4.1.3.1 Relation between x and d¢

We studied the relation between x and de using the interfacial thickness as a criterion. The SCF calculation
is conducted with certain chain length N and x and the interfacial thickness and other informations, e.g.
a spatial distribution of each segment in a chain are obtained. The initial chain configurations for the MD
simulation are generated from the informations of the SCF calculation by the DBMC method. To start the
MD simulation, the excluded volume effect has to be introduced since the DBMC does not take into account
of the local correlation of the atomic configuration. We introduced the excluded volume effect for the non-
bonding interaction and continued the MD simulation with an initial guess of de which corresponds to the
x- If the interfacial thickness reaches a constant value during the simulation, the equilibrium thickness is
thought to be obtained at given de. We continued this procedure and calculated a set of interfacial thickness
as a function of y and de.

In actual calculation, the interfacial thickness L in the case of symmetric polymer blend is given by

¢i(r) = Atanh (HTH?)) + 0.5, (4.5)

where 7 is a position along the axis perpendicular to the interface and set to 0 at the center of the interface,
¢i(r) is a volume fraction of segment type 7 at r and A is a coefficient. From this definition, L corresponds
to a half distance of total interfacial region. In the case of MD simulation, the volume fraction is calculated
by counting the number of beads in a sliced region of unit cell. Then the interfacial thickness L is calculated
by the fit with eq.(4.5).
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Figure 4.1: Scaled interfacial thickness as a function of ¢ N/kgT and xN. (a)7cus = 2'/%0 and (b)rey: = 2.50

Two chain lengths, N = 20 and 100 are studied. Figure 4.1 shows the scaled interfacial thickness LN ~1/2
as a function of de N/kpT and xN in two cutoff distances. The thickness obtained by the MD simulation is
an average of several snapshot structures and the error is shown in the Figure.

A set of pair of de N/kpgT and xN which gives the same interfacial thickness is selected from Figure 4.1,
then the relation between deN/kpT and xN is shown in Figure 4.2. The result of Grest et.al.[30] is also
shown in Figure 4.2(a).
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Figure 4.2: Relation between e N/kpT and xN. (a)reu: = 2'/%¢ and (b)reys = 2.50. The plot 'Ref.” in (a)
is the result of Grest et.al.[30]

According to the Flory-Huggins theory [36], x is given by x = dezqrs/kpT, where z.5; is an effective
coordination number. Grest et.al. reported that the relation between the effective x and de in miscible
region (xN < 2.0) is estimated as xessr ~ 1.0d¢/kpT. In the immiscible region where we studied, the
relation between x and de/kpT is clearly different from that of the miscible region. Since the probability
of pair distribution of different type of beads will decrease in the phase separated states, the coefficient
corresponding to zcss will decrease. Thus, the x does not increase so much when de/kgT increases in the
immiscible state comparing to the miscible state as shown in the Figure 4.2(a).

In the case of attractive interaction, the fluctuation of interfacial thickness in the case of the MD sim-
ulation is large, and it is difficult to estimate the precise relation between deN/kpT and yN. However,
0eN/kpT close to 0 when xN close to a critical point (yN = 2.0) and the change of deN/kpT affects
the corresponding xN very much as shown in the Figure 4.2(b). This result suggests that in the case of
Teut = 2.50, the small change of de N/kpgT affects the miscibility very much.

According to the relation between xN and 0eN/kpT obtained in this study, we select several y N and
corresponding 6eN/kpT to generate interfacial structures of polymer blend which have a variety of interfacial
thickness.
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4.1.3.2 Stress-strain behavior

The initial configurations generated by the DBMC method and the following structure relaxation with certain
de of the Lennard-Jones potential are used to study the chain conformation and the stress-strain behavior
during elongation of the interface. The numbers of chain M4 p in the case of N4 p = 20 and 100 are 40 and
100 respectively. The initial density before elongation is set to 0.85 m/c® in both chain length and the cell
sizes are 14.0 x 14.0 x 48.00 in the case of N = 100 and 17.15 x 17.15 x 16.0c¢ in the case of N = 20. The
mean square radius of gyration < R; > of N = 20 and 100 are about 5.0 and 25.0 o2 respectively and the
unit cell sizes are thought to be large enough to reproduce bulk regions at both ends of the unit cell.

deN/kpT is chosen as 0.0, —0.3, —1.4 and —10.0. The case of deN/kpT = 0.0 corresponds to the ho-
mopolymer bulk, since the interaction between a pair A-B is the same as that of A-A and B-B. From the
relation obtained by our study, the cases of deN/kgT = —0.3 and —1.4 correspond to xN = 2.46 and
4.1 respectively. The case of deN/kpT = —10.0 corresponds a very strong segregation and the interfacial
thickness is very thin.

The initial strain rate é is changed from 2.08 x 1073771 to 2.08 x 107771, The relative value of the
strain rate comparing to the relaxation time of polymer chain is important to determine the state of polymer,
i.e. melt or glassy state, during elongation. The Rouse relaxation time 7z of N = 20 chain is calculated
as 4607 (75 ' =22 x 1073771 from the Normal coodinates analysis of homopolymer melt. In the case of
N = 100 chain, the relaxation does not show a simple Rouse relaxation because of the entanglement. Thus,
by fitting the autocorrelation function of the Normal coodinates with the KWW equation, the relaxation time
7 of N = 100 chain is estimated to 3.3 x 10*7(7,71 = 3.0 x 10757~1). Although the strain rate will change
during elongation, since the unit cell is elongated at the constant deformation rate (dz/dt = const.[o/T]),
the order of magnitude of the strain rate can be compared to the relaxation time. The fastest elongation rate
studied here is comparable to the Rouse relaxation time of N = 20 chain and the slowest one is comparable
to the relaxation time of N = 100 chain.

Figure 4.3 shows the stress-strain behavior of N = 100 chain as a function of de N/kpT. The results of
two different é are shown in the Figure.

Figure 4.4 shows corresponding snapshot structures of interface of polymer blend before and after elon-
gation. The structures in the case of the initial elongation rate ¢ = 2.08 x 10~%*7~! are shown in the
Figure.
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Figure 4.3: Stress-strain curve of polymer blend at interface as a function of §e N/kpT. Initial strain rate,
(a) 6 =2.08 x 1073771 (b) ¢ =2.08 x 10~ 477!

In both cases, the stress-strain behavior looks almost the same as that of homogeneous bulk(0eN/kgT =
0.0) except for the case of deN/kpT = —10.0. In the case of §e N/kpT = —10.0, the interfacial thickness
is very thin as it is shown in Figure 4.4(b), and the strength of the interface becomes weak. In the case of
0eN/kpT = —1.4, the thicknesses of interface L are 1.54 (N = 20) and 3.45 (N = 100) and the length of
the interface region is comparable to R,.

When the attractive interaction between two polymers are strong and the interfacial thickness is thick
enough, bulk failure is observed during elongation as it is shown in Figure 4.4(a). Furthermore, a fibril like
structure is observed during elongation. On the other hand, in the case of strong segregation, the fracture
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Figure 4.4: Snapshot structures of interfacial structure of polymer blend before(upper) and after(lower)
elongation, (a) thick interface (—deN/kpT = 0.3), (b) thin interface (—deN/kpT = 10.0).

of interface is observed as it is shown in Figure 4.4(Db).

These differences of the chain conformation during elongation explain the stress-strain behavior of differ-
ent interfacial thickness. When the interfacial thickness is thick enough, the blended polymer chains overlap
each other at the interface as well as bulk regions. Thus, the stress-strain behavior is considered to be almost
the same as that of homogeneous bulk and the bulk failure takes place even in the case of the polymer blend.
We should notice that the difference of attractive energy between A-B and A-A(=B-B) is very small, i.e.
0e/kpT = —0.014 in the case of 6eN/kpT = —1.4 and N = 100, while es4/kpT and epp/kpT are 1.0.
Thus the effect of the difference of attractive energy to the stress behavior can be negligible.

Figure 4.5 shows the stress-strain behavior as a function of chain length N. deN/kgT is set to —1.4 and
the results of two different é are shown in the Figure.
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Figure 4.5: Stress-strain curve of polymer blend at interface as a function of chain length N. Initial strain
rate, (a)é = 2.08 x 1073771 (b)é = 2.08 x 107471

In both cases, the maximum yield stresses are larger in the case of N = 100. However the behavior in the
tail region is different, i.e. in the case of fast elongation (¢ = 2.08 x 10737~ 1) (Fig.4.5(a)), stress of N = 100
is higher than that of N = 20, while in the case of slow elongation (é = 2.08 x 10~*771) (Fig.4.5(b)), stress
of N = 20 is higher than that of N = 100. These results are explained as follows. In the case of fast
elongation, strain rate is faster than the relaxation time of polymer chain in both chain length, and both
polymer chain behave as a glassy state. Thus the longer chains show higher stress at all region because of
the higher overlap of chains and strong attractive force between chains. On the other hand, in the case of
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slow elongation, since the Rouse relaxation time of N = 20 chains is faster than the elongation rate, N = 20
chains behave as a melt state. Thus the viscous effect keeps stress higher at the tail region.

Figure 4.6 shows snapshot structures of interface of polymer blend before and after elongation. The
are shown in the Figure.

structures in the case of ¢ = 2.08 x 10~*7—1

Figure 4.6: Snapshot structures of interfacial structure of polymer blend before(upper) and after(lower)
elongation, (a) N=100 (b) N=20

It is observed in the Figure 4.6 that N = 20 chains behave as a melt state and flow without chain
orientation, while N = 100 chain will orient and shows fibril like structure during elongation.

Figure 4.7 shows stress-strain behavior as a function of strain rate. 0eN/kpT is set to —1.4 and the
results of different N are shown in the Figure.
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Figure 4.7: Stress-strain curve of polymer blend at interface as a function of initial strain rate. (a)N=100
and (b)N=20

In the case of N = 100 (Fig. 4.7(a)), the maximum yield stress and the strain at the yield point increase
as strain rate increases, since the relaxation time of polymer is longer than the strain rates in all cases.
On the other hand, in the case of N = 20 (Fig. 4.7(b)), different results are obtained, i.e. in the cases of
é =208 x107%77! and 2.08 x 107°771, the stress-strain behaviors are the same and only in the case of
the fastest strain rate, the yield stress and the strain at the yield point increase. Since the Rouse relaxation
time of N = 20 chain is faster than 2.08 x 10~47~!, the system behaves like pure melt state and there is no
effect of strain rate, in the case of two slower strain rate.
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4.1.4 Conclusion

We studied the interfacial structure and properties of polymer blend with coarse-grained molecular dynamics
simulation. The initial structures of the interface are generated efficiently from the informations obtained by
the SCF calculation. Furthermore, from the relation between y parameter and the Lennard-Jones parameter,
we generated equilibrium interfacial structures which give consistent interfacial thickness with the results of
the SCF calculation.

Using generated interfacial structure of polymer blend, we conducted non-equilibrium MD simulation
and studied the chain conformation and stress-strain behavior during elongation of interface. In the case of
strong segregation and thin interface, we observed fracture of interface and the low yield stress. On the other
hand, in the case of weak segregation and thick interface (thickness being comparable with Ry), the yield
stress becomes almost the same as that in the case of homopolymer bulk and the bulk failure is observed.
The effects of chain length and strain rate to the stress-strain behavior are also studied. The maximum yield
stress increases as the chain length increases and the yield stress and the strain at the yield point increase
as the strain rate increases when the strain rate is faster than the longest relaxation time of the polymer.

This simulation method can be applied to study the interfacial properties of more realistic materials.
For examples, the effect of molecular weight distribution and additive such as a copolymer to the interfacial
properties can be studied.
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4.2 Application to a practical system

4.2.1 Introduction

The process of polymer blending is now widely applied for creating new industrial materials. The actual
designing of such polymer blends is, however, still a challenging problem. Most polymer blends are immiscible
and form macroscopically phase-separated domain structures since the entropy of mixing is negligibly small
due to the very large molecular weights of the constituent polymers. In order to realize the good mechanical
performance of the blends, it is desirable to have a fine dispersion of the domains and to have strong adhesion
between the matrix and the dispersed domains at the interfaces to avoid breaking at a low stress level[37,
38, 39]. One of the approaches to improve the mechanical properties of the immiscible polymer blends is to
add suitable block copolymers as compatibilizers. Although adding such copolymers is effective in enhancing
the miscibility and in improving the toughness of the interfaces, synthesizing desired block copolymers is
rather expensive. Consequently, their use in the large-scale industrial application is quite limited. In a recent
experimental study[40] on a polyolefin blend system, a new technique to improve the interfacial strength
without using the block copolymer is proposed. In this technique, the molecular weight distribution is
controlled so that the distribution of the polymers at the interface is appropriately adjusted. Thus, if
the effects of the chain architecture on the interfacial properties are clarified, this technique would have a
significant effect on the fabrication technology of the polymer blends. In recent years, a simulation method
named as the density-biased Monte Carlo (DBMC) method[31] has been developed to analyze the interfacial
peel behavior of immiscible homopolymer blends. The DBMC method is a combination of the coarse-grained
molecular dynamics (MD) calculation and the self-consistent mean field (SCF) calculation[33, 34]. In the
mean field theory, a many body problem in a dense polymer system is reduced to a problem of independent
polymers in an average potential, which represents the influence of the other chains. The advantage of
the SCF method is that it can give the density profiles of the constituent polymers that correspond to the
equilibrium ground state of the free energy. Using such equilibrium density profiles of the polymers near
the interface, we can calculate the overall width of the interfacial region. The DBMC method allows us
to generate an equilibrium microscopic chain conformation near the interface, which can be used as the
initial state for a MD simulation on the chain deformation behavior under an external field. In this study,
the method is applied to immiscible polymer blends with polydispersity[41]. The effects of polydispersity
on the interfacial peel behavior are investigated using the SCF simulation code named SUSHI[35]. On the
other hand, the microscopic dynamic simulations are done using the coarse-grained MD simulation program
named COGNACI32].

4.2.2 Model and calculation
4.2.2.1 Calculation model

Symmetric A /B binary homopolymer mixtures where both polymers have the same bimodal molecular weight
distributions are considered in this study. We assume that each polymer species is composed of two types of
chains each of which has different chain length, i.e. N7 and No (N7 < N3). Thus, the system is essentially
a quaternary mixture. To study the effects of polydispersity, we focus on the difference in the chain length
between the longer chains and the shorter chains, and keep the volume fractions of each type of chain fixed
as 0.25, respectively. Then, the control parameters of the system are the segment interaction parameter
xAB, the length of the short chain N7 and that of the long chain N5, where the segment size b is fixed as
1 for all the segment types. The equilibrium interfacial structure of such a polymer blend is obtained by
the 1-dimensional static SCF calculation with the Neumann boundary conditions. This method allows us to
calculate the spatial distributions of the segments near the interface.

4.2.2.2 Preparation of the initial structure for the MD simulation

Using the density distribution of each segment obtained by the SCF calculation, the initial conformations of
the polymer chains near an interface is generated by the DBMC method[31, 32]. For the MD calculation, we
use the bead-spring model of Grest and Kremer [5, 30]. The chain length in the MD simulation is taken to be
the same as that of the SCF calculation, which means that one segment of the SCF calculation corresponds
to one bead of the MD simulation. To realize the boundary conditions of the MD simulation that corresponds
to those used in the SCF calculation, staggered reflective boundary conditions[32] is used for the boundaries
parallel to the interface (at the both ends of the z-axis, where z-axis is perpendicular to the interface) and
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the periodic boundary conditions for the x and y-directions, respectively. The Lennard-Jones parameter
is determined so that the MD simulation can give a consistent result on the interfacial thickness to that
obtained in the SCF calculation.

4.2.2.3 Calculation of stress-strain behavior at the interface

The microscopic interface structure created with the above technique is then subjected to an external defor-
mation stress. The relaxation process under the external deformation is simulated using the MD simulation
technique, where the simulation box and the chains are deformed affinely in the perpendicular direction to
the interface (z-direction) at every fixed time steps while keeping the size of the simulation box in the parallel
direction to the interface constant. The change in the chain conformation and the stress-strain behavior of
the interfacial region under such an elongation is studied.

4.2.3 Results and discussion
4.2.3.1 Effect of polydispersity on the equilibrium structure of the interface

The equilibrium structure of the interface in such a polymer blend was obtained using the SCF method.
Detailed analysis of the free energy and the segment distribution demonstrated that the interface becomes
broader when the Flory-Huggins interaction parameter becomes smaller. We also confirmed that the influence
of the polydispersity on the density profile of each type of polymers is negligibly small as long as the number-
averaged molecular weight M,, is kept constant. Figure.4.8 shows the calculated density profile of the K-type
chains ¢k (z) for both a monodisperse system and a polydisperse system.
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Figure 4.8: Equilibrium density profile near the interface obtained from the SCF calculation for a monodis-
perse system (solid line) and a polydisperse system (dotted line). These systems have the same number-
averaged molecular weight 100.

As the interfacial thickness calculated using the data on ¢ (z) of a monodisperse system plays a very
important role in the DBMC method, we investigate the influence of the polydispersity on the interfacial
thickness when the parameter xap is changed. The interfacial thickness D of the polydisperse system is
determined by fitting ¢ i (z) obtained from the SCF calculation to the following equation.

oK (z) = Atanh (%) + 0.5, (4.6)

where z is the coordinate perpendicular to the interface whose origin is set at the center of the interface,
and A is a constant coefficient. Based on the Flory-Huggins model combined with the random phase
approximation (RPA), Broseta and coworkers[42] derived the following expression of the interfacial thickness
of a monodisperse A-B binary polymer mixture as a function of the molecular weight.

1

2In2 1 1 T2
D=Dy|(1- — 4+ — 4.7
( XAB (NA NB)) (47

L2

where D, is the interfacial thickness in the limit of infinite molecular weight, b is a statistical segment length,
and both N4 and Np are the lengths of the A-polymer and the B-polymer. The numerically evaluated values

(4.8)
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of D using the SCF calculation are compared with those predicted by eqgs. (4.7) and (4.8). The results are
shown in fig.4.9. For the theoretical analysis of our polydisperse system, we assumed Ny and Np to be
both 100. As is shown in fig.4.9, the SCF simulation showed very little effects of the polydispersity on the
interfacial thickness. Instead, the interfacial thickness is determined only by the number-averaged molecular
weight. Then, the Lennard Jones interaction parameter was adjusted for the polydisperse system so that
the DBMC simulation can reproduce the interfacial thickness D obtained by the SCF calculation.

8 —

o r=1
6 - or=25
m =5
o r=10
4L — Broseta Eq.

Interfacial Thickness(D)

0 0.1 0.2 0.3

Figure 4.9: Influence of the ratio of the chain lengths between the long chain and the short chain (r) and
that of xap on the interfacial thickness D of the polydisperse system. The theoretical results obtained with
the use of eqs.(4.7) and (4.8) are also shown. In all the simulations, the number-averaged molecular weight
is kept constant at 100.

Figure 4.10 shows the effect of the polydispersity on the segment density profile of the A polymer obtained
from the DBMC calculation and the SCF calculation, respectively. In these simulations, we set the values
of the Lennard Jones interaction parameters as 0.95 and 0.90 that correspond to xyap = 0.10 and 0.25,
respectively. We can confirm that the segment density profiles of each polymer for the polydisperse system
are well reproduced by the DBMC simulations. On the other hand, the SCF calculation demonstrates that,

1

—&—100/100(monodisperse 0.25 x AB) SCF
-0-- 55/550(polydisperse 0.10x AB) SCF
A 100/100(monodisperse 0.25 x AB) DBMC
®  55/550(polydisperse 0.10x AB) DBMC

0B |

Segment Density

Figure 4.10: Equilibrium density profile near the interface obtained with the DBMC method and with the
SCF method.

in the polydisperse system, the depletion of long chains at the interface takes place and the short chains
preferentially locate at the interface. Both the segment density of the long chains and that of the short
chains were also obtained using the SCF calculation. Figure 4.11 shows the excess density profile of the
short and the long chains with different chain length ratio under the same xap and M,,. The excess density
profile of both short and long chains ¢§*“°**(z) are determined as follows.

P77 (2) = Pai(2) + dpi(2) — 9% — D (4.9)

where the short and long chains are specified by the index ¢ (i = 1,2), and the segment density of the
K type chains in the a-type bulk phase is denoted as ¢%,, o specifying one of the coexisting equilibrium
phases.
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Figure 4.11: Excess density profile of a polydisperse system for various values of the chain length ratio (r).
The parameters y4p and M, are set as 0.10 and 100, respectively.

The origin of these results can be understood from the entropic point of view. The loss of conformational
entropy due to the confinement of the chain at the interface is larger for the long chains than the short
chains. As a result, the long chains are tend to be expelled from the interfacial region, and a depletion zone
of the long chains is formed at the interface. Such a depletion zone becomes more significant for larger value
of r. Typical density profiles of the segments belonging to each type of chains obtained from the DBMC
simulations and from the SCF simulations are shown in fig.4.12. We can confirm that the DBMC results
agree well with the SCF results, and also that the DBMC can generate the equilibrium conformation of each
chain successfully.

O:A1, I:|:A2,‘ @B, I:B2
N1=55, N2=550, Mn=100, x ,g=0.10

Segment Density
o
(4,1

Figure 4.12: Typical density profiles of the segments belonging to each type of chains obtained from the
DBMC simulations (symbols) and from the SCF simulations (curves).

4.2.3.2 Effect of polydispersity on the stress-strain behavior of the interfaces

On the basis of the SCF calculation, we found that in the polydisperse system, the depletion of long chains
at the interface takes place and the short chains preferentially locate at the interface. These findings mean
that the interfacial structure of a polydisperse system is different from that of monodisperse one even if
the interfacial thickness is almost the same. Then we analyzed the interfacial peel behavior using model
polymer blend systems with different interfacial thickness and the polydispersity. Three model systems were
considered. The model-1 and model-2 are monodisperse systems with the same number-averaged molecular
weight M, but have different values of the interaction parameter. The model-3 is a polydisperse system
with the same values of M, and yap. In each model, the number-averaged molecular weight was kept
constant and the interfacial thickness was controlled by the xy4p parameter. The stress-strain curves and
the snapshot pictures of the interfacial region after the elongation are shown in fig.4.13. A yielding point
is clearly observed in each case. We found that the yield stress and the yield strain of the monodisperse
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system increase with increasing interfacial thickness. On the other hand, for the system with large interfacial
thickness, both the yield stress and the yield strain become smaller than those for the monodisperse system
with the same interfacial thickness. From the observation of the structure after the elongation, we found
that the yield phenomenon of the polydisperse system is dominated by the failure of the interface where
the long chains are depleted. On the other hand, for the monodisperse system, the yield phenomenon is
dominated by a void formation in the bulk phase.

A possible reason for the influence of the polydispesity on the peel behavior is as follows. The interfacial
thickness is a measure of the overlap between the chains belonging to each phase separated by the interface. In
comparison to the monodisperse blend case, when the thickness is large enough, a remarkable improvement of
the interfacial strength is observed. Because the number of segments between adjacent entanglement points
along the chain is about 35 in the present MD simulations[5], the shorter chains are expected to contribute
to the interfacial strength only slightly, and the fracture behavior is dominated by the overlap of the long
chains. According to the above SCF approach, the overlap of the long chains in the interfacial region will
be reduced by the effect of the depletion and will increase with decreasing chain length ratio.

Therefore significant reinforcement of interfacial strength is expected when the molecular weight distri-
bution is narrow enough to have a considerable overlap between the long chains from the both sides of the
interface.

These simulation results do not contradict with the recent experimental study reported by Chaffin et.al[40,
43]. They have demonstrated that the narrower molecular weight distribution is effective in improving
the peeling behavior of polyolefin blend systems. To obtain a qualitative understanding on the fracture
mechanism of polymer interfaces on the molecular scale, further analysis of the entanglement point density
at the interface[11] is under way.
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Figure 4.13: Stress-strain curves and the snapshots of the interfacial structure after the elongation. Model-
1: Ny = N; = 100, xap = 0.25, Model-2: Ng = N; = 100, xap = 0.10, Model-3: N; = 55, N; = 550,
xap = 0.10

4.2.4 Conclusion

In this study, we performed a series of simulations on the interfacial mechanical behavior of an immiscible
polymer blends with polydispersity based on a combined technique of the coarse-grained molecular dynamics
(MD) simulation and the self-consistent field (SCF) calculation. We confirmed that the simulations can
reproduce the experimental data. The equilibrium microscopic chain conformation at interface can be
efficiently generated from the spatial distribution of each segment obtained by the SCF calculation, when the
Lennard-Jones interaction parameter is adjusted so that the DBMC simulation can reproduce the interfacial
thickness obtained by the SCF calculation. The stress-strain behavior under a simple extensional deformation
of the interfacial region is simulated using the MD technique. In polydisperse system, it is observed that
the depletion of the long chains takes place at the interface where the short chains preferentially locate.
Significant reinforcement of the interfacial strength is observed when the molecular weight distribution is
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narrow enough to have a considerable overlap between the long chains belonging to each phase separated by
the interface. These simulation results do not contradict with the recent experimental results.






Chapter 5

Summary

AMUSE is the project examining a prototype of virtual experiments by cooperating two or more simulation
programs and a platform. By combining each simulation program on a platform, the practical simulations
became possible to study various phenomena, which were difficult to deal with conventional approach.

1. The calculation of the elastic modulus and the analysis of the tensile behavior of semi-crystalline
lamellae by COGNAC were attained by using the initial structure based on the mean field theory.

2. The elastic modulus of bulk materials which have multiphase structures can be predicted by using a
part of MUFFIN, Elastica with introducing the three-dimensional morphology calculated by SUSHI.

3. The elastic modulus of bulk material in consideration of axial anisotropy can be predicted. Thereby,
the orientation of crystallite can be dealt with.

4. The effective technique of generating the initial structure at the interface for MD simulation in
COGNAC based on the morphology calculated from a mean field calculation done by SUSHI was
developed. This zooming technique was applied to the analysis of peeling behavior of the interface of
immiscible polymer blends.
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Appendix A

Sample data

A.1 Lamella structures of semi-crystalline polymers
The sample files described in this section can be found in the following directory:

AMUSE/sample/lamella/samplel
/sample2
/sample3

The sample UDF files are listed below.

1. Minimization of the infinite chain of crystal polymer under the strain(/samplel)

If you start InputUDF using COGNAC ,the infinite chains of pure crystal polymer are minimized by
MM simulations under the the strain e = £0.001 in z-axis direction of the cell. After calculation, you
can get the stiffness matrix Cj; from the second derivatives of the difference of minimized energies 6U
before and after the deformations in following equation2.23. Elastic moduli are derivated from various
components of the stiffness matrix Cj; (see sec.2.3.1.1).

Table A.1: Sample: Minimization of the the infinite chain of crystal polymer under the strain.
Input UDF Restart UDF Output UDF
Read_Set_of_MoleculesUDF

| bs_crystal_def.udf | bs_crystal_mm_out.udf | bs_crystal_def_out.udf |

2. Generating the lamella system of semi-crystalline polymer(/sample2)

The lamella system of semi-crystalline polymer consisting 12000 beads x 4 chains is generated by a
function of “lamella generator”. Each bead is modeled by a bead-spring model. MD simulation with
microcanonical ensemble (NVE) is carried out for 10 steps.

Note: It is hopeful that MD simulation for long time is carried out, because of the elimination of
anisotoropic pressure and the relaxation of the overall contortion of the system.

Table A.2: Sample:Generating the lamella system of semi-crystalline polymer
| Input UDF | Read_Set_of_MoleculesUDF | Output UDF |

| bs_lamella_in.udf | bs_lamella_in_str.udf | bs_lamella_in_out.udf |

3. Elongation of the lamella system(/sample3)
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Elongation of the lamella system in c-axis direction of crystalline phase is performed by MD simulation.
The Poisson’s ratio and strain rate ¢ are set as 0.5 and 0.17!

Table A.3: sample: Elongation of the lamella system
Input UDF Restart UDF Output UDF
Read_Set_of_MoleculesUDF

bs_lamella_in_out.udf

| bs_lamella_elong.udf | | bs_lamella_elong_out.udf |

A.2 Bulk elasticity of polypropylene/elastomer blends

The sample files described in this section can be found in the following directory:

AMUSE/sample/elastic/crystalline
/other
/wi

The sample UDF files are listed below.

1. The sample files for the WI structure (/wi)
The deformation of ”shear”, "uniaxial compression”, ”biaxial compression” to the direction of three
axes of x, y and z are treated. The sample files are prepared to the nine deformation modes for the
”"WI structure” treated in the section ”Prediction of the averaged elastic modulus” and shown in Table
A.4. The "Log File” contain the standard output in the simulation and include the values required for
the analysis.

Table A.4: Sample files for the WI structure (/wi)
Deformation Mode || Input UDF | Output UDF |

Log File |

shear to x axis

sushil_1_in.udf

sushil_1_out.udf

sushil_1_result.txt

shear to y axis

sushil_2_in.udf

sushil_2_out.udf

sushil_2_result.txt

shear to z axis

sushil_3_in.udf

sushil_3_out.udf

sushil_3_result.txt

uniaxial compression to x axis

sushil_4_in.udf

sushil_4_out.udf

sushil_4_result.txt

uniaxial compression to y axis

sushil_5_in.udf

sushil_5_out.udf

sushil_5_result.txt

uniaxial compression to z axis

sushil_6_in.udf

sushil_6_out.udf

sushil_6_result.txt

biaxial compression to = axis

sushil_7_in.udf

sushil_7_out.udf

sushil_7_result.txt

biaxial compression to y axis

sushil_8_in.udf

sushil_8_out.udf

sushil_8_result.txt

biaxial compression to z axis

sushil_9_in.udf

sushil_9_out.udf

sushil_9_result.txt

2. The sample files of the shear to the z axis for the other structures (/other and /crystalline)

Since the deformation modes for the other structures are the same as shown in Table A.4, the contents
in the Input UDF files for these structures are almost the same other than the parts related to the struc-
ture ( the number of components ” NUMBER_OF _COMPONENTS” in ”parameter/physical parameter”, the
initialize condition ”INITIALIZE” in ”"dynamics manager” ...). Therefore, the only files of the shear
to the z axis are prepared for these structures. The simulation can be examined by replacing the pa-
rameters related to the deformation (the deformation mode in "region_condition” and the boundary
condition in ”"parameter/mesh _parameter”) in these Input UDF files.

A.3 Interfacial strength of polypropylene/elastomer blends

The sample files described in this section can be found in the following directory:
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Table A.5: Sample files for ”Prediction of the Averaged Elastic Modulus” (/other)

| Structure || Input UDF | Output UDF | Log File |
NI structure sushi2_in.udf | sushi2_out.udf | sushi2_result.txt
Dispersed structure sphere_in.udf | sphere_out.udf | sphere_result.txt
Bicontinuous structure || cocon_in.udf | cocon_out.udf | cocon_result.txt

Table A.6: Sample files for ”Calculation of the Elasticity of Crystalline Polymer” (/crystalline)

| Structure [ Input UDF | Output UDF | Log File |
high orientation || micro_ori_in.udf | micro_ori_out.udf | micro_ori_result.txt
random micro_ran_in.udf | micro_ran_out.udf | micro_ran_result.txt

AMUSE/sample/interface/morphology
/mol_structure
/peeling

The sample UDF files are listed below.

1. Calculation of segment density distribution (/morphology)
You can obtain the spacial distribution of segments by using the following Input UDF files for SUSHI.
The Output UDF files coresponding to each SUSHI calculation are prepared for generating an initial
structure for the MD simulation.

Table A.7: Samples of SUSHI calculation for the DBMC method
| Calculation model || Input UDF | Output UDF |
monodispersexap 0.25 || cognacl00100_eq-uin.udf | cognac100100_eq-uot.udf
monodispersexap 0.1 | cognac1001001_eq_uin.udf | cognac1001001 _eq_uot.udf

polydispersex ap 0.1 cognachbhb501 eq_uin.udf | cognachb55501_eq_uot.udf

2. Calculation of initial structual data for COGNAC (/mol_structure)
You can obtain the initial structure for MD simulation by using the following Input UDF files. Peeling
behavior can be simulated by using the prepared Output UDF as initial structure input UDF for
COGNAC.

Table A.8: Samples of COGNAC calclation for generating the initial structure for MD
| Calculation model || Input UDF | Output UDF |

Monodispersex ap 0.25 blend_de100100_in.udf blend_de100100_out.udf
SUSHIOutput UDF cognacl00100_eq-uot.udf
SILK UDF blend100_silk_str.udf
Monodisperse x4 0.1 blend_de1001001_in.udf | blend_de1001001 _out.udf
SUSHIOutput UDF cognacl001001 _eq_uot.udf
SILK UDF blend100_silk_str.udf
Polydisperse xap 0.1 blend_de555501 _in.udf blend_de555501 out.udf
SUSIOutput UDF cognachb5501 eq_uot.udf
SILK UDF blend55550_silk _str.udf
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3. Calculation of Stress-Strain behavior at the interface (/peeling)

Table A.9: Samples of COGNAC calculation for the peeling behavior

Calculation model

Input UDF

Output UDF

Monodispersex ap 0.25
Initial structure for MD

blend_de100100md 4in.udf
blend_de100100_out.udf

blend_de100100md _out.udf

Monodispersex ap 0.1
Initial structure for MD

blend_de10010001md_in.udf
blend_de1001001_out.udf

blend_de1001001md_out.udf

Polydispersex ap 0.1
Initial structure for MD

blend_de555501md in.udf
blend_de555501 _out.udf

blend_de555501md _out.udf
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