ランダム系における多体局在現象
孤立量子系の研究において、ランダムネスによって励起状態の性質が転移することが注目されている。ランダムネスの弱いときは非局在状態、強いときは局在状態が現れ、多体局在現象(many-body localization)と呼ばれている。我々は、その転移点を求めるため、ハミルトニアンの疎性を用いて任意のターゲット付近の固有ベクトルを高速に求めるSI Lanczos法を、ランダム磁場ハイゼンベルグ模型に適用し、少数の粒子系で完全対角化と同じ結果を再現できることを確かめた。また、連立一次方程式の求解にLU分解ではなくKrylov部分空間法を用いることで、ヒルベルト空間の次元のオーダーの空間計算量で固有ベクトルを求めることができるようになった