2020

スピン軌道絶縁体における励起子ボーズ・アインシュタイン凝縮

exciton-condensation.jpg

近年注目を浴びている 5d 軌道の電子系では電子間相互作用とスピン軌道相互作用の両方が重要になります。我々はスピンと軌道が強く相互作用する場合、電子間のクーロン相互作用が励起子(電子と正孔の結合状態)を安定化させボーズ・アインシュタイン凝縮を引き起こすことを示しました。このように励起子のボーズ・アインシュタイン凝縮により生じる絶縁体相は励起子絶縁体と呼ばれ、現実の物質ではこれまでほとんど見つかっていませんでした。今回提案した理論を 5d 軌道の電子系であるイリジウム酸化物に適用し、2層系が長い間探されてきた励起子絶縁体であることを予言しました。またこの2層系の物質は、励起子がボーズ・アインシュタイン凝縮を起こす量子相転移のすぐ近くにあることを理論的に見出しました。相対論の効果でスピンと軌道が強く相互作用する 5d 電子系では、電子間のクーロン相互作用と電子の運動エネルギーが同程度であることが本質的に重要となることを示しました。

幾何学的割り当て法によるワームアルゴリズムの改良

worm-Ising.jpgモンテカルロ法では和をとるべき「状態」に制約があり、制約を満たしながらサンプリングすることが難しい場合があります。(例として、充足可能性問題。)そのような状況でうまく状態を変えてサンプリングする方法として代表的なのが、ワームアルゴリズム(worm algorithm)と呼ばれる手法です。ワームとは制約を破るキンク(点)のことで、ワームアルゴリズムのアイデアは「制約を常に満たすのは難しいから、いったん制約を破ってしまって後でつじつまを合わせよう」というものです。このモンテカルロ法では制約を破るワーム(キンク)を導入して、ワームを確率的に動かすことでサンプリングを行います。従来の方法では、ワームをほぼ完全にランダムに動かすようにしていました。そこで我々は効率の良い計算をするためのワームの動かし方に関する指針——できるだけ前へ進めという指針——を提案しました。これを可能にするためには、ワームが動く確率を最適化する必要があるのですが、以前我々が開発した確率最適化アルゴリズム Phys. Rev. Lett. 105, 120603 (2010) を使うと簡単に実装できます。そうして最適化したワームアルゴリズムを制約つき問題に書き直したイジングモデルに応用し、従来のワームアルゴリズムと比較して計算効率を25倍改善しました。これはイジングモデルに対して最も効率的だと信じられているクラスターアップデートよりもさらに効率的です。