藤堂研究室へようこそ
シミュレーションで探る量子多体現象
物質の状態を理解するためには、多体シュレーディンガー方程式を解き、統計力学における分配関数を求める必要がある。しかし、現代のスーパーコンピュータの計算能力をもってしても、この方程式を完全に解くことは困難である。そこで、元の方程式に内在する対称性や量子相関といった物理的に重要な性質を損なうことなく、シミュレーションしやすい形に再構成することが、計算物理における重要な課題となっている。
藤堂研究室では、モンテカルロ法などのサンプリング手法や、経路積分に基づく量子ゆらぎの表現、特異値分解およびテンソルネットワークによる情報圧縮、統計的機械学習手法などを駆使し、量子スピン系から実在物質、さらには量子コンピュータに至るまで、さまざまな量子多体系に特有の状態、相転移現象、ダイナミクスの解明を目指している。
また、次世代の大規模シミュレーションに向けたオープンソースソフトウェアの開発・公開にも取り組んでいる。さらに、「量子ソフトウェア」寄付講座や、JST共創の場形成支援プログラム「サステイナブル量子AI研究開発拠点」の活動を通じて、サンプリングやテンソルネットワークに基づく量子アルゴリズムおよび量子機械学習手法の研究開発も精力的に行っている。
セミナー
- 統計力学セミナー @ 本郷 理学部
- ipi seminar
- 計算科学フォーラム
最近の研究より
- 藤堂研究室発表論文リスト(2002-)
多変数変分モンテカルロ法mVMCの高度化
多変数変分モンテカルロ法mVMCは、日本の物性理論コミュニティーにおいて広く使われ、これまで、強相関電子系の基底状態状態における様々な性質(磁性、超伝導など)を解き明かしてきた。しかし、mVMCにおける演算のホットスポットは、反対称逆行列 X-1のRank-1更新であるため、現代のプロセッサーにおいては、性能を発揮することは難しい。「富岳」の新プロセッサA64FXにおいてmVMCの性能を充分に発揮するため、我々は、Woodbury公式を使って更新式を書き直し、Rank-1更新を Rank-k更新に置き換えた。これにより「富岳」における mVMC の性能を大幅に向上することができた
- RuQing G. Xu, Tsuyoshi Okubo, Synge Todo, Masatoshi Imada, Optimized Implementation for Calculation and Fast-Update of Pfaffians Installed to the Open-Source Fermionic Variational Solver mVMC, preprint: arXiv:2105.13098.
ニューラルネットを用いた古典可積分系の構成
可積分系は物理と数学において豊富な知見を提供してきた。特に古典可積分系は古くから研究されながらも、今なお多くの新たな発見が報告されている。これまで、古典可積分系は、偶然あるいはひらめきによって、あるいはある種の仮設の範囲でのみ発見・構成されてきた。我々はこれに対し、深層学習を用いることで、これまでにない新たな構成法を提案した。具体的には、「作用角変数」と呼ばれる特殊な正準座標で与えられたハミルトニアンを与え、それに対する自然なハミルトニアンを深層学習によって発見する。この手法では特に、(i) ニューラルネットで全単射な座標変換を表現できる。(ii) 時間発展の自動微分を随伴法により効率化できる点に着目した。実際に古典可積分系の代表である戸田格子に対して我々の手法を適用し、戸田格子のポテンシャルを見つけ出すことができることを示した
- Fumihiro Ishikawa, Hidemaro Suwa, Synge Todo, Neural Network Approach to Construction of Classical Integrable Systems, preprint: arXiv:2103.00372.