藤堂研究室へようこそ

シミュレーションで探る量子多体現象

物質の状態を知るには、多体のシュレディンガー方程式を解き、統計力学の分配関数を求めればよい。しかしながら、現代のスーパーコンピュータの計算能力をもってしても、完全な解を求めることはできない。そこで、もとの方程式の中に含まれる、物理的に重要な性質を失うことなく、シミュレーションを実行しやすい形へ表現しなおすことが、計算物理における重要な鍵となる。藤堂研究室では、モンテカルロ法に代表される確率的なシミュレーション、経路積分に基づく量子ゆらぎの表現、特異値分解やテンソルネットワークによる情報圧縮、統計的機械学習の手法などを駆使し、古典/量子スピン系やボーズハバード系などに代表される強相関多体系における新奇な状態や相転移現象の探索・解明を目指している。また、最先端のスーパーコンピュータの能力を活かすための並列化手法の研究、次世代シミュレーションのためのオープンソースソフトウェアの開発・公開も進めている。

セミナー


最近の研究より

物質科学シミュレーションのポータルMateriApps

materiapps.jpeg日本国内においても、高性能な物質科学シミュレーションソフトウェアが数多く開発・公開されているが、その知名度は必ずしも高くない。また、ドキュメントの作成やユーザサポートにも問題が多く、普及の妨げとなっている。物質科学アプリケーションのさらなる公開・普及を目指し、物質科学シミュレーションのポータルサイト「MateriApps」の整備を行っている。また、気軽にシミュレーションを始めることのできる環境構築を目指し、仮想Linuxシステム「MateriApps LIVE!」、MateriAppsアプリケーションのインストールスクリプト集「MateriApps Installer」の開発・公開も進めている。

非一様な系に対するテンソルネットワーク繰り込み

テンソルネットワークは、厳密対角化といった従来の指数的にコストがかかる計算手法に比べ、ベキ的な計算量のコストですむ計算手法として近年注目されている。代表的な手法にTRGや、HOTRGといったものがあるが、それ以外にProjectorによる手法も注目されている。これまでテンソルネットワークは一様な系に対して用いられてきたが、我々は、HOTRGとProjectorによる計算手法を非一様系に拡張し、ボンド希釈を含むイジングモデルに適用し、非一様系においてProjectorによる手法が収束が速いことを確認した

量子モンテカルロ法によるRényiエンタングルメントエントロピーの測定

ee.pngエンタングルメントエントロピーは、量子多体系における量子相関を表す指標のひとつであり、特に基底状態におけるエンタングルメントエントロピーを秩序変数とみなすことで量子相転移を特徴付けることが出来る。一方、量子多体系を解析する上で強力な計算手法として虚時間経路積分に基づく有限温度量子モンテカルロ法が従来より用いられてきたが、相関長が有限の場合においては絶対零度(基底状態)を直接サンプリングすることも可能である。この基底状態をサンプリングする量子モンテカルロ法とレプリカ法を組み合わせることで基底状態のRényiエントロピーを直接計算する手法を開発した。

量子ダイマー模型における非局所更新モンテカルロ法

cao.png

量子ダイマー模型は1988年にRokhsarとKivelsonによりフラストレートした磁性体の低エネルギー有効模型として提案された。量子ダイマー模型のハミルトニアンには負符号問題はないが、ダイマーの配置に強い幾何学的な制限があるため、モンテカルロシミュレーションは非常に困難であった。近年、2次元量子ダイマー模型に対して、Stochastic Series Expansion法に基づく新しい量子モンテカルロ法が提案されたが、さらに、新しいデータ構造を取り入れることで、より効率よく有限温度のシミュレーションを行うことが可能となった。この新しい非局所更新モンテカルロ法と有限サイズスケーリングを組み合わせることで、2次元量子ダイマー模型の有限温度相図を精密に決定した。

機械学習を用いた高ヤング率材料探索

figure_periodic_table.png機械学習、特にベイズ推定などを用いた統計的手法による新材料探索(マテリアルズインフォマティクス)が注目を浴びている。機械学習を用いることで、既存物質データを元により性能の高い新物質を予測し、探索することが可能となると期待されている。我々は、特にベイズ最適化を用いた手法を応用し、高ヤング率材料の候補となる物質を探索し、第一原理計算によってそのヤング率を調べた。結果、ベイズ推定とベイズ最適化を用いることで、非常に少ない回数で探索範囲内の最も高いヤング率を示す材料を発見することができた。